summaryrefslogtreecommitdiff
path: root/gcc/config/arm/arm.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/arm/arm.c')
-rwxr-xr-xgcc/config/arm/arm.c7001
1 files changed, 0 insertions, 7001 deletions
diff --git a/gcc/config/arm/arm.c b/gcc/config/arm/arm.c
deleted file mode 100755
index 06d942a..0000000
--- a/gcc/config/arm/arm.c
+++ /dev/null
@@ -1,7001 +0,0 @@
-/* Output routines for GCC for ARM.
- Copyright (C) 1991, 93, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
- Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
- and Martin Simmons (@harleqn.co.uk).
- More major hacks by Richard Earnshaw (rearnsha@arm.com).
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-#include "config.h"
-#include <stdio.h>
-#include <string.h>
-#include "rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "real.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "insn-flags.h"
-#include "output.h"
-#include "insn-attr.h"
-#include "flags.h"
-#include "reload.h"
-#include "tree.h"
-#include "expr.h"
-#include "toplev.h"
-
-/* The maximum number of insns skipped which will be conditionalised if
- possible. */
-static int max_insns_skipped = 5;
-
-extern FILE *asm_out_file;
-/* Some function declarations. */
-
-/* CYGNUS LOCAL */
-void arm_increase_location PROTO ((int));
-static int get_prologue_size PROTO ((void));
-/* END CYGNUS LOCAL */
-
-static HOST_WIDE_INT int_log2 PROTO ((HOST_WIDE_INT));
-static char *output_multi_immediate PROTO ((rtx *, char *, char *, int,
- HOST_WIDE_INT));
-static int arm_gen_constant PROTO ((enum rtx_code, enum machine_mode,
- HOST_WIDE_INT, rtx, rtx, int, int));
-static int arm_naked_function_p PROTO ((tree));
-static void init_fpa_table PROTO ((void));
-static enum machine_mode select_dominance_cc_mode PROTO ((enum rtx_code, rtx,
- rtx, HOST_WIDE_INT));
-static HOST_WIDE_INT add_constant PROTO ((rtx, enum machine_mode, int *));
-static void dump_table PROTO ((rtx));
-static int fixit PROTO ((rtx, enum machine_mode, int));
-static rtx find_barrier PROTO ((rtx, int));
-static int broken_move PROTO ((rtx));
-static char *fp_const_from_val PROTO ((REAL_VALUE_TYPE *));
-static int eliminate_lr2ip PROTO ((rtx *));
-static char *shift_op PROTO ((rtx, HOST_WIDE_INT *));
-static int pattern_really_clobbers_lr PROTO ((rtx));
-static int function_really_clobbers_lr PROTO ((rtx));
-static void emit_multi_reg_push PROTO ((int));
-static void emit_sfm PROTO ((int, int));
-static enum arm_cond_code get_arm_condition_code PROTO ((rtx));
-
-/* Define the information needed to generate branch insns. This is
- stored from the compare operation. */
-
-rtx arm_compare_op0, arm_compare_op1;
-int arm_compare_fp;
-
-/* CYGNUS LOCAL: Definition of arm_cpu deleted. */
-
-/* What type of floating point are we tuning for? */
-enum floating_point_type arm_fpu;
-
-/* What type of floating point instructions are available? */
-enum floating_point_type arm_fpu_arch;
-
-/* What program mode is the cpu running in? 26-bit mode or 32-bit mode */
-enum prog_mode_type arm_prgmode;
-
-/* CYGNUS LOCAL: Name changed to fpe. */
-/* Set by the -mfpe=... option */
-char *target_fpe_name = NULL;
-/* END CYGNUS LOCAL */
-
-/* Used to parse -mstructure_size_boundary command line option. */
-char * structure_size_string = NULL;
-int arm_structure_size_boundary = 32; /* Used to be 8 */
-
-/* Bit values used to identify processor capabilities. */
-#define FL_CO_PROC 0x01 /* Has external co-processor bus */
-#define FL_FAST_MULT 0x02 /* Fast multiply */
-#define FL_MODE26 0x04 /* 26-bit mode support */
-#define FL_MODE32 0x08 /* 32-bit mode support */
-#define FL_ARCH4 0x10 /* Architecture rel 4 */
-#define FL_THUMB 0x20 /* Thumb aware */
-#define FL_LDSCHED 0x40 /* Load scheduling necessary */
-#define FL_STRONG 0x80 /* StrongARM */
-
-/* The bits in this mask specify which instructions we are allowed to generate. */
-static int insn_flags = 0;
-/* The bits in this mask specify which instruction scheduling options should
- be used. Note - there is an overlap with the FL_FAST_MULT. For some
- hardware we want to be able to generate the multiply instructions, but to
- tune as if they were not present in the architecture. */
-static int tune_flags = 0;
-
-/* The following are used in the arm.md file as equivalents to bits
- in the above two flag variables. */
-
-/* Nonzero if this is an "M" variant of the processor. */
-int arm_fast_multiply = 0;
-
-/* Nonzero if this chip supports the ARM Architecture 4 extensions */
-int arm_arch4 = 0;
-
-/* Nonzero if this chip can benefit from load scheduling. */
-int arm_ld_sched = 0;
-
-/* Nonzero if this chip is a StrongARM. */
-int arm_is_strong = 0;
-
-/* Nonzero if this chip is a an ARM6 or an ARM7. */
-int arm_is_6_or_7 = 0;
-
-/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
- must report the mode of the memory reference from PRINT_OPERAND to
- PRINT_OPERAND_ADDRESS. */
-enum machine_mode output_memory_reference_mode;
-
-/* Nonzero if the prologue must setup `fp'. */
-int current_function_anonymous_args;
-
-/* The register number to be used for the PIC offset register. */
-int arm_pic_register = 9;
-
-/* Location counter of .text segment. */
-int arm_text_location = 0;
-
-/* Set to one if we think that lr is only saved because of subroutine calls,
- but all of these can be `put after' return insns */
-int lr_save_eliminated;
-
-/* Set to 1 when a return insn is output, this means that the epilogue
- is not needed. */
-
-static int return_used_this_function;
-
-/* Set to 1 after arm_reorg has started. Reset to start at the start of
- the next function. */
-static int after_arm_reorg = 0;
-
-/* The maximum number of insns to be used when loading a constant. */
-static int arm_constant_limit = 3;
-
-/* CYGNUS LOCAL unknown */
-/* A hash table is used to store text segment labels and their associated
- offset from the start of the text segment. */
-struct label_offset
-{
- char * name;
- int offset;
- struct label_offset * cdr;
-};
-
-#define LABEL_HASH_SIZE 257
-
-static struct label_offset * offset_table [LABEL_HASH_SIZE];
-/* END CYGNUS LOCAL */
-
-/* For an explanation of these variables, see final_prescan_insn below. */
-int arm_ccfsm_state;
-enum arm_cond_code arm_current_cc;
-rtx arm_target_insn;
-int arm_target_label;
-
-/* The condition codes of the ARM, and the inverse function. */
-char *arm_condition_codes[] =
-{
- "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
- "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
-};
-
-static enum arm_cond_code get_arm_condition_code ();
-
-
-/* Initialization code */
-
-struct processors
-{
- char * name;
- unsigned int flags;
-};
-
-/* Not all of these give usefully different compilation alternatives,
- but there is no simple way of generalizing them. */
-static struct processors all_cores[] =
-{
- /* ARM Cores */
-
- {"arm2", FL_CO_PROC | FL_MODE26 },
- {"arm250", FL_CO_PROC | FL_MODE26 },
- {"arm3", FL_CO_PROC | FL_MODE26 },
- {"arm6", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm60", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm600", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm610", FL_MODE26 | FL_MODE32 },
- {"arm620", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm7", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm7m", FL_CO_PROC | FL_MODE26 | FL_MODE32 | FL_FAST_MULT }, /* arm7m doesn't exist on its own, */
- {"arm7d", FL_CO_PROC | FL_MODE26 | FL_MODE32 }, /* but only with D, (and I), */
- {"arm7dm", FL_CO_PROC | FL_MODE26 | FL_MODE32 | FL_FAST_MULT }, /* but those don't alter the code, */
- {"arm7di", FL_CO_PROC | FL_MODE26 | FL_MODE32 }, /* so arm7m is sometimes used. */
- {"arm7dmi", FL_CO_PROC | FL_MODE26 | FL_MODE32 | FL_FAST_MULT },
- {"arm70", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm700", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm700i", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"arm710", FL_MODE26 | FL_MODE32 },
- {"arm710c", FL_MODE26 | FL_MODE32 },
- {"arm7100", FL_MODE26 | FL_MODE32 },
- {"arm7500", FL_MODE26 | FL_MODE32 },
- {"arm7500fe", FL_CO_PROC | FL_MODE26 | FL_MODE32 }, /* Doesn't really have an external co-proc, but does have embedded fpu. */
- {"arm7tdmi", FL_CO_PROC | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_THUMB },
- {"arm8", FL_MODE26 | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_LDSCHED },
- {"arm810", FL_MODE26 | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_LDSCHED },
- {"arm9", FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_THUMB | FL_LDSCHED },
- {"arm920", FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_LDSCHED },
- {"arm920t", FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_THUMB | FL_LDSCHED },
- {"arm9tdmi", FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_THUMB | FL_LDSCHED },
- {"strongarm", FL_MODE26 | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_LDSCHED | FL_STRONG },
- {"strongarm110", FL_MODE26 | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_LDSCHED | FL_STRONG },
- {"strongarm1100", FL_MODE26 | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_LDSCHED | FL_STRONG },
-
- {NULL, 0}
-};
-
-static struct processors all_architectures[] =
-{
- /* ARM Architectures */
-
- {"armv2", FL_CO_PROC | FL_MODE26 },
- {"armv2a", FL_CO_PROC | FL_MODE26 },
- {"armv3", FL_CO_PROC | FL_MODE26 | FL_MODE32 },
- {"armv3m", FL_CO_PROC | FL_MODE26 | FL_MODE32 | FL_FAST_MULT },
- {"armv4", FL_CO_PROC | FL_MODE26 | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 },
- /* Strictly, FL_MODE26 is a permitted option for v4t, but there are no
- implementations that support it, so we will leave it out for now. */
- {"armv4t", FL_CO_PROC | FL_MODE32 | FL_FAST_MULT | FL_ARCH4 | FL_THUMB },
- {NULL, 0}
-};
-
-/* This is a magic stucture. The 'string' field is magically filled in
- with a pointer to the value specified by the user on the command line
- assuming that the user has specified such a value. */
-
-struct arm_cpu_select arm_select[] =
-{
- /* string name processors */
- { NULL, "-mcpu=", all_cores },
- { NULL, "-march=", all_architectures },
- { NULL, "-mtune=", all_cores }
-};
-
-/* Return the number of bits set in value' */
-static unsigned int
-bit_count (value)
- signed int value;
-{
- unsigned int count = 0;
-
- while (value)
- {
- value &= ~(value & - value);
- ++ count;
- }
-
- return count;
-}
-
-/* Fix up any incompatible options that the user has specified.
- This has now turned into a maze. */
-void
-arm_override_options ()
-{
- unsigned i;
-
- /* Set up the flags based on the cpu/architecture selected by the user. */
- for (i = sizeof (arm_select) / sizeof (arm_select[0]); i--;)
- {
- struct arm_cpu_select * ptr = arm_select + i;
-
- if (ptr->string != NULL && ptr->string[0] != '\0')
- {
- const struct processors * sel;
-
- for (sel = ptr->processors; sel->name != NULL; sel ++)
- if (! strcmp (ptr->string, sel->name))
- {
- if (i == 2)
- tune_flags = sel->flags;
- else
- {
- /* If we have been given an architecture and a processor
- make sure that they are compatible. We only generate
- a warning though, and we prefer the CPU over the
- architecture. */
- if (insn_flags != 0 && (insn_flags ^ sel->flags))
- warning ("switch -mcpu=%s conflicts with -march= switch",
- ptr->string);
-
- insn_flags = sel->flags;
- }
-
- break;
- }
-
- if (sel->name == NULL)
- error ("bad value (%s) for %s switch", ptr->string, ptr->name);
- }
- }
-
- /* If the user did not specify a processor, choose one for them. */
- if (insn_flags == 0)
- {
- struct processors * sel;
- unsigned int sought;
- static struct cpu_default
- {
- int cpu;
- char * name;
- }
- cpu_defaults[] =
- {
- { TARGET_CPU_arm2, "arm2" },
- { TARGET_CPU_arm6, "arm6" },
- { TARGET_CPU_arm610, "arm610" },
- { TARGET_CPU_arm710, "arm710" },
- { TARGET_CPU_arm7m, "arm7m" },
- { TARGET_CPU_arm7500fe, "arm7500fe" },
- { TARGET_CPU_arm7tdmi, "arm7tdmi" },
- { TARGET_CPU_arm8, "arm8" },
- { TARGET_CPU_arm810, "arm810" },
- { TARGET_CPU_arm9, "arm9" },
- { TARGET_CPU_strongarm, "strongarm" },
- { TARGET_CPU_generic, "arm" },
- { 0, 0 }
- };
- struct cpu_default * def;
-
- /* Find the default. */
- for (def = cpu_defaults; def->name; def ++)
- if (def->cpu == TARGET_CPU_DEFAULT)
- break;
-
- /* Make sure we found the default CPU. */
- if (def->name == NULL)
- abort ();
-
- /* Find the default CPU's flags. */
- for (sel = all_cores; sel->name != NULL; sel ++)
- if (! strcmp (def->name, sel->name))
- break;
-
- if (sel->name == NULL)
- abort ();
-
- insn_flags = sel->flags;
-
- /* Now check to see if the user has specified some command line
- switch that require certain abilities from the cpu. */
- sought = 0;
-
- if (TARGET_THUMB_INTERWORK)
- {
- sought |= (FL_THUMB | FL_MODE32);
-
- /* Force apcs-32 to be used for interworking. */
- target_flags |= ARM_FLAG_APCS_32;
-
- /* There are no ARM processor that supports both APCS-26 and
- interworking. Therefore we force FL_MODE26 to be removed
- from insn_flags here (if it was set), so that the search
- below will always be able to find a compatible processor. */
- insn_flags &= ~ FL_MODE26;
- }
-
- if (! TARGET_APCS_32)
- sought |= FL_MODE26;
-
- if (sought != 0 && ((sought & insn_flags) != sought))
- {
- /* Try to locate a CPU type that supports all of the abilities
- of the default CPU, plus the extra abilities requested by
- the user. */
- for (sel = all_cores; sel->name != NULL; sel ++)
- if ((sel->flags & sought) == (sought | insn_flags))
- break;
-
- if (sel->name == NULL)
- {
- unsigned int current_bit_count = 0;
- struct processors * best_fit = NULL;
-
- /* Ideally we would like to issue an error message here
- saying that it was not possible to find a CPU compatible
- with the default CPU, but which also supports the command
- line options specified by the programmer, and so they
- ought to use the -mcpu=<name> command line option to
- override the default CPU type.
-
- Unfortunately this does not work with multilibing. We
- need to be able to support multilibs for -mapcs-26 and for
- -mthumb-interwork and there is no CPU that can support both
- options. Instead if we cannot find a cpu that has both the
- characteristics of the default cpu and the given command line
- options we scan the array again looking for a best match. */
- for (sel = all_cores; sel->name != NULL; sel ++)
- if ((sel->flags & sought) == sought)
- {
- unsigned int count;
-
- count = bit_count (sel->flags & insn_flags);
-
- if (count >= current_bit_count)
- {
- best_fit = sel;
- current_bit_count = count;
- }
- }
-
- if (best_fit == NULL)
- abort ();
- else
- sel = best_fit;
- }
-
- insn_flags = sel->flags;
- }
- }
-
- /* If tuning has not been specified, tune for whichever processor or
- architecture has been selected. */
- if (tune_flags == 0)
- tune_flags = insn_flags;
-
- /* Make sure that the processor choice does not conflict with any of the
- other command line choices. */
- if (TARGET_APCS_32 && !(insn_flags & FL_MODE32))
- {
- /* If APCS-32 was not the default then it must have been set by the
- user, so issue a warning message. If the user has specified
- "-mapcs-32 -mcpu=arm2" then we loose here. */
- if ((TARGET_DEFAULT & ARM_FLAG_APCS_32) == 0)
- warning ("target CPU does not support APCS-32" );
- target_flags &= ~ ARM_FLAG_APCS_32;
- }
- else if (! TARGET_APCS_32 && !(insn_flags & FL_MODE26))
- {
- warning ("target CPU does not support APCS-26" );
- target_flags |= ARM_FLAG_APCS_32;
- }
-
- if (TARGET_THUMB_INTERWORK && !(insn_flags & FL_THUMB))
- {
- warning ("target CPU does not support interworking" );
- target_flags &= ~ARM_FLAG_THUMB;
- }
-
- /* If interworking is enabled then APCS-32 must be selected as well. */
- if (TARGET_THUMB_INTERWORK)
- {
- if (! TARGET_APCS_32)
- warning ("interworking forces APCS-32 to be used" );
- target_flags |= ARM_FLAG_APCS_32;
- }
-
- if (TARGET_APCS_STACK && ! TARGET_APCS)
- {
- warning ("-mapcs-stack-check incompatible with -mno-apcs-frame");
- target_flags |= ARM_FLAG_APCS_FRAME;
- }
-
- if (write_symbols != NO_DEBUG && flag_omit_frame_pointer)
- warning ("-g with -fomit-frame-pointer may not give sensible debugging");
-
- if (TARGET_POKE_FUNCTION_NAME)
- target_flags |= ARM_FLAG_APCS_FRAME;
-
- if (TARGET_APCS_REENT && flag_pic)
- fatal ("-fpic and -mapcs-reent are incompatible");
-
- if (TARGET_APCS_REENT)
- warning ("APCS reentrant code not supported. Ignored");
-
- /* If stack checking is disabled, we can use r10 as the PIC register,
- which keeps r9 available. */
- if (flag_pic && ! TARGET_APCS_STACK)
- arm_pic_register = 10;
-
- /* Well, I'm about to have a go, but pic is NOT going to be compatible
- with APCS reentrancy, since that requires too much support in the
- assembler and linker, and the ARMASM assembler seems to lack some
- required directives. */
- if (flag_pic)
- warning ("Position independent code not supported");
-
- if (TARGET_APCS_FLOAT)
- warning ("Passing floating point arguments in fp regs not yet supported");
-
- /* Initialise boolean versions of the flags, for use in the arm.md file. */
- arm_fast_multiply = insn_flags & FL_FAST_MULT;
- arm_arch4 = insn_flags & FL_ARCH4;
-
- arm_ld_sched = tune_flags & FL_LDSCHED;
- arm_is_strong = tune_flags & FL_STRONG;
- arm_is_6_or_7 = ((tune_flags & (FL_MODE26 | FL_MODE32))
- && !(tune_flags & FL_ARCH4));
-
- /* Default value for floating point code... if no co-processor
- bus, then schedule for emulated floating point. Otherwise,
- assume the user has an FPA.
- Note: this does not prevent use of floating point instructions,
- -msoft-float does that. */
- arm_fpu = (tune_flags & FL_CO_PROC) ? FP_HARD : FP_SOFT3;
-
- if (target_fpe_name)
- {
- if (! strcmp (target_fpe_name, "2"))
- arm_fpu_arch = FP_SOFT2;
- else if (! strcmp (target_fpe_name, "3"))
- arm_fpu_arch = FP_SOFT3;
- else
- fatal ("Invalid floating point emulation option: -mfpe-%s",
- target_fpe_name);
- }
- else
- arm_fpu_arch = FP_DEFAULT;
-
- if (TARGET_FPE && arm_fpu != FP_HARD)
- arm_fpu = FP_SOFT2;
-
- /* For arm2/3 there is no need to do any scheduling if there is only
- a floating point emulator, or we are doing software floating-point. */
- if ((TARGET_SOFT_FLOAT || arm_fpu != FP_HARD) && (tune_flags & FL_MODE32) == 0)
- flag_schedule_insns = flag_schedule_insns_after_reload = 0;
-
- arm_prog_mode = TARGET_APCS_32 ? PROG_MODE_PROG32 : PROG_MODE_PROG26;
-
- if (structure_size_string != NULL)
- {
- int size = strtol (structure_size_string, NULL, 0);
-
- if (size == 8 || size == 32)
- arm_structure_size_boundary = size;
- else
- warning ("Structure size boundary can only be set to 8 or 32");
- }
-
- /* If optimizing for space, don't synthesize constants.
- For processors with load scheduling, it never costs more than 2 cycles
- to load a constant, and the load scheduler may well reduce that to 1. */
- if (optimize_size || (tune_flags & FL_LDSCHED))
- arm_constant_limit = 1;
-
- /* If optimizing for size, bump the number of instructions that we
- are prepared to conditionally execute (even on a StrongARM).
- Otherwise for the StrongARM, which has early execution of branches,
- a sequence that is worth skipping is shorter. */
- if (optimize_size)
- max_insns_skipped = 6;
- else if (arm_is_strong)
- max_insns_skipped = 3;
-}
-
-
-/* Return 1 if it is possible to return using a single instruction */
-
-int
-use_return_insn (iscond)
- int iscond;
-{
- int regno;
-
- if (!reload_completed ||current_function_pretend_args_size
- || current_function_anonymous_args
- || ((get_frame_size () + current_function_outgoing_args_size != 0)
- /* CYGNUS LOCAL nickc */
- && !(TARGET_APCS && frame_pointer_needed)))
- /* END CYGNUS LOCAL */
- return 0;
-
- /* Can't be done if interworking with Thumb, and any registers have been
- stacked. Similarly, on StrongARM, conditional returns are expensive
- if they aren't taken and registers have been stacked. */
- if (iscond && arm_is_strong && frame_pointer_needed)
- return 0;
- if ((iscond && arm_is_strong)
- || TARGET_THUMB_INTERWORK)
- for (regno = 0; regno < 16; regno++)
- if (regs_ever_live[regno] && ! call_used_regs[regno])
- return 0;
-
- /* Can't be done if any of the FPU regs are pushed, since this also
- requires an insn */
- for (regno = 16; regno < 24; regno++)
- if (regs_ever_live[regno] && ! call_used_regs[regno])
- return 0;
-
- /* If a function is naked, don't use the "return" insn. */
- if (arm_naked_function_p (current_function_decl))
- return 0;
-
- return 1;
-}
-
-/* Return TRUE if int I is a valid immediate ARM constant. */
-
-int
-const_ok_for_arm (i)
- HOST_WIDE_INT i;
-{
- unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT)0xFF;
-
- /* For machines with >32 bit HOST_WIDE_INT, the bits above bit 31 must
- be all zero, or all one. */
- if ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0
- && ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff)
- != ((~(unsigned HOST_WIDE_INT) 0)
- & ~(unsigned HOST_WIDE_INT) 0xffffffff)))
- return FALSE;
-
- /* Fast return for 0 and powers of 2 */
- if ((i & (i - 1)) == 0)
- return TRUE;
-
- do
- {
- if ((i & mask & (unsigned HOST_WIDE_INT) 0xffffffff) == 0)
- return TRUE;
- mask =
- (mask << 2) | ((mask & (unsigned HOST_WIDE_INT) 0xffffffff)
- >> (32 - 2)) | ~((unsigned HOST_WIDE_INT) 0xffffffff);
- } while (mask != ~(unsigned HOST_WIDE_INT) 0xFF);
-
- return FALSE;
-}
-
-/* Return true if I is a valid constant for the operation CODE. */
-int
-const_ok_for_op (i, code, mode)
- HOST_WIDE_INT i;
- enum rtx_code code;
- enum machine_mode mode;
-{
- if (const_ok_for_arm (i))
- return 1;
-
- switch (code)
- {
- case PLUS:
- return const_ok_for_arm (ARM_SIGN_EXTEND (-i));
-
- case MINUS: /* Should only occur with (MINUS I reg) => rsb */
- case XOR:
- case IOR:
- return 0;
-
- case AND:
- return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
-
- default:
- abort ();
- }
-}
-
-/* Emit a sequence of insns to handle a large constant.
- CODE is the code of the operation required, it can be any of SET, PLUS,
- IOR, AND, XOR, MINUS;
- MODE is the mode in which the operation is being performed;
- VAL is the integer to operate on;
- SOURCE is the other operand (a register, or a null-pointer for SET);
- SUBTARGETS means it is safe to create scratch registers if that will
- either produce a simpler sequence, or we will want to cse the values.
- Return value is the number of insns emitted. */
-
-int
-arm_split_constant (code, mode, val, target, source, subtargets)
- enum rtx_code code;
- enum machine_mode mode;
- HOST_WIDE_INT val;
- rtx target;
- rtx source;
- int subtargets;
-{
- if (subtargets || code == SET
- || (GET_CODE (target) == REG && GET_CODE (source) == REG
- && REGNO (target) != REGNO (source)))
- {
- /* After arm_reorg has been called, we can't fix up expensive
- constants by pushing them into memory so we must synthesise
- them in-line, regardless of the cost. This is only likely to
- be more costly on chips that have load delay slots and we are
- compiling without running the scheduler (so no splitting
- occurred before the final instruction emission).
-
- Ref: gcc -O1 -mcpu=strongarm gcc.c-torture/compile/980506-2.c
- */ /* CYGNUS LOCAL nickc/strongarm */
- if ((! after_arm_reorg || optimize == 0)
- /* END CYGNUS LOCAL */
- && (arm_gen_constant (code, mode, val, target, source, 1, 0)
- > arm_constant_limit + (code != SET)))
- {
- if (code == SET)
- {
- /* Currently SET is the only monadic value for CODE, all
- the rest are diadic. */
- emit_insn (gen_rtx (SET, VOIDmode, target, GEN_INT (val)));
- return 1;
- }
- else
- {
- rtx temp = subtargets ? gen_reg_rtx (mode) : target;
-
- emit_insn (gen_rtx (SET, VOIDmode, temp, GEN_INT (val)));
- /* For MINUS, the value is subtracted from, since we never
- have subtraction of a constant. */
- if (code == MINUS)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (code, mode, temp, source)));
- else
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (code, mode, source, temp)));
- return 2;
- }
- }
- }
-
- return arm_gen_constant (code, mode, val, target, source, subtargets, 1);
-}
-
-/* As above, but extra parameter GENERATE which, if clear, suppresses
- RTL generation. */
-int
-arm_gen_constant (code, mode, val, target, source, subtargets, generate)
- enum rtx_code code;
- enum machine_mode mode;
- HOST_WIDE_INT val;
- rtx target;
- rtx source;
- int subtargets;
- int generate;
-{
- int can_invert = 0;
- int can_negate = 0;
- int can_negate_initial = 0;
- int can_shift = 0;
- int i;
- int num_bits_set = 0;
- int set_sign_bit_copies = 0;
- int clear_sign_bit_copies = 0;
- int clear_zero_bit_copies = 0;
- int set_zero_bit_copies = 0;
- int insns = 0;
- unsigned HOST_WIDE_INT temp1, temp2;
- unsigned HOST_WIDE_INT remainder = val & 0xffffffff;
-
- /* find out which operations are safe for a given CODE. Also do a quick
- check for degenerate cases; these can occur when DImode operations
- are split. */
- switch (code)
- {
- case SET:
- can_invert = 1;
- can_shift = 1;
- can_negate = 1;
- break;
-
- case PLUS:
- can_negate = 1;
- can_negate_initial = 1;
- break;
-
- case IOR:
- if (remainder == 0xffffffff)
- {
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- GEN_INT (ARM_SIGN_EXTEND (val))));
- return 1;
- }
- if (remainder == 0)
- {
- if (reload_completed && rtx_equal_p (target, source))
- return 0;
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target, source));
- return 1;
- }
- break;
-
- case AND:
- if (remainder == 0)
- {
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target, const0_rtx));
- return 1;
- }
- if (remainder == 0xffffffff)
- {
- if (reload_completed && rtx_equal_p (target, source))
- return 0;
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target, source));
- return 1;
- }
- can_invert = 1;
- break;
-
- case XOR:
- if (remainder == 0)
- {
- if (reload_completed && rtx_equal_p (target, source))
- return 0;
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target, source));
- return 1;
- }
- if (remainder == 0xffffffff)
- {
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (NOT, mode, source)));
- return 1;
- }
-
- /* We don't know how to handle this yet below. */
- abort ();
-
- case MINUS:
- /* We treat MINUS as (val - source), since (source - val) is always
- passed as (source + (-val)). */
- if (remainder == 0)
- {
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (NEG, mode, source)));
- return 1;
- }
- if (const_ok_for_arm (val))
- {
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (MINUS, mode, GEN_INT (val), source)));
- return 1;
- }
- can_negate = 1;
-
- break;
-
- default:
- abort ();
- }
-
- /* If we can do it in one insn get out quickly */
- if (const_ok_for_arm (val)
- || (can_negate_initial && const_ok_for_arm (-val))
- || (can_invert && const_ok_for_arm (~val)))
- {
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- (source ? gen_rtx (code, mode, source,
- GEN_INT (val))
- : GEN_INT (val))));
- return 1;
- }
-
-
- /* Calculate a few attributes that may be useful for specific
- optimizations. */
-
- for (i = 31; i >= 0; i--)
- {
- if ((remainder & (1 << i)) == 0)
- clear_sign_bit_copies++;
- else
- break;
- }
-
- for (i = 31; i >= 0; i--)
- {
- if ((remainder & (1 << i)) != 0)
- set_sign_bit_copies++;
- else
- break;
- }
-
- for (i = 0; i <= 31; i++)
- {
- if ((remainder & (1 << i)) == 0)
- clear_zero_bit_copies++;
- else
- break;
- }
-
- for (i = 0; i <= 31; i++)
- {
- if ((remainder & (1 << i)) != 0)
- set_zero_bit_copies++;
- else
- break;
- }
-
- switch (code)
- {
- case SET:
- /* See if we can do this by sign_extending a constant that is known
- to be negative. This is a good, way of doing it, since the shift
- may well merge into a subsequent insn. */
- if (set_sign_bit_copies > 1)
- {
- if (const_ok_for_arm
- (temp1 = ARM_SIGN_EXTEND (remainder
- << (set_sign_bit_copies - 1))))
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- emit_insn (gen_rtx (SET, VOIDmode, new_src,
- GEN_INT (temp1)));
- emit_insn (gen_ashrsi3 (target, new_src,
- GEN_INT (set_sign_bit_copies - 1)));
- }
- return 2;
- }
- /* For an inverted constant, we will need to set the low bits,
- these will be shifted out of harm's way. */
- temp1 |= (1 << (set_sign_bit_copies - 1)) - 1;
- if (const_ok_for_arm (~temp1))
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- emit_insn (gen_rtx (SET, VOIDmode, new_src,
- GEN_INT (temp1)));
- emit_insn (gen_ashrsi3 (target, new_src,
- GEN_INT (set_sign_bit_copies - 1)));
- }
- return 2;
- }
- }
-
- /* See if we can generate this by setting the bottom (or the top)
- 16 bits, and then shifting these into the other half of the
- word. We only look for the simplest cases, to do more would cost
- too much. Be careful, however, not to generate this when the
- alternative would take fewer insns. */
- if (val & 0xffff0000)
- {
- temp1 = remainder & 0xffff0000;
- temp2 = remainder & 0x0000ffff;
-
- /* Overlaps outside this range are best done using other methods. */
- for (i = 9; i < 24; i++)
- {
- if ((((temp2 | (temp2 << i)) & 0xffffffff) == remainder)
- && ! const_ok_for_arm (temp2))
- {
- rtx new_src = (subtargets
- ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
- : target);
- insns = arm_gen_constant (code, mode, temp2, new_src,
- source, subtargets, generate);
- source = new_src;
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (IOR, mode,
- gen_rtx (ASHIFT, mode, source,
- GEN_INT (i)),
- source)));
- return insns + 1;
- }
- }
-
- /* Don't duplicate cases already considered. */
- for (i = 17; i < 24; i++)
- {
- if (((temp1 | (temp1 >> i)) == remainder)
- && ! const_ok_for_arm (temp1))
- {
- rtx new_src = (subtargets
- ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
- : target);
- insns = arm_gen_constant (code, mode, temp1, new_src,
- source, subtargets, generate);
- source = new_src;
- if (generate)
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (IOR, mode,
- gen_rtx (LSHIFTRT, mode,
- source, GEN_INT (i)),
- source)));
- return insns + 1;
- }
- }
- }
- break;
-
- case IOR:
- case XOR:
- /* If we have IOR or XOR, and the constant can be loaded in a
- single instruction, and we can find a temporary to put it in,
- then this can be done in two instructions instead of 3-4. */
- if (subtargets
- /* TARGET can't be NULL if SUBTARGETS is 0 */
- || (reload_completed && ! reg_mentioned_p (target, source)))
- {
- if (const_ok_for_arm (ARM_SIGN_EXTEND (~ val)))
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
-
- emit_insn (gen_rtx (SET, VOIDmode, sub, GEN_INT (val)));
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (code, mode, source, sub)));
- }
- return 2;
- }
- }
-
- if (code == XOR)
- break;
-
- if (set_sign_bit_copies > 8
- && (val & (-1 << (32 - set_sign_bit_copies))) == val)
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (set_sign_bit_copies);
-
- emit_insn (gen_rtx (SET, VOIDmode, sub,
- gen_rtx (NOT, mode,
- gen_rtx (ASHIFT, mode, source,
- shift))));
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (NOT, mode,
- gen_rtx (LSHIFTRT, mode, sub,
- shift))));
- }
- return 2;
- }
-
- if (set_zero_bit_copies > 8
- && (remainder & ((1 << set_zero_bit_copies) - 1)) == remainder)
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (set_zero_bit_copies);
-
- emit_insn (gen_rtx (SET, VOIDmode, sub,
- gen_rtx (NOT, mode,
- gen_rtx (LSHIFTRT, mode, source,
- shift))));
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (NOT, mode,
- gen_rtx (ASHIFT, mode, sub,
- shift))));
- }
- return 2;
- }
-
- if (const_ok_for_arm (temp1 = ARM_SIGN_EXTEND (~ val)))
- {
- if (generate)
- {
- rtx sub = subtargets ? gen_reg_rtx (mode) : target;
- emit_insn (gen_rtx (SET, VOIDmode, sub,
- gen_rtx (NOT, mode, source)));
- source = sub;
- if (subtargets)
- sub = gen_reg_rtx (mode);
- emit_insn (gen_rtx (SET, VOIDmode, sub,
- gen_rtx (AND, mode, source,
- GEN_INT (temp1))));
- emit_insn (gen_rtx (SET, VOIDmode, target,
- gen_rtx (NOT, mode, sub)));
- }
- return 3;
- }
- break;
-
- case AND:
- /* See if two shifts will do 2 or more insn's worth of work. */
- if (clear_sign_bit_copies >= 16 && clear_sign_bit_copies < 24)
- {
- HOST_WIDE_INT shift_mask = ((0xffffffff
- << (32 - clear_sign_bit_copies))
- & 0xffffffff);
-
- if ((remainder | shift_mask) != 0xffffffff)
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- insns = arm_gen_constant (AND, mode, remainder | shift_mask,
- new_src, source, subtargets, 1);
- source = new_src;
- }
- else
- {
- rtx targ = subtargets ? NULL_RTX : target;
- insns = arm_gen_constant (AND, mode, remainder | shift_mask,
- targ, source, subtargets, 0);
- }
- }
-
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (clear_sign_bit_copies);
-
- emit_insn (gen_ashlsi3 (new_src, source, shift));
- emit_insn (gen_lshrsi3 (target, new_src, shift));
- }
-
- return insns + 2;
- }
-
- if (clear_zero_bit_copies >= 16 && clear_zero_bit_copies < 24)
- {
- HOST_WIDE_INT shift_mask = (1 << clear_zero_bit_copies) - 1;
-
- if ((remainder | shift_mask) != 0xffffffff)
- {
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
-
- insns = arm_gen_constant (AND, mode, remainder | shift_mask,
- new_src, source, subtargets, 1);
- source = new_src;
- }
- else
- {
- rtx targ = subtargets ? NULL_RTX : target;
-
- insns = arm_gen_constant (AND, mode, remainder | shift_mask,
- targ, source, subtargets, 0);
- }
- }
-
- if (generate)
- {
- rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
- rtx shift = GEN_INT (clear_zero_bit_copies);
-
- emit_insn (gen_lshrsi3 (new_src, source, shift));
- emit_insn (gen_ashlsi3 (target, new_src, shift));
- }
-
- return insns + 2;
- }
-
- break;
-
- default:
- break;
- }
-
- for (i = 0; i < 32; i++)
- if (remainder & (1 << i))
- num_bits_set++;
-
- if (code == AND || (can_invert && num_bits_set > 16))
- remainder = (~remainder) & 0xffffffff;
- else if (code == PLUS && num_bits_set > 16)
- remainder = (-remainder) & 0xffffffff;
- else
- {
- can_invert = 0;
- can_negate = 0;
- }
-
- /* Now try and find a way of doing the job in either two or three
- instructions.
- We start by looking for the largest block of zeros that are aligned on
- a 2-bit boundary, we then fill up the temps, wrapping around to the
- top of the word when we drop off the bottom.
- In the worst case this code should produce no more than four insns. */
- {
- int best_start = 0;
- int best_consecutive_zeros = 0;
-
- for (i = 0; i < 32; i += 2)
- {
- int consecutive_zeros = 0;
-
- if (! (remainder & (3 << i)))
- {
- while ((i < 32) && ! (remainder & (3 << i)))
- {
- consecutive_zeros += 2;
- i += 2;
- }
- if (consecutive_zeros > best_consecutive_zeros)
- {
- best_consecutive_zeros = consecutive_zeros;
- best_start = i - consecutive_zeros;
- }
- i -= 2;
- }
- }
-
- /* Now start emitting the insns, starting with the one with the highest
- bit set: we do this so that the smallest number will be emitted last;
- this is more likely to be combinable with addressing insns. */
- i = best_start;
- do
- {
- int end;
-
- if (i <= 0)
- i += 32;
- if (remainder & (3 << (i - 2)))
- {
- end = i - 8;
- if (end < 0)
- end += 32;
- temp1 = remainder & ((0x0ff << end)
- | ((i < end) ? (0xff >> (32 - end)) : 0));
- remainder &= ~temp1;
-
- if (generate)
- {
- rtx new_src;
-
- if (code == SET)
- emit_insn (gen_rtx (SET, VOIDmode,
- new_src = (subtargets
- ? gen_reg_rtx (mode)
- : target),
- GEN_INT (can_invert ? ~temp1 : temp1)));
- else if (code == MINUS)
- emit_insn (gen_rtx (SET, VOIDmode,
- new_src = (subtargets
- ? gen_reg_rtx (mode)
- : target),
- gen_rtx (code, mode, GEN_INT (temp1),
- source)));
- else
- emit_insn (gen_rtx (SET, VOIDmode,
- new_src = (remainder
- ? (subtargets
- ? gen_reg_rtx (mode)
- : target)
- : target),
- gen_rtx (code, mode, source,
- GEN_INT (can_invert ? ~temp1
- : (can_negate
- ? -temp1
- : temp1)))));
- source = new_src;
- }
-
- if (code == SET)
- {
- can_invert = 0;
- code = PLUS;
- }
- else if (code == MINUS)
- code = PLUS;
-
- insns++;
- i -= 6;
- }
- i -= 2;
- } while (remainder);
- }
- return insns;
-}
-
-/* Canonicalize a comparison so that we are more likely to recognize it.
- This can be done for a few constant compares, where we can make the
- immediate value easier to load. */
-enum rtx_code
-arm_canonicalize_comparison (code, op1)
- enum rtx_code code;
- rtx *op1;
-{
- unsigned HOST_WIDE_INT i = INTVAL (*op1);
-
- switch (code)
- {
- case EQ:
- case NE:
- return code;
-
- case GT:
- case LE:
- if (i != ((((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1))
- - 1)
- && (const_ok_for_arm (i+1) || const_ok_for_arm (- (i+1))))
- {
- *op1 = GEN_INT (i+1);
- return code == GT ? GE : LT;
- }
- break;
-
- case GE:
- case LT:
- if (i != (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1))
- && (const_ok_for_arm (i-1) || const_ok_for_arm (- (i-1))))
- {
- *op1 = GEN_INT (i-1);
- return code == GE ? GT : LE;
- }
- break;
-
- case GTU:
- case LEU:
- if (i != ~((unsigned HOST_WIDE_INT) 0)
- && (const_ok_for_arm (i+1) || const_ok_for_arm (- (i+1))))
- {
- *op1 = GEN_INT (i + 1);
- return code == GTU ? GEU : LTU;
- }
- break;
-
- case GEU:
- case LTU:
- if (i != 0
- && (const_ok_for_arm (i - 1) || const_ok_for_arm (- (i - 1))))
- {
- *op1 = GEN_INT (i - 1);
- return code == GEU ? GTU : LEU;
- }
- break;
-
- default:
- abort ();
- }
-
- return code;
-}
-
-/* CYGNSU LOCAL */
-/* Decide whether a type should be returned in memory (true)
- or in a register (false). This is called by the macro
- RETURN_IN_MEMORY. */
-
-int
-arm_return_in_memory (type)
- tree type;
-{
- if (! AGGREGATE_TYPE_P (type))
- {
- /* All simple types are returned in registers. */
-
- return 0;
- }
- else if (int_size_in_bytes (type) > 4)
- {
- /* All structures/unions bigger than one word are returned in memory. */
-
- return 1;
- }
- else if (TREE_CODE (type) == RECORD_TYPE)
- {
- tree field;
-
- /* For a struct the APCS says that we must return in a register if
- every addressable element has an offset of zero. For practical
- purposes this means that the structure can have at most one non
- bit-field element and that this element must be the first one in
- the structure. */
-
- /* Find the first field, ignoring non FIELD_DECL things which will
- have been created by C++. */
-
- for (field = TYPE_FIELDS (type);
- field && TREE_CODE (field) != FIELD_DECL;
- field = TREE_CHAIN (field))
- continue;
-
- if (field == NULL)
- return 0; /* An empty structure. Allowed by an extension to ANSI C. */
-
- /* Now check the remaining fields, if any. */
- for (field = TREE_CHAIN (field);
- field;
- field = TREE_CHAIN (field))
- {
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- if (! DECL_BIT_FIELD_TYPE (field))
- return 1;
- }
-
- return 0;
- }
- else if (TREE_CODE (type) == UNION_TYPE)
- {
- tree field;
-
- /* Unions can be returned in registers if every element is
- integral, or can be returned in an integer register. */
-
- for (field = TYPE_FIELDS (type);
- field;
- field = TREE_CHAIN (field))
- {
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- if (FLOAT_TYPE_P (TREE_TYPE (field)))
- return 1;
-
- if (RETURN_IN_MEMORY (TREE_TYPE (field)))
- return 1;
- }
-
- return 0;
- }
-
- /* XXX Not sure what should be done for other aggregates, so put them in
- memory. */
- return 1;
-}
-/* END CYGNUS LOCAL */
-
-int
-legitimate_pic_operand_p (x)
- rtx x;
-{
- if (CONSTANT_P (x) && flag_pic
- && (GET_CODE (x) == SYMBOL_REF
- || (GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)))
- return 0;
-
- return 1;
-}
-
-rtx
-legitimize_pic_address (orig, mode, reg)
- rtx orig;
- enum machine_mode mode;
- rtx reg;
-{
- if (GET_CODE (orig) == SYMBOL_REF)
- {
- rtx pic_ref, address;
- rtx insn;
- int subregs = 0;
-
- if (reg == 0)
- {
- if (reload_in_progress || reload_completed)
- abort ();
- else
- reg = gen_reg_rtx (Pmode);
-
- subregs = 1;
- }
-
-#ifdef AOF_ASSEMBLER
- /* The AOF assembler can generate relocations for these directly, and
- understands that the PIC register has to be added into the offset.
- */
- insn = emit_insn (gen_pic_load_addr_based (reg, orig));
-#else
- if (subregs)
- address = gen_reg_rtx (Pmode);
- else
- address = reg;
-
- emit_insn (gen_pic_load_addr (address, orig));
-
- pic_ref = gen_rtx (MEM, Pmode,
- gen_rtx (PLUS, Pmode, pic_offset_table_rtx, address));
- RTX_UNCHANGING_P (pic_ref) = 1;
- insn = emit_move_insn (reg, pic_ref);
-#endif
- current_function_uses_pic_offset_table = 1;
- /* Put a REG_EQUAL note on this insn, so that it can be optimized
- by loop. */
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
- REG_NOTES (insn));
- return reg;
- }
- else if (GET_CODE (orig) == CONST)
- {
- rtx base, offset;
-
- if (GET_CODE (XEXP (orig, 0)) == PLUS
- && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
- return orig;
-
- if (reg == 0)
- {
- if (reload_in_progress || reload_completed)
- abort ();
- else
- reg = gen_reg_rtx (Pmode);
- }
-
- if (GET_CODE (XEXP (orig, 0)) == PLUS)
- {
- base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
- offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
- base == reg ? 0 : reg);
- }
- else
- abort ();
-
- if (GET_CODE (offset) == CONST_INT)
- {
- /* The base register doesn't really matter, we only want to
- test the index for the appropriate mode. */
- GO_IF_LEGITIMATE_INDEX (mode, 0, offset, win);
-
- if (! reload_in_progress && ! reload_completed)
- offset = force_reg (Pmode, offset);
- else
- abort ();
-
- win:
- if (GET_CODE (offset) == CONST_INT)
- return plus_constant_for_output (base, INTVAL (offset));
- }
-
- if (GET_MODE_SIZE (mode) > 4
- && (GET_MODE_CLASS (mode) == MODE_INT
- || TARGET_SOFT_FLOAT))
- {
- emit_insn (gen_addsi3 (reg, base, offset));
- return reg;
- }
-
- return gen_rtx (PLUS, Pmode, base, offset);
- }
- else if (GET_CODE (orig) == LABEL_REF)
- current_function_uses_pic_offset_table = 1;
-
- return orig;
-}
-
-static rtx pic_rtx;
-
-int
-is_pic(x)
- rtx x;
-{
- if (x == pic_rtx)
- return 1;
- return 0;
-}
-
-void
-arm_finalize_pic ()
-{
-#ifndef AOF_ASSEMBLER
- rtx l1, pic_tmp, pic_tmp2, seq;
- rtx global_offset_table;
-
- if (current_function_uses_pic_offset_table == 0)
- return;
-
- if (! flag_pic)
- abort ();
-
- start_sequence ();
- l1 = gen_label_rtx ();
-
- global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_");
- /* The PC contains 'dot'+8, but the label L1 is on the next
- instruction, so the offset is only 'dot'+4. */
- pic_tmp = gen_rtx (CONST, VOIDmode,
- gen_rtx (PLUS, Pmode,
- gen_rtx (LABEL_REF, VOIDmode, l1),
- GEN_INT (4)));
- pic_tmp2 = gen_rtx (CONST, VOIDmode,
- gen_rtx (PLUS, Pmode,
- global_offset_table,
- pc_rtx));
-
- pic_rtx = gen_rtx (CONST, Pmode,
- gen_rtx (MINUS, Pmode, pic_tmp2, pic_tmp));
-
- emit_insn (gen_pic_load_addr (pic_offset_table_rtx, pic_rtx));
- emit_jump_insn (gen_pic_add_dot_plus_eight(l1, pic_offset_table_rtx));
- emit_label (l1);
-
- seq = gen_sequence ();
- end_sequence ();
- emit_insn_after (seq, get_insns ());
-
- /* Need to emit this whether or not we obey regdecls,
- since setjmp/longjmp can cause life info to screw up. */
- emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
-#endif /* AOF_ASSEMBLER */
-}
-
-#define REG_OR_SUBREG_REG(X) \
- (GET_CODE (X) == REG \
- || (GET_CODE (X) == SUBREG && GET_CODE (SUBREG_REG (X)) == REG))
-
-#define REG_OR_SUBREG_RTX(X) \
- (GET_CODE (X) == REG ? (X) : SUBREG_REG (X))
-
-#define ARM_FRAME_RTX(X) \
- ((X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
- || (X) == arg_pointer_rtx)
-
-int
-arm_rtx_costs (x, code, outer_code)
- rtx x;
- enum rtx_code code, outer_code;
-{
- enum machine_mode mode = GET_MODE (x);
- enum rtx_code subcode;
- int extra_cost;
-
- switch (code)
- {
- case MEM:
- /* Memory costs quite a lot for the first word, but subsequent words
- load at the equivalent of a single insn each. */
- return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
- + (CONSTANT_POOL_ADDRESS_P (x) ? 4 : 0));
-
- case DIV:
- case MOD:
- return 100;
-
- case ROTATE:
- if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
- return 4;
- /* Fall through */
- case ROTATERT:
- if (mode != SImode)
- return 8;
- /* Fall through */
- case ASHIFT: case LSHIFTRT: case ASHIFTRT:
- if (mode == DImode)
- return (8 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : 8)
- + ((GET_CODE (XEXP (x, 0)) == REG
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
- ? 0 : 8));
- return (1 + ((GET_CODE (XEXP (x, 0)) == REG
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
- ? 0 : 4)
- + ((GET_CODE (XEXP (x, 1)) == REG
- || (GET_CODE (XEXP (x, 1)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 1))) == REG)
- || (GET_CODE (XEXP (x, 1)) == CONST_INT))
- ? 0 : 4));
-
- case MINUS:
- if (mode == DImode)
- return (4 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 0))
- || (GET_CODE (XEXP (x, 0)) == CONST_INT
- && const_ok_for_arm (INTVAL (XEXP (x, 0)))))
- ? 0 : 8));
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return (2 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
- && const_double_rtx_ok_for_fpu (XEXP (x, 1))))
- ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 0))
- || (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE
- && const_double_rtx_ok_for_fpu (XEXP (x, 0))))
- ? 0 : 8));
-
- if (((GET_CODE (XEXP (x, 0)) == CONST_INT
- && const_ok_for_arm (INTVAL (XEXP (x, 0)))
- && REG_OR_SUBREG_REG (XEXP (x, 1))))
- || (((subcode = GET_CODE (XEXP (x, 1))) == ASHIFT
- || subcode == ASHIFTRT || subcode == LSHIFTRT
- || subcode == ROTATE || subcode == ROTATERT
- || (subcode == MULT
- && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
- && ((INTVAL (XEXP (XEXP (x, 1), 1)) &
- (INTVAL (XEXP (XEXP (x, 1), 1)) - 1)) == 0)))
- && REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 0))
- && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 1))
- || GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
- && REG_OR_SUBREG_REG (XEXP (x, 0))))
- return 1;
- /* Fall through */
-
- case PLUS:
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return (2 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
- && const_double_rtx_ok_for_fpu (XEXP (x, 1))))
- ? 0 : 8));
-
- /* Fall through */
- case AND: case XOR: case IOR:
- extra_cost = 0;
-
- /* Normally the frame registers will be spilt into reg+const during
- reload, so it is a bad idea to combine them with other instructions,
- since then they might not be moved outside of loops. As a compromise
- we allow integration with ops that have a constant as their second
- operand. */
- if ((REG_OR_SUBREG_REG (XEXP (x, 0))
- && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))
- && GET_CODE (XEXP (x, 1)) != CONST_INT)
- || (REG_OR_SUBREG_REG (XEXP (x, 0))
- && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))))
- extra_cost = 4;
-
- if (mode == DImode)
- return (4 + extra_cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
- + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_INT
- && const_ok_for_op (INTVAL (XEXP (x, 1)), code, mode)))
- ? 0 : 8));
-
- if (REG_OR_SUBREG_REG (XEXP (x, 0)))
- return (1 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : extra_cost)
- + ((REG_OR_SUBREG_REG (XEXP (x, 1))
- || (GET_CODE (XEXP (x, 1)) == CONST_INT
- && const_ok_for_op (INTVAL (XEXP (x, 1)), code, mode)))
- ? 0 : 4));
-
- else if (REG_OR_SUBREG_REG (XEXP (x, 1)))
- return (1 + extra_cost
- + ((((subcode = GET_CODE (XEXP (x, 0))) == ASHIFT
- || subcode == LSHIFTRT || subcode == ASHIFTRT
- || subcode == ROTATE || subcode == ROTATERT
- || (subcode == MULT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && ((INTVAL (XEXP (XEXP (x, 0), 1)) &
- (INTVAL (XEXP (XEXP (x, 0), 1)) - 1)) == 0)))
- && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 0)))
- && ((REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 1)))
- || GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
- ? 0 : 4));
-
- return 8;
-
- case MULT:
- /* There is no point basing this on the tuning, since it is always the
- fast variant if it exists at all */
- if (arm_fast_multiply && mode == DImode
- && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
- && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
- return 8;
-
- if (GET_MODE_CLASS (mode) == MODE_FLOAT
- || mode == DImode)
- return 30;
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
- & (unsigned HOST_WIDE_INT) 0xffffffff);
- int add_cost = const_ok_for_arm (i) ? 4 : 8;
- int j;
- /* Tune as appropriate */
- int booth_unit_size = ((tune_flags & FL_FAST_MULT) ? 8 : 2);
-
- for (j = 0; i && j < 32; j += booth_unit_size)
- {
- i >>= booth_unit_size;
- add_cost += 2;
- }
-
- return add_cost;
- }
-
- return (((tune_flags & FL_FAST_MULT) ? 8 : 30)
- + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
- + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4));
-
- case TRUNCATE:
- if (arm_fast_multiply && mode == SImode
- && GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
- && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0))
- == GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)))
- && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
- || GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND))
- return 8;
- return 99;
-
- case NEG:
- if (GET_MODE_CLASS (mode) == MODE_FLOAT)
- return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 6);
- /* Fall through */
- case NOT:
- if (mode == DImode)
- return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
-
- return 1 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
-
- case IF_THEN_ELSE:
- if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
- return 14;
- return 2;
-
- case COMPARE:
- return 1;
-
- case ABS:
- return 4 + (mode == DImode ? 4 : 0);
-
- case SIGN_EXTEND:
- if (GET_MODE (XEXP (x, 0)) == QImode)
- return (4 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
- /* Fall through */
- case ZERO_EXTEND:
- switch (GET_MODE (XEXP (x, 0)))
- {
- case QImode:
- return (1 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case HImode:
- return (4 + (mode == DImode ? 4 : 0)
- + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- case SImode:
- return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
-
- default:
- break;
- }
- abort ();
-
- default:
- return 99;
- }
-}
-
-int
-arm_adjust_cost (insn, link, dep, cost)
- rtx insn;
- rtx link;
- rtx dep;
- int cost;
-{
- rtx i_pat, d_pat;
-
- if ((i_pat = single_set (insn)) != NULL
- && GET_CODE (SET_SRC (i_pat)) == MEM
- && (d_pat = single_set (dep)) != NULL
- && GET_CODE (SET_DEST (d_pat)) == MEM)
- {
- /* This is a load after a store, there is no conflict if the load reads
- from a cached area. Assume that loads from the stack, and from the
- constant pool are cached, and that others will miss. This is a
- hack. */
-
-/* debug_rtx (insn);
- debug_rtx (dep);
- debug_rtx (link);
- fprintf (stderr, "costs %d\n", cost); */
-
- if (CONSTANT_POOL_ADDRESS_P (XEXP (SET_SRC (i_pat), 0))
- || reg_mentioned_p (stack_pointer_rtx, XEXP (SET_SRC (i_pat), 0))
- || reg_mentioned_p (frame_pointer_rtx, XEXP (SET_SRC (i_pat), 0))
- || reg_mentioned_p (hard_frame_pointer_rtx,
- XEXP (SET_SRC (i_pat), 0)))
- {
-/* fprintf (stderr, "***** Now 1\n"); */
- return 1;
- }
- }
-
- return cost;
-}
-
-/* This code has been fixed for cross compilation. */
-
-static int fpa_consts_inited = 0;
-
-char *strings_fpa[8] = {
- "0", "1", "2", "3",
- "4", "5", "0.5", "10"
-};
-
-static REAL_VALUE_TYPE values_fpa[8];
-
-static void
-init_fpa_table ()
-{
- int i;
- REAL_VALUE_TYPE r;
-
- for (i = 0; i < 8; i++)
- {
- r = REAL_VALUE_ATOF (strings_fpa[i], DFmode);
- values_fpa[i] = r;
- }
-
- fpa_consts_inited = 1;
-}
-
-/* Return TRUE if rtx X is a valid immediate FPU constant. */
-
-int
-const_double_rtx_ok_for_fpu (x)
- rtx x;
-{
- REAL_VALUE_TYPE r;
- int i;
-
- if (!fpa_consts_inited)
- init_fpa_table ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- if (REAL_VALUE_MINUS_ZERO (r))
- return 0;
-
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (r, values_fpa[i]))
- return 1;
-
- return 0;
-}
-
-/* Return TRUE if rtx X is a valid immediate FPU constant. */
-
-int
-neg_const_double_rtx_ok_for_fpu (x)
- rtx x;
-{
- REAL_VALUE_TYPE r;
- int i;
-
- if (!fpa_consts_inited)
- init_fpa_table ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- r = REAL_VALUE_NEGATE (r);
- if (REAL_VALUE_MINUS_ZERO (r))
- return 0;
-
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (r, values_fpa[i]))
- return 1;
-
- return 0;
-}
-
-/* Predicates for `match_operand' and `match_operator'. */
-
-/* s_register_operand is the same as register_operand, but it doesn't accept
- (SUBREG (MEM)...).
-
- This function exists because at the time it was put in it led to better
- code. SUBREG(MEM) always needs a reload in the places where
- s_register_operand is used, and this seemed to lead to excessive
- reloading. */
-
-int
-s_register_operand (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return 0;
-
- if (GET_CODE (op) == SUBREG)
- op = SUBREG_REG (op);
-
- /* We don't consider registers whose class is NO_REGS
- to be a register operand. */
- return (GET_CODE (op) == REG
- && (REGNO (op) >= FIRST_PSEUDO_REGISTER
- || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
-}
-
-/* Only accept reg, subreg(reg), const_int. */
-
-int
-reg_or_int_operand (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == CONST_INT)
- return 1;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return 0;
-
- if (GET_CODE (op) == SUBREG)
- op = SUBREG_REG (op);
-
- /* We don't consider registers whose class is NO_REGS
- to be a register operand. */
- return (GET_CODE (op) == REG
- && (REGNO (op) >= FIRST_PSEUDO_REGISTER
- || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
-}
-
-/* Return 1 if OP is an item in memory, given that we are in reload. */
-
-int
-reload_memory_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno = true_regnum (op);
-
- return (! CONSTANT_P (op)
- && (regno == -1
- || (GET_CODE (op) == REG
- && REGNO (op) >= FIRST_PSEUDO_REGISTER)));
-}
-
-/* Return 1 if OP is a valid memory address, but not valid for a signed byte
- memory access (architecture V4) */
-int
-bad_signed_byte_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (! memory_operand (op, mode) || GET_CODE (op) != MEM)
- return 0;
-
- op = XEXP (op, 0);
-
- /* A sum of anything more complex than reg + reg or reg + const is bad */
- if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
- && (! s_register_operand (XEXP (op, 0), VOIDmode)
- || (! s_register_operand (XEXP (op, 1), VOIDmode)
- && GET_CODE (XEXP (op, 1)) != CONST_INT)))
- return 1;
-
- /* Big constants are also bad */
- if (GET_CODE (op) == PLUS && GET_CODE (XEXP (op, 1)) == CONST_INT
- && (INTVAL (XEXP (op, 1)) > 0xff
- || -INTVAL (XEXP (op, 1)) > 0xff))
- return 1;
-
- /* Everything else is good, or can will automatically be made so. */
- return 0;
-}
-
-/* Return TRUE for valid operands for the rhs of an ARM instruction. */
-
-int
-arm_rhs_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (s_register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT && const_ok_for_arm (INTVAL (op))));
-}
-
-/* Return TRUE for valid operands for the rhs of an ARM instruction, or a load.
- */
-
-int
-arm_rhsm_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (s_register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT && const_ok_for_arm (INTVAL (op)))
- || memory_operand (op, mode));
-}
-
-/* Return TRUE for valid operands for the rhs of an ARM instruction, or if a
- constant that is valid when negated. */
-
-int
-arm_add_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (s_register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT
- && (const_ok_for_arm (INTVAL (op))
- || const_ok_for_arm (-INTVAL (op)))));
-}
-
-int
-arm_not_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (s_register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT
- && (const_ok_for_arm (INTVAL (op))
- || const_ok_for_arm (~INTVAL (op)))));
-}
-
-/* Return TRUE if the operand is a memory reference which contains an
- offsettable address. */
-int
-offsettable_memory_operand (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- if (mode == VOIDmode)
- mode = GET_MODE (op);
-
- return (mode == GET_MODE (op)
- && GET_CODE (op) == MEM
- && offsettable_address_p (reload_completed | reload_in_progress,
- mode, XEXP (op, 0)));
-}
-
-/* Return TRUE if the operand is a memory reference which is, or can be
- made word aligned by adjusting the offset. */
-int
-alignable_memory_operand (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- rtx reg;
-
- if (mode == VOIDmode)
- mode = GET_MODE (op);
-
- if (mode != GET_MODE (op) || GET_CODE (op) != MEM)
- return 0;
-
- op = XEXP (op, 0);
-
- return ((GET_CODE (reg = op) == REG
- || (GET_CODE (op) == SUBREG
- && GET_CODE (reg = SUBREG_REG (op)) == REG)
- || (GET_CODE (op) == PLUS
- && GET_CODE (XEXP (op, 1)) == CONST_INT
- && (GET_CODE (reg = XEXP (op, 0)) == REG
- || (GET_CODE (XEXP (op, 0)) == SUBREG
- && GET_CODE (reg = SUBREG_REG (XEXP (op, 0))) == REG))))
- && REGNO_POINTER_ALIGN (REGNO (reg)) >= 4);
-}
-
-/* Similar to s_register_operand, but does not allow hard integer
- registers. */
-int
-f_register_operand (op, mode)
- register rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return 0;
-
- if (GET_CODE (op) == SUBREG)
- op = SUBREG_REG (op);
-
- /* We don't consider registers whose class is NO_REGS
- to be a register operand. */
- return (GET_CODE (op) == REG
- && (REGNO (op) >= FIRST_PSEUDO_REGISTER
- || REGNO_REG_CLASS (REGNO (op)) == FPU_REGS));
-}
-
-/* Return TRUE for valid operands for the rhs of an FPU instruction. */
-
-int
-fpu_rhs_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (s_register_operand (op, mode))
- return TRUE;
- else if (GET_CODE (op) == CONST_DOUBLE)
- return (const_double_rtx_ok_for_fpu (op));
-
- return FALSE;
-}
-
-int
-fpu_add_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (s_register_operand (op, mode))
- return TRUE;
- else if (GET_CODE (op) == CONST_DOUBLE)
- return (const_double_rtx_ok_for_fpu (op)
- || neg_const_double_rtx_ok_for_fpu (op));
-
- return FALSE;
-}
-
-/* Return nonzero if OP is a constant power of two. */
-
-int
-power_of_two_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == CONST_INT)
- {
- HOST_WIDE_INT value = INTVAL(op);
- return value != 0 && (value & (value - 1)) == 0;
- }
- return FALSE;
-}
-
-/* Return TRUE for a valid operand of a DImode operation.
- Either: REG, SUBREG, CONST_DOUBLE or MEM(DImode_address).
- Note that this disallows MEM(REG+REG), but allows
- MEM(PRE/POST_INC/DEC(REG)). */
-
-int
-di_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (s_register_operand (op, mode))
- return TRUE;
-
- if (GET_CODE (op) == SUBREG)
- op = SUBREG_REG (op);
-
- switch (GET_CODE (op))
- {
- case CONST_DOUBLE:
- case CONST_INT:
- return TRUE;
-
- case MEM:
- return memory_address_p (DImode, XEXP (op, 0));
-
- default:
- return FALSE;
- }
-}
-
-/* Return TRUE for a valid operand of a DFmode operation when -msoft-float.
- Either: REG, SUBREG, CONST_DOUBLE or MEM(DImode_address).
- Note that this disallows MEM(REG+REG), but allows
- MEM(PRE/POST_INC/DEC(REG)). */
-
-int
-soft_df_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (s_register_operand (op, mode))
- return TRUE;
-
- if (GET_CODE (op) == SUBREG)
- op = SUBREG_REG (op);
-
- switch (GET_CODE (op))
- {
- case CONST_DOUBLE:
- return TRUE;
-
- case MEM:
- return memory_address_p (DFmode, XEXP (op, 0));
-
- default:
- return FALSE;
- }
-}
-
-/* Return TRUE for valid index operands. */
-
-int
-index_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (s_register_operand(op, mode)
- || (immediate_operand (op, mode)
- && INTVAL (op) < 4096 && INTVAL (op) > -4096));
-}
-
-/* Return TRUE for valid shifts by a constant. This also accepts any
- power of two on the (somewhat overly relaxed) assumption that the
- shift operator in this case was a mult. */
-
-int
-const_shift_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (power_of_two_operand (op, mode)
- || (immediate_operand (op, mode)
- && (INTVAL (op) < 32 && INTVAL (op) > 0)));
-}
-
-/* Return TRUE for arithmetic operators which can be combined with a multiply
- (shift). */
-
-int
-shiftable_operator (x, mode)
- rtx x;
- enum machine_mode mode;
-{
- if (GET_MODE (x) != mode)
- return FALSE;
- else
- {
- enum rtx_code code = GET_CODE (x);
-
- return (code == PLUS || code == MINUS
- || code == IOR || code == XOR || code == AND);
- }
-}
-
-/* Return TRUE for shift operators. */
-
-int
-shift_operator (x, mode)
- rtx x;
- enum machine_mode mode;
-{
- if (GET_MODE (x) != mode)
- return FALSE;
- else
- {
- enum rtx_code code = GET_CODE (x);
-
- if (code == MULT)
- return power_of_two_operand (XEXP (x, 1));
-
- return (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT
- || code == ROTATERT);
- }
-}
-
-int equality_operator (x, mode)
- rtx x;
- enum machine_mode mode;
-{
- return GET_CODE (x) == EQ || GET_CODE (x) == NE;
-}
-
-/* Return TRUE for SMIN SMAX UMIN UMAX operators. */
-
-int
-minmax_operator (x, mode)
- rtx x;
- enum machine_mode mode;
-{
- enum rtx_code code = GET_CODE (x);
-
- if (GET_MODE (x) != mode)
- return FALSE;
-
- return code == SMIN || code == SMAX || code == UMIN || code == UMAX;
-}
-
-/* return TRUE if x is EQ or NE */
-
-/* Return TRUE if this is the condition code register, if we aren't given
- a mode, accept any class CCmode register */
-
-int
-cc_register (x, mode)
- rtx x;
- enum machine_mode mode;
-{
- if (mode == VOIDmode)
- {
- mode = GET_MODE (x);
- if (GET_MODE_CLASS (mode) != MODE_CC)
- return FALSE;
- }
-
- if (mode == GET_MODE (x) && GET_CODE (x) == REG && REGNO (x) == 24)
- return TRUE;
-
- return FALSE;
-}
-
-/* Return TRUE if this is the condition code register, if we aren't given
- a mode, accept any class CCmode register which indicates a dominance
- expression. */
-
-int
-dominant_cc_register (x, mode)
- rtx x;
- enum machine_mode mode;
-{
- if (mode == VOIDmode)
- {
- mode = GET_MODE (x);
- if (GET_MODE_CLASS (mode) != MODE_CC)
- return FALSE;
- }
-
- if (mode != CC_DNEmode && mode != CC_DEQmode
- && mode != CC_DLEmode && mode != CC_DLTmode
- && mode != CC_DGEmode && mode != CC_DGTmode
- && mode != CC_DLEUmode && mode != CC_DLTUmode
- && mode != CC_DGEUmode && mode != CC_DGTUmode)
- return FALSE;
-
- if (mode == GET_MODE (x) && GET_CODE (x) == REG && REGNO (x) == 24)
- return TRUE;
-
- return FALSE;
-}
-
-/* Return TRUE if X references a SYMBOL_REF. */
-int
-symbol_mentioned_p (x)
- rtx x;
-{
- register char *fmt;
- register int i;
-
- if (GET_CODE (x) == SYMBOL_REF)
- return 1;
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
-
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (symbol_mentioned_p (XVECEXP (x, i, j)))
- return 1;
- }
- else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
- return 1;
- }
-
- return 0;
-}
-
-/* Return TRUE if X references a LABEL_REF. */
-int
-label_mentioned_p (x)
- rtx x;
-{
- register char *fmt;
- register int i;
-
- if (GET_CODE (x) == LABEL_REF)
- return 1;
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
-
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (label_mentioned_p (XVECEXP (x, i, j)))
- return 1;
- }
- else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
- return 1;
- }
-
- return 0;
-}
-
-enum rtx_code
-minmax_code (x)
- rtx x;
-{
- enum rtx_code code = GET_CODE (x);
-
- if (code == SMAX)
- return GE;
- else if (code == SMIN)
- return LE;
- else if (code == UMIN)
- return LEU;
- else if (code == UMAX)
- return GEU;
-
- abort ();
-}
-
-/* Return 1 if memory locations are adjacent */
-
-int
-adjacent_mem_locations (a, b)
- rtx a, b;
-{
- int val0 = 0, val1 = 0;
- int reg0, reg1;
-
- if ((GET_CODE (XEXP (a, 0)) == REG
- || (GET_CODE (XEXP (a, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
- && (GET_CODE (XEXP (b, 0)) == REG
- || (GET_CODE (XEXP (b, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
- {
- if (GET_CODE (XEXP (a, 0)) == PLUS)
- {
- reg0 = REGNO (XEXP (XEXP (a, 0), 0));
- val0 = INTVAL (XEXP (XEXP (a, 0), 1));
- }
- else
- reg0 = REGNO (XEXP (a, 0));
- if (GET_CODE (XEXP (b, 0)) == PLUS)
- {
- reg1 = REGNO (XEXP (XEXP (b, 0), 0));
- val1 = INTVAL (XEXP (XEXP (b, 0), 1));
- }
- else
- reg1 = REGNO (XEXP (b, 0));
- return (reg0 == reg1) && ((val1 - val0) == 4 || (val0 - val1) == 4);
- }
- return 0;
-}
-
-/* Return 1 if OP is a load multiple operation. It is known to be
- parallel and the first section will be tested. */
-
-int
-load_multiple_operation (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- HOST_WIDE_INT count = XVECLEN (op, 0);
- int dest_regno;
- rtx src_addr;
- HOST_WIDE_INT i = 1, base = 0;
- rtx elt;
-
- if (count <= 1
- || GET_CODE (XVECEXP (op, 0, 0)) != SET)
- return 0;
-
- /* Check to see if this might be a write-back */
- if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS)
- {
- i++;
- base = 1;
-
- /* Now check it more carefully */
- if (GET_CODE (SET_DEST (elt)) != REG
- || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG
- || REGNO (XEXP (SET_SRC (elt), 0)) != REGNO (SET_DEST (elt))
- || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT
- || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 2) * 4
- || GET_CODE (XVECEXP (op, 0, count - 1)) != CLOBBER
- || GET_CODE (XEXP (XVECEXP (op, 0, count - 1), 0)) != REG
- || REGNO (XEXP (XVECEXP (op, 0, count - 1), 0))
- != REGNO (SET_DEST (elt)))
- return 0;
-
- count--;
- }
-
- /* Perform a quick check so we don't blow up below. */
- if (count <= i
- || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
- || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG
- || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != MEM)
- return 0;
-
- dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1)));
- src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0);
-
- for (; i < count; i++)
- {
- elt = XVECEXP (op, 0, i);
-
- if (GET_CODE (elt) != SET
- || GET_CODE (SET_DEST (elt)) != REG
- || GET_MODE (SET_DEST (elt)) != SImode
- || REGNO (SET_DEST (elt)) != dest_regno + i - base
- || GET_CODE (SET_SRC (elt)) != MEM
- || GET_MODE (SET_SRC (elt)) != SImode
- || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
- || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
- || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
- || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != (i - base) * 4)
- return 0;
- }
-
- return 1;
-}
-
-/* Return 1 if OP is a store multiple operation. It is known to be
- parallel and the first section will be tested. */
-
-int
-store_multiple_operation (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- HOST_WIDE_INT count = XVECLEN (op, 0);
- int src_regno;
- rtx dest_addr;
- HOST_WIDE_INT i = 1, base = 0;
- rtx elt;
-
- if (count <= 1
- || GET_CODE (XVECEXP (op, 0, 0)) != SET)
- return 0;
-
- /* Check to see if this might be a write-back */
- if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS)
- {
- i++;
- base = 1;
-
- /* Now check it more carefully */
- if (GET_CODE (SET_DEST (elt)) != REG
- || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG
- || REGNO (XEXP (SET_SRC (elt), 0)) != REGNO (SET_DEST (elt))
- || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT
- || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 2) * 4
- || GET_CODE (XVECEXP (op, 0, count - 1)) != CLOBBER
- || GET_CODE (XEXP (XVECEXP (op, 0, count - 1), 0)) != REG
- || REGNO (XEXP (XVECEXP (op, 0, count - 1), 0))
- != REGNO (SET_DEST (elt)))
- return 0;
-
- count--;
- }
-
- /* Perform a quick check so we don't blow up below. */
- if (count <= i
- || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
- || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM
- || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != REG)
- return 0;
-
- src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1)));
- dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0);
-
- for (; i < count; i++)
- {
- elt = XVECEXP (op, 0, i);
-
- if (GET_CODE (elt) != SET
- || GET_CODE (SET_SRC (elt)) != REG
- || GET_MODE (SET_SRC (elt)) != SImode
- || REGNO (SET_SRC (elt)) != src_regno + i - base
- || GET_CODE (SET_DEST (elt)) != MEM
- || GET_MODE (SET_DEST (elt)) != SImode
- || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
- || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
- || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
- || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != (i - base) * 4)
- return 0;
- }
-
- return 1;
-}
-
-int
-load_multiple_sequence (operands, nops, regs, base, load_offset)
- rtx *operands;
- int nops;
- int *regs;
- int *base;
- HOST_WIDE_INT *load_offset;
-{
- int unsorted_regs[4];
- HOST_WIDE_INT unsorted_offsets[4];
- int order[4];
- int base_reg = -1;
- int i;
-
- /* Can only handle 2, 3, or 4 insns at present, though could be easily
- extended if required. */
- if (nops < 2 || nops > 4)
- abort ();
-
- /* Loop over the operands and check that the memory references are
- suitable (ie immediate offsets from the same base register). At
- the same time, extract the target register, and the memory
- offsets. */
- for (i = 0; i < nops; i++)
- {
- rtx reg;
- rtx offset;
-
- /* Convert a subreg of a mem into the mem itself. */
- if (GET_CODE (operands[nops + i]) == SUBREG)
- operands[nops + i] = alter_subreg(operands[nops + i]);
-
- if (GET_CODE (operands[nops + i]) != MEM)
- abort ();
-
- /* Don't reorder volatile memory references; it doesn't seem worth
- looking for the case where the order is ok anyway. */
- if (MEM_VOLATILE_P (operands[nops + i]))
- return 0;
-
- offset = const0_rtx;
-
- if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
- && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
- == REG)
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
- == CONST_INT)))
- {
- if (i == 0)
- {
- base_reg = REGNO(reg);
- unsorted_regs[0] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- order[0] = 0;
- }
- else
- {
- if (base_reg != REGNO (reg))
- /* Not addressed from the same base register. */
- return 0;
-
- unsorted_regs[i] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- if (unsorted_regs[i] < unsorted_regs[order[0]])
- order[0] = i;
- }
-
- /* If it isn't an integer register, or if it overwrites the
- base register but isn't the last insn in the list, then
- we can't do this. */
- if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14
- || (i != nops - 1 && unsorted_regs[i] == base_reg))
- return 0;
-
- unsorted_offsets[i] = INTVAL (offset);
- }
- else
- /* Not a suitable memory address. */
- return 0;
- }
-
- /* All the useful information has now been extracted from the
- operands into unsorted_regs and unsorted_offsets; additionally,
- order[0] has been set to the lowest numbered register in the
- list. Sort the registers into order, and check that the memory
- offsets are ascending and adjacent. */
-
- for (i = 1; i < nops; i++)
- {
- int j;
-
- order[i] = order[i - 1];
- for (j = 0; j < nops; j++)
- if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
- && (order[i] == order[i - 1]
- || unsorted_regs[j] < unsorted_regs[order[i]]))
- order[i] = j;
-
- /* Have we found a suitable register? if not, one must be used more
- than once. */
- if (order[i] == order[i - 1])
- return 0;
-
- /* Is the memory address adjacent and ascending? */
- if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
- return 0;
- }
-
- if (base)
- {
- *base = base_reg;
-
- for (i = 0; i < nops; i++)
- regs[i] = unsorted_regs[order[i]];
-
- *load_offset = unsorted_offsets[order[0]];
- }
-
- if (unsorted_offsets[order[0]] == 0)
- return 1; /* ldmia */
-
- if (unsorted_offsets[order[0]] == 4)
- return 2; /* ldmib */
-
- if (unsorted_offsets[order[nops - 1]] == 0)
- return 3; /* ldmda */
-
- if (unsorted_offsets[order[nops - 1]] == -4)
- return 4; /* ldmdb */
-
- /* For ARM8,9 & StrongARM, 2 ldr instructions are faster than an ldm if
- the offset isn't small enough. The reason 2 ldrs are faster is because
- these ARMs are able to do more than one cache access in a single cycle.
- The ARM9 and StrongARM have Harvard caches, whilst the ARM8 has a double
- bandwidth cache. This means that these cores can do both an instruction
- fetch and a data fetch in a single cycle, so the trick of calculating the
- address into a scratch register (one of the result regs) and then doing a
- load multiple actually becomes slower (and no smaller in code size). That
- is the transformation
-
- ldr rd1, [rbase + offset]
- ldr rd2, [rbase + offset + 4]
-
- to
-
- add rd1, rbase, offset
- ldmia rd1, {rd1, rd2}
-
- produces worse code -- '3 cycles + any stalls on rd2' instead of '2 cycles
- + any stalls on rd2'. On ARMs with only one cache access per cycle, the
- first sequence could never complete in less than 6 cycles, whereas the ldm
- sequence would only take 5 and would make better use of sequential accesses
- if not hitting the cache.
-
- We cheat here and test 'arm_ld_sched' which we currently know to only be
- true for the ARM8, ARM9 and StrongARM. If this ever changes, then the test
- below needs to be reworked. */
- if (nops == 2 && arm_ld_sched)
- return 0;
-
- /* Can't do it without setting up the offset, only do this if it takes
- no more than one insn. */
- return (const_ok_for_arm (unsorted_offsets[order[0]])
- || const_ok_for_arm (-unsorted_offsets[order[0]])) ? 5 : 0;
-}
-
-char *
-emit_ldm_seq (operands, nops)
- rtx *operands;
- int nops;
-{
- int regs[4];
- int base_reg;
- HOST_WIDE_INT offset;
- char buf[100];
- int i;
-
- switch (load_multiple_sequence (operands, nops, regs, &base_reg, &offset))
- {
- case 1:
- strcpy (buf, "ldm%?ia\t");
- break;
-
- case 2:
- strcpy (buf, "ldm%?ib\t");
- break;
-
- case 3:
- strcpy (buf, "ldm%?da\t");
- break;
-
- case 4:
- strcpy (buf, "ldm%?db\t");
- break;
-
- case 5:
- if (offset >= 0)
- sprintf (buf, "add%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
- reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
- (long) offset);
- else
- sprintf (buf, "sub%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
- reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
- (long) -offset);
- output_asm_insn (buf, operands);
- base_reg = regs[0];
- strcpy (buf, "ldm%?ia\t");
- break;
-
- default:
- abort ();
- }
-
- sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
- reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
-
- for (i = 1; i < nops; i++)
- sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
- reg_names[regs[i]]);
-
- strcat (buf, "}\t%@ phole ldm");
-
- output_asm_insn (buf, operands);
- return "";
-}
-
-int
-store_multiple_sequence (operands, nops, regs, base, load_offset)
- rtx *operands;
- int nops;
- int *regs;
- int *base;
- HOST_WIDE_INT *load_offset;
-{
- int unsorted_regs[4];
- HOST_WIDE_INT unsorted_offsets[4];
- int order[4];
- int base_reg = -1;
- int i;
-
- /* Can only handle 2, 3, or 4 insns at present, though could be easily
- extended if required. */
- if (nops < 2 || nops > 4)
- abort ();
-
- /* Loop over the operands and check that the memory references are
- suitable (ie immediate offsets from the same base register). At
- the same time, extract the target register, and the memory
- offsets. */
- for (i = 0; i < nops; i++)
- {
- rtx reg;
- rtx offset;
-
- /* Convert a subreg of a mem into the mem itself. */
- if (GET_CODE (operands[nops + i]) == SUBREG)
- operands[nops + i] = alter_subreg(operands[nops + i]);
-
- if (GET_CODE (operands[nops + i]) != MEM)
- abort ();
-
- /* Don't reorder volatile memory references; it doesn't seem worth
- looking for the case where the order is ok anyway. */
- if (MEM_VOLATILE_P (operands[nops + i]))
- return 0;
-
- offset = const0_rtx;
-
- if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
- && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
- == REG)
- || (GET_CODE (reg) == SUBREG
- && GET_CODE (reg = SUBREG_REG (reg)) == REG))
- && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
- == CONST_INT)))
- {
- if (i == 0)
- {
- base_reg = REGNO(reg);
- unsorted_regs[0] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- order[0] = 0;
- }
- else
- {
- if (base_reg != REGNO (reg))
- /* Not addressed from the same base register. */
- return 0;
-
- unsorted_regs[i] = (GET_CODE (operands[i]) == REG
- ? REGNO (operands[i])
- : REGNO (SUBREG_REG (operands[i])));
- if (unsorted_regs[i] < unsorted_regs[order[0]])
- order[0] = i;
- }
-
- /* If it isn't an integer register, then we can't do this. */
- if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14)
- return 0;
-
- unsorted_offsets[i] = INTVAL (offset);
- }
- else
- /* Not a suitable memory address. */
- return 0;
- }
-
- /* All the useful information has now been extracted from the
- operands into unsorted_regs and unsorted_offsets; additionally,
- order[0] has been set to the lowest numbered register in the
- list. Sort the registers into order, and check that the memory
- offsets are ascending and adjacent. */
-
- for (i = 1; i < nops; i++)
- {
- int j;
-
- order[i] = order[i - 1];
- for (j = 0; j < nops; j++)
- if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
- && (order[i] == order[i - 1]
- || unsorted_regs[j] < unsorted_regs[order[i]]))
- order[i] = j;
-
- /* Have we found a suitable register? if not, one must be used more
- than once. */
- if (order[i] == order[i - 1])
- return 0;
-
- /* Is the memory address adjacent and ascending? */
- if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
- return 0;
- }
-
- if (base)
- {
- *base = base_reg;
-
- for (i = 0; i < nops; i++)
- regs[i] = unsorted_regs[order[i]];
-
- *load_offset = unsorted_offsets[order[0]];
- }
-
- if (unsorted_offsets[order[0]] == 0)
- return 1; /* stmia */
-
- if (unsorted_offsets[order[0]] == 4)
- return 2; /* stmib */
-
- if (unsorted_offsets[order[nops - 1]] == 0)
- return 3; /* stmda */
-
- if (unsorted_offsets[order[nops - 1]] == -4)
- return 4; /* stmdb */
-
- return 0;
-}
-
-char *
-emit_stm_seq (operands, nops)
- rtx *operands;
- int nops;
-{
- int regs[4];
- int base_reg;
- HOST_WIDE_INT offset;
- char buf[100];
- int i;
-
- switch (store_multiple_sequence (operands, nops, regs, &base_reg, &offset))
- {
- case 1:
- strcpy (buf, "stm%?ia\t");
- break;
-
- case 2:
- strcpy (buf, "stm%?ib\t");
- break;
-
- case 3:
- strcpy (buf, "stm%?da\t");
- break;
-
- case 4:
- strcpy (buf, "stm%?db\t");
- break;
-
- default:
- abort ();
- }
-
- sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
- reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
-
- for (i = 1; i < nops; i++)
- sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
- reg_names[regs[i]]);
-
- strcat (buf, "}\t%@ phole stm");
-
- output_asm_insn (buf, operands);
- return "";
-}
-
-int
-multi_register_push (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) != PARALLEL
- || (GET_CODE (XVECEXP (op, 0, 0)) != SET)
- || (GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC)
- || (XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != 2))
- return 0;
-
- return 1;
-}
-
-
-/* Routines for use with attributes */
-
-/* Return nonzero if ATTR is a valid attribute for DECL.
- ATTRIBUTES are any existing attributes and ARGS are the arguments
- supplied with ATTR.
-
- Supported attributes:
-
- naked: don't output any prologue or epilogue code, the user is assumed
- to do the right thing. */
-
-int
-arm_valid_machine_decl_attribute (decl, attributes, attr, args)
- tree decl;
- tree attributes;
- tree attr;
- tree args;
-{
- if (args != NULL_TREE)
- return 0;
-
- if (is_attribute_p ("naked", attr))
- return TREE_CODE (decl) == FUNCTION_DECL;
- return 0;
-}
-
-/* Return non-zero if FUNC is a naked function. */
-
-static int
-arm_naked_function_p (func)
- tree func;
-{
- tree a;
-
- if (TREE_CODE (func) != FUNCTION_DECL)
- abort ();
-
- a = lookup_attribute ("naked", DECL_MACHINE_ATTRIBUTES (func));
- return a != NULL_TREE;
-}
-
-/* Routines for use in generating RTL */
-
-rtx
-arm_gen_load_multiple (base_regno, count, from, up, write_back, unchanging_p,
- in_struct_p, scalar_p)
- int base_regno;
- int count;
- rtx from;
- int up;
- int write_back;
- int unchanging_p;
- int in_struct_p;
- int scalar_p;
-{
- int i = 0, j;
- rtx result;
- int sign = up ? 1 : -1;
- rtx mem;
-
- result = gen_rtx (PARALLEL, VOIDmode,
- rtvec_alloc (count + (write_back ? 2 : 0)));
- if (write_back)
- {
- XVECEXP (result, 0, 0)
- = gen_rtx (SET, GET_MODE (from), from,
- plus_constant (from, count * 4 * sign));
- i = 1;
- count++;
- }
-
- for (j = 0; i < count; i++, j++)
- {
- mem = gen_rtx (MEM, SImode, plus_constant (from, j * 4 * sign));
- RTX_UNCHANGING_P (mem) = unchanging_p;
- MEM_IN_STRUCT_P (mem) = in_struct_p;
- MEM_SCALAR_P (mem) = scalar_p;
- XVECEXP (result, 0, i) = gen_rtx (SET, VOIDmode,
- gen_rtx (REG, SImode, base_regno + j),
- mem);
- }
-
- if (write_back)
- XVECEXP (result, 0, i) = gen_rtx (CLOBBER, SImode, from);
-
- return result;
-}
-
-rtx
-arm_gen_store_multiple (base_regno, count, to, up, write_back, unchanging_p,
- in_struct_p, scalar_p)
- int base_regno;
- int count;
- rtx to;
- int up;
- int write_back;
- int unchanging_p;
- int in_struct_p;
- int scalar_p;
-{
- int i = 0, j;
- rtx result;
- int sign = up ? 1 : -1;
- rtx mem;
-
- result = gen_rtx (PARALLEL, VOIDmode,
- rtvec_alloc (count + (write_back ? 2 : 0)));
- if (write_back)
- {
- XVECEXP (result, 0, 0)
- = gen_rtx (SET, GET_MODE (to), to,
- plus_constant (to, count * 4 * sign));
- i = 1;
- count++;
- }
-
- for (j = 0; i < count; i++, j++)
- {
- mem = gen_rtx (MEM, SImode, plus_constant (to, j * 4 * sign));
- RTX_UNCHANGING_P (mem) = unchanging_p;
- MEM_IN_STRUCT_P (mem) = in_struct_p;
- MEM_SCALAR_P (mem) = scalar_p;
-
- XVECEXP (result, 0, i) = gen_rtx (SET, VOIDmode, mem,
- gen_rtx (REG, SImode, base_regno + j));
- }
-
- if (write_back)
- XVECEXP (result, 0, i) = gen_rtx (CLOBBER, SImode, to);
-
- return result;
-}
-
-int
-arm_gen_movstrqi (operands)
- rtx *operands;
-{
- HOST_WIDE_INT in_words_to_go, out_words_to_go, last_bytes;
- int i;
- rtx src, dst;
- rtx st_src, st_dst, fin_src, fin_dst;
- rtx part_bytes_reg = NULL;
- rtx mem;
- int dst_unchanging_p, dst_in_struct_p, src_unchanging_p, src_in_struct_p;
- int dst_scalar_p, src_scalar_p;
-
- if (GET_CODE (operands[2]) != CONST_INT
- || GET_CODE (operands[3]) != CONST_INT
- || INTVAL (operands[2]) > 64
- || INTVAL (operands[3]) & 3)
- return 0;
-
- st_dst = XEXP (operands[0], 0);
- st_src = XEXP (operands[1], 0);
-
- dst_unchanging_p = RTX_UNCHANGING_P (operands[0]);
- dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]);
- dst_scalar_p = MEM_SCALAR_P (operands[0]);
- src_unchanging_p = RTX_UNCHANGING_P (operands[1]);
- src_in_struct_p = MEM_IN_STRUCT_P (operands[1]);
- src_scalar_p = MEM_SCALAR_P (operands[1]);
-
- fin_dst = dst = copy_to_mode_reg (SImode, st_dst);
- fin_src = src = copy_to_mode_reg (SImode, st_src);
-
- in_words_to_go = (INTVAL (operands[2]) + 3) / 4;
- out_words_to_go = INTVAL (operands[2]) / 4;
- last_bytes = INTVAL (operands[2]) & 3;
-
- if (out_words_to_go != in_words_to_go && ((in_words_to_go - 1) & 3) != 0)
- part_bytes_reg = gen_rtx (REG, SImode, (in_words_to_go - 1) & 3);
-
- for (i = 0; in_words_to_go >= 2; i+=4)
- {
- if (in_words_to_go > 4)
- emit_insn (arm_gen_load_multiple (0, 4, src, TRUE, TRUE,
- src_unchanging_p,
- src_in_struct_p,
- src_scalar_p));
- else
- emit_insn (arm_gen_load_multiple (0, in_words_to_go, src, TRUE,
- FALSE, src_unchanging_p,
- src_in_struct_p, src_scalar_p));
-
- if (out_words_to_go)
- {
- if (out_words_to_go > 4)
- emit_insn (arm_gen_store_multiple (0, 4, dst, TRUE, TRUE,
- dst_unchanging_p,
- dst_in_struct_p,
- dst_scalar_p));
- else if (out_words_to_go != 1)
- emit_insn (arm_gen_store_multiple (0, out_words_to_go,
- dst, TRUE,
- (last_bytes == 0
- ? FALSE : TRUE),
- dst_unchanging_p,
- dst_in_struct_p,
- dst_scalar_p));
- else
- {
- mem = gen_rtx (MEM, SImode, dst);
- RTX_UNCHANGING_P (mem) = dst_unchanging_p;
- MEM_IN_STRUCT_P (mem) = dst_in_struct_p;
- MEM_SCALAR_P (mem) = dst_scalar_p;
- emit_move_insn (mem, gen_rtx (REG, SImode, 0));
- if (last_bytes != 0)
- emit_insn (gen_addsi3 (dst, dst, GEN_INT (4)));
- }
- }
-
- in_words_to_go -= in_words_to_go < 4 ? in_words_to_go : 4;
- out_words_to_go -= out_words_to_go < 4 ? out_words_to_go : 4;
- }
-
- /* OUT_WORDS_TO_GO will be zero here if there are byte stores to do. */
- if (out_words_to_go)
- {
- rtx sreg;
-
- mem = gen_rtx (MEM, SImode, src);
- RTX_UNCHANGING_P (mem) = src_unchanging_p;
- MEM_IN_STRUCT_P (mem) = src_in_struct_p;
- MEM_SCALAR_P (mem) = src_scalar_p;
- emit_move_insn (sreg = gen_reg_rtx (SImode), mem);
- emit_move_insn (fin_src = gen_reg_rtx (SImode), plus_constant (src, 4));
-
- mem = gen_rtx (MEM, SImode, dst);
- RTX_UNCHANGING_P (mem) = dst_unchanging_p;
- MEM_IN_STRUCT_P (mem) = dst_in_struct_p;
- MEM_SCALAR_P (mem) = dst_scalar_p;
- emit_move_insn (mem, sreg);
- emit_move_insn (fin_dst = gen_reg_rtx (SImode), plus_constant (dst, 4));
- in_words_to_go--;
-
- if (in_words_to_go) /* Sanity check */
- abort ();
- }
-
- if (in_words_to_go)
- {
- if (in_words_to_go < 0)
- abort ();
-
- mem = gen_rtx (MEM, SImode, src);
- RTX_UNCHANGING_P (mem) = src_unchanging_p;
- MEM_IN_STRUCT_P (mem) = src_in_struct_p;
- MEM_SCALAR_P (mem) = src_scalar_p;
- part_bytes_reg = copy_to_mode_reg (SImode, mem);
- }
-
- if (BYTES_BIG_ENDIAN && last_bytes)
- {
- rtx tmp = gen_reg_rtx (SImode);
-
- if (part_bytes_reg == NULL)
- abort ();
-
- /* The bytes we want are in the top end of the word */
- emit_insn (gen_lshrsi3 (tmp, part_bytes_reg,
- GEN_INT (8 * (4 - last_bytes))));
- part_bytes_reg = tmp;
-
- while (last_bytes)
- {
- mem = gen_rtx (MEM, QImode, plus_constant (dst, last_bytes - 1));
- RTX_UNCHANGING_P (mem) = dst_unchanging_p;
- MEM_IN_STRUCT_P (mem) = dst_in_struct_p;
- MEM_SCALAR_P (mem) = dst_scalar_p;
- emit_move_insn (mem, gen_rtx (SUBREG, QImode, part_bytes_reg, 0));
- if (--last_bytes)
- {
- tmp = gen_reg_rtx (SImode);
- emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
- part_bytes_reg = tmp;
- }
- }
-
- }
- else
- {
- while (last_bytes)
- {
- if (part_bytes_reg == NULL)
- abort ();
-
- mem = gen_rtx (MEM, QImode, dst);
- RTX_UNCHANGING_P (mem) = dst_unchanging_p;
- MEM_IN_STRUCT_P (mem) = dst_in_struct_p;
- MEM_SCALAR_P (mem) = dst_scalar_p;
- emit_move_insn (mem, gen_rtx (SUBREG, QImode, part_bytes_reg, 0));
- if (--last_bytes)
- {
- rtx tmp = gen_reg_rtx (SImode);
-
- emit_insn (gen_addsi3 (dst, dst, const1_rtx));
- emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
- part_bytes_reg = tmp;
- }
- }
- }
-
- return 1;
-}
-
-/* Generate a memory reference for a half word, such that it will be loaded
- into the top 16 bits of the word. We can assume that the address is
- known to be alignable and of the form reg, or plus (reg, const). */
-rtx
-gen_rotated_half_load (memref)
- rtx memref;
-{
- HOST_WIDE_INT offset = 0;
- rtx base = XEXP (memref, 0);
-
- if (GET_CODE (base) == PLUS)
- {
- offset = INTVAL (XEXP (base, 1));
- base = XEXP (base, 0);
- }
-
- /* If we aren't allowed to generate unaligned addresses, then fail. */
- if (TARGET_SHORT_BY_BYTES
- && ((BYTES_BIG_ENDIAN ? 1 : 0) ^ ((offset & 2) == 0)))
- return NULL;
-
- base = gen_rtx (MEM, SImode, plus_constant (base, offset & ~2));
-
- if ((BYTES_BIG_ENDIAN ? 1 : 0) ^ ((offset & 2) == 2))
- return base;
-
- return gen_rtx (ROTATE, SImode, base, GEN_INT (16));
-}
-
-static enum machine_mode
-select_dominance_cc_mode (op, x, y, cond_or)
- enum rtx_code op;
- rtx x;
- rtx y;
- HOST_WIDE_INT cond_or;
-{
- enum rtx_code cond1, cond2;
- int swapped = 0;
-
- /* Currently we will probably get the wrong result if the individual
- comparisons are not simple. This also ensures that it is safe to
- reverse a comparison if necessary. */
- if ((arm_select_cc_mode (cond1 = GET_CODE (x), XEXP (x, 0), XEXP (x, 1))
- != CCmode)
- || (arm_select_cc_mode (cond2 = GET_CODE (y), XEXP (y, 0), XEXP (y, 1))
- != CCmode))
- return CCmode;
-
- if (cond_or)
- cond1 = reverse_condition (cond1);
-
- /* If the comparisons are not equal, and one doesn't dominate the other,
- then we can't do this. */
- if (cond1 != cond2
- && ! comparison_dominates_p (cond1, cond2)
- && (swapped = 1, ! comparison_dominates_p (cond2, cond1)))
- return CCmode;
-
- if (swapped)
- {
- enum rtx_code temp = cond1;
- cond1 = cond2;
- cond2 = temp;
- }
-
- switch (cond1)
- {
- case EQ:
- if (cond2 == EQ || ! cond_or)
- return CC_DEQmode;
-
- switch (cond2)
- {
- case LE: return CC_DLEmode;
- case LEU: return CC_DLEUmode;
- case GE: return CC_DGEmode;
- case GEU: return CC_DGEUmode;
- default: break;
- }
-
- break;
-
- case LT:
- if (cond2 == LT || ! cond_or)
- return CC_DLTmode;
- if (cond2 == LE)
- return CC_DLEmode;
- if (cond2 == NE)
- return CC_DNEmode;
- break;
-
- case GT:
- if (cond2 == GT || ! cond_or)
- return CC_DGTmode;
- if (cond2 == GE)
- return CC_DGEmode;
- if (cond2 == NE)
- return CC_DNEmode;
- break;
-
- case LTU:
- if (cond2 == LTU || ! cond_or)
- return CC_DLTUmode;
- if (cond2 == LEU)
- return CC_DLEUmode;
- if (cond2 == NE)
- return CC_DNEmode;
- break;
-
- case GTU:
- if (cond2 == GTU || ! cond_or)
- return CC_DGTUmode;
- if (cond2 == GEU)
- return CC_DGEUmode;
- if (cond2 == NE)
- return CC_DNEmode;
- break;
-
- /* The remaining cases only occur when both comparisons are the
- same. */
- case NE:
- return CC_DNEmode;
-
- case LE:
- return CC_DLEmode;
-
- case GE:
- return CC_DGEmode;
-
- case LEU:
- return CC_DLEUmode;
-
- case GEU:
- return CC_DGEUmode;
-
- default:
- break;
- }
-
- abort ();
-}
-
-enum machine_mode
-arm_select_cc_mode (op, x, y)
- enum rtx_code op;
- rtx x;
- rtx y;
-{
- /* All floating point compares return CCFP if it is an equality
- comparison, and CCFPE otherwise. */
- if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
- return (op == EQ || op == NE) ? CCFPmode : CCFPEmode;
-
- /* A compare with a shifted operand. Because of canonicalization, the
- comparison will have to be swapped when we emit the assembler. */
- if (GET_MODE (y) == SImode && GET_CODE (y) == REG
- && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
- || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ROTATE
- || GET_CODE (x) == ROTATERT))
- return CC_SWPmode;
-
- /* This is a special case that is used by combine to allow a
- comparison of a shifted byte load to be split into a zero-extend
- followed by a comparison of the shifted integer (only valid for
- equalities and unsigned inequalities). */
- if (GET_MODE (x) == SImode
- && GET_CODE (x) == ASHIFT
- && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 24
- && GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == MEM
- && GET_MODE (SUBREG_REG (XEXP (x, 0))) == QImode
- && (op == EQ || op == NE
- || op == GEU || op == GTU || op == LTU || op == LEU)
- && GET_CODE (y) == CONST_INT)
- return CC_Zmode;
-
- /* An operation that sets the condition codes as a side-effect, the
- V flag is not set correctly, so we can only use comparisons where
- this doesn't matter. (For LT and GE we can use "mi" and "pl"
- instead. */
- if (GET_MODE (x) == SImode
- && y == const0_rtx
- && (op == EQ || op == NE || op == LT || op == GE)
- && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
- || GET_CODE (x) == AND || GET_CODE (x) == IOR
- || GET_CODE (x) == XOR || GET_CODE (x) == MULT
- || GET_CODE (x) == NOT || GET_CODE (x) == NEG
- || GET_CODE (x) == LSHIFTRT
- || GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
- || GET_CODE (x) == ROTATERT || GET_CODE (x) == ZERO_EXTRACT))
- return CC_NOOVmode;
-
- /* A construct for a conditional compare, if the false arm contains
- 0, then both conditions must be true, otherwise either condition
- must be true. Not all conditions are possible, so CCmode is
- returned if it can't be done. */
- if (GET_CODE (x) == IF_THEN_ELSE
- && (XEXP (x, 2) == const0_rtx
- || XEXP (x, 2) == const1_rtx)
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<')
- return select_dominance_cc_mode (op, XEXP (x, 0), XEXP (x, 1),
- INTVAL (XEXP (x, 2)));
-
- if (GET_MODE (x) == QImode && (op == EQ || op == NE))
- return CC_Zmode;
-
- if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
- && GET_CODE (x) == PLUS
- && (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
- return CC_Cmode;
-
- return CCmode;
-}
-
-/* X and Y are two things to compare using CODE. Emit the compare insn and
- return the rtx for register 0 in the proper mode. FP means this is a
- floating point compare: I don't think that it is needed on the arm. */
-
-rtx
-gen_compare_reg (code, x, y, fp)
- enum rtx_code code;
- rtx x, y;
- int fp;
-{
- enum machine_mode mode = SELECT_CC_MODE (code, x, y);
- rtx cc_reg = gen_rtx (REG, mode, 24);
-
- emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
- gen_rtx (COMPARE, mode, x, y)));
-
- return cc_reg;
-}
-
-void
-arm_reload_in_hi (operands)
- rtx *operands;
-{
- rtx base = find_replacement (&XEXP (operands[1], 0));
-
- emit_insn (gen_zero_extendqisi2 (operands[2], gen_rtx (MEM, QImode, base)));
- /* Handle the case where the address is too complex to be offset by 1. */
- if (GET_CODE (base) == MINUS
- || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
- {
- rtx base_plus = gen_rtx (REG, SImode, REGNO (operands[0]));
-
- emit_insn (gen_rtx (SET, VOIDmode, base_plus, base));
- base = base_plus;
- }
-
- emit_insn (gen_zero_extendqisi2 (gen_rtx (SUBREG, SImode, operands[0], 0),
- gen_rtx (MEM, QImode,
- plus_constant (base, 1))));
- if (BYTES_BIG_ENDIAN)
- emit_insn (gen_rtx (SET, VOIDmode, gen_rtx (SUBREG, SImode,
- operands[0], 0),
- gen_rtx (IOR, SImode,
- gen_rtx (ASHIFT, SImode,
- gen_rtx (SUBREG, SImode,
- operands[0], 0),
- GEN_INT (8)),
- operands[2])));
- else
- emit_insn (gen_rtx (SET, VOIDmode, gen_rtx (SUBREG, SImode,
- operands[0], 0),
- gen_rtx (IOR, SImode,
- gen_rtx (ASHIFT, SImode,
- operands[2],
- GEN_INT (8)),
- gen_rtx (SUBREG, SImode, operands[0], 0))));
-}
-
-void
-arm_reload_out_hi (operands)
- rtx *operands;
-{
- rtx base = find_replacement (&XEXP (operands[0], 0));
-
- if (BYTES_BIG_ENDIAN)
- {
- emit_insn (gen_movqi (gen_rtx (MEM, QImode, plus_constant (base, 1)),
- gen_rtx (SUBREG, QImode, operands[1], 0)));
- emit_insn (gen_lshrsi3 (operands[2],
- gen_rtx (SUBREG, SImode, operands[1], 0),
- GEN_INT (8)));
- emit_insn (gen_movqi (gen_rtx (MEM, QImode, base),
- gen_rtx (SUBREG, QImode, operands[2], 0)));
- }
- else
- {
- emit_insn (gen_movqi (gen_rtx (MEM, QImode, base),
- gen_rtx (SUBREG, QImode, operands[1], 0)));
- emit_insn (gen_lshrsi3 (operands[2],
- gen_rtx (SUBREG, SImode, operands[1], 0),
- GEN_INT (8)));
- emit_insn (gen_movqi (gen_rtx (MEM, QImode, plus_constant (base, 1)),
- gen_rtx (SUBREG, QImode, operands[2], 0)));
- }
-}
-
-/* CYGNUS LOCAL */
-/* Check to see if a branch is forwards or backwards. Return TRUE if it
- is backwards. */
-
-int
-arm_backwards_branch (from, to)
- int from, to;
-{
- return insn_addresses[to] <= insn_addresses[from];
-}
-
-/* Check to see if a branch is within the distance that can be done using
- an arithmetic expression. */
-int
-short_branch (from, to)
- int from, to;
-{
- int delta = insn_addresses[from] + 8 - insn_addresses[to];
-
- return abs (delta) < 980; /* A small margin for safety */
-}
-
-/* Check to see that the insn isn't the target of the conditionalizing
- code */
-int
-arm_insn_not_targeted (insn)
- rtx insn;
-{
- return insn != arm_target_insn;
-}
-/* END CYGNUS LOCAL */
-
-/* Routines for manipulation of the constant pool. */
-/* This is unashamedly hacked from the version in sh.c, since the problem is
- extremely similar. */
-
-/* Arm instructions cannot load a large constant into a register,
- constants have to come from a pc relative load. The reference of a pc
- relative load instruction must be less than 1k infront of the instruction.
- This means that we often have to dump a constant inside a function, and
- generate code to branch around it.
-
- It is important to minimize this, since the branches will slow things
- down and make things bigger.
-
- Worst case code looks like:
-
- ldr rn, L1
- b L2
- align
- L1: .long value
- L2:
- ..
-
- ldr rn, L3
- b L4
- align
- L3: .long value
- L4:
- ..
-
- We fix this by performing a scan before scheduling, which notices which
- instructions need to have their operands fetched from the constant table
- and builds the table.
-
-
- The algorithm is:
-
- scan, find an instruction which needs a pcrel move. Look forward, find th
- last barrier which is within MAX_COUNT bytes of the requirement.
- If there isn't one, make one. Process all the instructions between
- the find and the barrier.
-
- In the above example, we can tell that L3 is within 1k of L1, so
- the first move can be shrunk from the 2 insn+constant sequence into
- just 1 insn, and the constant moved to L3 to make:
-
- ldr rn, L1
- ..
- ldr rn, L3
- b L4
- align
- L1: .long value
- L3: .long value
- L4:
-
- Then the second move becomes the target for the shortening process.
-
- */
-
-typedef struct
-{
- rtx value; /* Value in table */
- HOST_WIDE_INT next_offset;
- enum machine_mode mode; /* Mode of value */
-} pool_node;
-
-/* The maximum number of constants that can fit into one pool, since
- the pc relative range is 0...1020 bytes and constants are at least 4
- bytes long */
-
-#define MAX_POOL_SIZE (1020/4)
-static pool_node pool_vector[MAX_POOL_SIZE];
-static int pool_size;
-static rtx pool_vector_label;
-
-/* Add a constant to the pool and return its offset within the current
- pool.
-
- X is the rtx we want to replace. MODE is its mode. On return,
- ADDRESS_ONLY will be non-zero if we really want the address of such
- a constant, not the constant itself. */
-static HOST_WIDE_INT
-add_constant (x, mode, address_only)
- rtx x;
- enum machine_mode mode;
- int * address_only;
-{
- int i;
- HOST_WIDE_INT offset;
-
- * address_only = 0;
-
- if (mode == SImode && GET_CODE (x) == MEM && CONSTANT_P (XEXP (x, 0))
- && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
- x = get_pool_constant (XEXP (x, 0));
- else if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P(x))
- {
- *address_only = 1;
- mode = get_pool_mode (x);
- x = get_pool_constant (x);
- }
-#ifndef AOF_ASSEMBLER
- else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == 3)
- x = XVECEXP (x, 0, 0);
-#endif
-
-#ifdef AOF_ASSEMBLER
- /* PIC Symbol references need to be converted into offsets into the
- based area. */
- if (flag_pic && GET_CODE (x) == SYMBOL_REF)
- x = aof_pic_entry (x);
-#endif /* AOF_ASSEMBLER */
-
- /* First see if we've already got it */
- for (i = 0; i < pool_size; i++)
- {
- if (GET_CODE (x) == pool_vector[i].value->code
- && mode == pool_vector[i].mode)
- {
- if (GET_CODE (x) == CODE_LABEL)
- {
- if (XINT (x, 3) != XINT (pool_vector[i].value, 3))
- continue;
- }
- if (rtx_equal_p (x, pool_vector[i].value))
- return pool_vector[i].next_offset - GET_MODE_SIZE (mode);
- }
- }
-
- /* Need a new one */
- pool_vector[pool_size].next_offset = GET_MODE_SIZE (mode);
- offset = 0;
- if (pool_size == 0)
- pool_vector_label = gen_label_rtx ();
- else
- pool_vector[pool_size].next_offset
- += (offset = pool_vector[pool_size - 1].next_offset);
-
- pool_vector[pool_size].value = x;
- pool_vector[pool_size].mode = mode;
- pool_size++;
- return offset;
-}
-
-/* Output the literal table */
-static void
-dump_table (scan)
- rtx scan;
-{
- int i;
-
- scan = emit_label_after (gen_label_rtx (), scan);
- scan = emit_insn_after (gen_align_4 (), scan);
- scan = emit_label_after (pool_vector_label, scan);
-
- for (i = 0; i < pool_size; i++)
- {
- pool_node *p = pool_vector + i;
-
- switch (GET_MODE_SIZE (p->mode))
- {
- case 4:
- scan = emit_insn_after (gen_consttable_4 (p->value), scan);
- break;
-
- case 8:
- scan = emit_insn_after (gen_consttable_8 (p->value), scan);
- break;
-
- default:
- abort ();
- break;
- }
- }
-
- scan = emit_insn_after (gen_consttable_end (), scan);
- scan = emit_barrier_after (scan);
- pool_size = 0;
-}
-
-/* Non zero if the src operand needs to be fixed up */
-static int
-fixit (src, mode, destreg)
- rtx src;
- enum machine_mode mode;
- int destreg;
-{
- if (CONSTANT_P (src))
- {
- if (GET_CODE (src) == CONST_INT)
- return (! const_ok_for_arm (INTVAL (src))
- && ! const_ok_for_arm (~INTVAL (src)));
- if (GET_CODE (src) == CONST_DOUBLE)
- return (GET_MODE (src) == VOIDmode
- || destreg < 16
- || (! const_double_rtx_ok_for_fpu (src)
- && ! neg_const_double_rtx_ok_for_fpu (src)));
- return symbol_mentioned_p (src);
- }
-#ifndef AOF_ASSEMBLER
- else if (GET_CODE (src) == UNSPEC && XINT (src, 1) == 3)
- return 1;
-#endif
- else
- return (mode == SImode && GET_CODE (src) == MEM
- && GET_CODE (XEXP (src, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (src, 0)));
-}
-
-/* Find the last barrier less than MAX_COUNT bytes from FROM, or create one. */
-static rtx
-find_barrier (from, max_count)
- rtx from;
- int max_count;
-{
- int count = 0;
- rtx found_barrier = 0;
- rtx last = from;
-
- while (from && count < max_count)
- {
- rtx tmp;
-
- if (GET_CODE (from) == BARRIER)
- found_barrier = from;
-
- /* Count the length of this insn */
- if (GET_CODE (from) == INSN
- && GET_CODE (PATTERN (from)) == SET
- && CONSTANT_P (SET_SRC (PATTERN (from)))
- && CONSTANT_POOL_ADDRESS_P (SET_SRC (PATTERN (from))))
- count += 8;
- /* Handle table jumps as a single entity. */
- else if (GET_CODE (from) == JUMP_INSN
- && JUMP_LABEL (from) != 0
- && ((tmp = next_real_insn (JUMP_LABEL (from)))
- == next_real_insn (from))
- && tmp != NULL
- && GET_CODE (tmp) == JUMP_INSN
- && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
- || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
- {
- int elt = GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC ? 1 : 0;
- count += (get_attr_length (from)
- + GET_MODE_SIZE (SImode) * XVECLEN (PATTERN (tmp), elt));
- /* Continue after the dispatch table. */
- last = from;
- from = NEXT_INSN (tmp);
- continue;
- }
- else
- count += get_attr_length (from);
-
- last = from;
- from = NEXT_INSN (from);
- }
-
- if (! found_barrier)
- {
- /* We didn't find a barrier in time to
- dump our stuff, so we'll make one. */
- rtx label = gen_label_rtx ();
-
- if (from)
- from = PREV_INSN (last);
- else
- from = get_last_insn ();
-
- /* Walk back to be just before any jump. */
- while (GET_CODE (from) == JUMP_INSN
- || GET_CODE (from) == NOTE
- || GET_CODE (from) == CODE_LABEL)
- from = PREV_INSN (from);
-
- from = emit_jump_insn_after (gen_jump (label), from);
- JUMP_LABEL (from) = label;
- found_barrier = emit_barrier_after (from);
- emit_label_after (label, found_barrier);
- }
-
- return found_barrier;
-}
-
-/* Non zero if the insn is a move instruction which needs to be fixed. */
-static int
-broken_move (insn)
- rtx insn;
-{
- if (!INSN_DELETED_P (insn)
- && GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SET)
- {
- rtx pat = PATTERN (insn);
- rtx src = SET_SRC (pat);
- rtx dst = SET_DEST (pat);
- int destreg;
- enum machine_mode mode = GET_MODE (dst);
-
- if (dst == pc_rtx)
- return 0;
-
- if (GET_CODE (dst) == REG)
- destreg = REGNO (dst);
- else if (GET_CODE (dst) == SUBREG && GET_CODE (SUBREG_REG (dst)) == REG)
- destreg = REGNO (SUBREG_REG (dst));
- else
- return 0;
-
- return fixit (src, mode, destreg);
- }
- return 0;
-}
-
-void
-arm_reorg (first)
- rtx first;
-{
- rtx insn;
- int count_size;
-
-#if 0
- /* The ldr instruction can work with up to a 4k offset, and most constants
- will be loaded with one of these instructions; however, the adr
- instruction and the ldf instructions only work with a 1k offset. This
- code needs to be rewritten to use the 4k offset when possible, and to
- adjust when a 1k offset is needed. For now we just use a 1k offset
- from the start. */
- count_size = 4000;
-
- /* Floating point operands can't work further than 1024 bytes from the
- PC, so to make things simple we restrict all loads for such functions.
- */
- if (TARGET_HARD_FLOAT)
- {
- int regno;
-
- for (regno = 16; regno < 24; regno++)
- if (regs_ever_live[regno])
- {
- count_size = 1000;
- break;
- }
- }
-#else
- count_size = 1000;
-#endif /* 0 */
-
- for (insn = first; insn; insn = NEXT_INSN (insn))
- {
- if (broken_move (insn))
- {
- /* This is a broken move instruction, scan ahead looking for
- a barrier to stick the constant table behind */
- rtx scan;
- rtx barrier = find_barrier (insn, count_size);
-
- /* Now find all the moves between the points and modify them */
- for (scan = insn; scan != barrier; scan = NEXT_INSN (scan))
- {
- if (broken_move (scan))
- {
- /* This is a broken move instruction, add it to the pool */
- rtx pat = PATTERN (scan);
- rtx src = SET_SRC (pat);
- rtx dst = SET_DEST (pat);
- enum machine_mode mode = GET_MODE (dst);
- HOST_WIDE_INT offset;
- rtx newinsn = scan;
- rtx newsrc;
- rtx addr;
- int scratch;
- int address_only;
-
- /* If this is an HImode constant load, convert it into
- an SImode constant load. Since the register is always
- 32 bits this is safe. We have to do this, since the
- load pc-relative instruction only does a 32-bit load. */
- if (mode == HImode)
- {
- mode = SImode;
- if (GET_CODE (dst) != REG)
- abort ();
- PUT_MODE (dst, SImode);
- }
-
- offset = add_constant (src, mode, &address_only);
- addr = plus_constant (gen_rtx (LABEL_REF, VOIDmode,
- pool_vector_label),
- offset);
-
- /* If we only want the address of the pool entry, or
- for wide moves to integer regs we need to split
- the address calculation off into a separate insn.
- If necessary, the load can then be done with a
- load-multiple. This is safe, since we have
- already noted the length of such insns to be 8,
- and we are immediately over-writing the scratch
- we have grabbed with the final result. */
- if ((address_only || GET_MODE_SIZE (mode) > 4)
- && (scratch = REGNO (dst)) < 16)
- {
- rtx reg;
-
- if (mode == SImode)
- reg = dst;
- else
- reg = gen_rtx (REG, SImode, scratch);
-
- newinsn = emit_insn_after (gen_movaddr (reg, addr),
- newinsn);
- addr = reg;
- }
-
- if (! address_only)
- {
- newsrc = gen_rtx (MEM, mode, addr);
-
- /* XXX Fixme -- I think the following is bogus. */
- /* Build a jump insn wrapper around the move instead
- of an ordinary insn, because we want to have room for
- the target label rtx in fld[7], which an ordinary
- insn doesn't have. */
- newinsn = emit_jump_insn_after
- (gen_rtx (SET, VOIDmode, dst, newsrc), newinsn);
- JUMP_LABEL (newinsn) = pool_vector_label;
-
- /* But it's still an ordinary insn */
- PUT_CODE (newinsn, INSN);
- }
-
- /* Kill old insn */
- delete_insn (scan);
- scan = newinsn;
- }
- }
- dump_table (barrier);
- insn = scan;
- }
- }
-
- after_arm_reorg = 1;
-}
-
-
-/* Routines to output assembly language. */
-
-/* If the rtx is the correct value then return the string of the number.
- In this way we can ensure that valid double constants are generated even
- when cross compiling. */
-char *
-fp_immediate_constant (x)
- rtx x;
-{
- REAL_VALUE_TYPE r;
- int i;
-
- if (!fpa_consts_inited)
- init_fpa_table ();
-
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (r, values_fpa[i]))
- return strings_fpa[i];
-
- abort ();
-}
-
-/* As for fp_immediate_constant, but value is passed directly, not in rtx. */
-static char *
-fp_const_from_val (r)
- REAL_VALUE_TYPE *r;
-{
- int i;
-
- if (! fpa_consts_inited)
- init_fpa_table ();
-
- for (i = 0; i < 8; i++)
- if (REAL_VALUES_EQUAL (*r, values_fpa[i]))
- return strings_fpa[i];
-
- abort ();
-}
-
-/* Output the operands of a LDM/STM instruction to STREAM.
- MASK is the ARM register set mask of which only bits 0-15 are important.
- INSTR is the possibly suffixed base register. HAT unequals zero if a hat
- must follow the register list. */
-
-void
-print_multi_reg (stream, instr, mask, hat)
- FILE *stream;
- char *instr;
- int mask, hat;
-{
- int i;
- int not_first = FALSE;
-
- fputc ('\t', stream);
- fprintf (stream, instr, REGISTER_PREFIX);
- fputs (", {", stream);
- for (i = 0; i < 16; i++)
- if (mask & (1 << i))
- {
- if (not_first)
- fprintf (stream, ", ");
- fprintf (stream, "%s%s", REGISTER_PREFIX, reg_names[i]);
- not_first = TRUE;
- }
-
- fprintf (stream, "}%s\n", hat ? "^" : "");
-}
-
-/* Output a 'call' insn. */
-
-char *
-output_call (operands)
- rtx *operands;
-{
- /* Handle calls to lr using ip (which may be clobbered in subr anyway). */
-
- if (REGNO (operands[0]) == 14)
- {
- operands[0] = gen_rtx (REG, SImode, 12);
- output_asm_insn ("mov%?\t%0, %|lr", operands);
- }
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
-
- if (TARGET_THUMB_INTERWORK)
- output_asm_insn ("bx%?\t%0", operands);
- else
- output_asm_insn ("mov%?\t%|pc, %0", operands);
-
- return "";
-}
-
-static int
-eliminate_lr2ip (x)
- rtx *x;
-{
- int something_changed = 0;
- rtx x0 = *x;
- int code = GET_CODE (x0);
- register int i, j;
- register char *fmt;
-
- switch (code)
- {
- case REG:
- if (REGNO (x0) == 14)
- {
- *x = gen_rtx (REG, SImode, 12);
- return 1;
- }
- return 0;
- default:
- /* Scan through the sub-elements and change any references there */
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- something_changed |= eliminate_lr2ip (&XEXP (x0, i));
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x0, i); j++)
- something_changed |= eliminate_lr2ip (&XVECEXP (x0, i, j));
- return something_changed;
- }
-}
-
-/* Output a 'call' insn that is a reference in memory. */
-
-char *
-output_call_mem (operands)
- rtx *operands;
-{
- operands[0] = copy_rtx (operands[0]); /* Be ultra careful */
- /* Handle calls using lr by using ip (which may be clobbered in subr anyway).
- */
- if (eliminate_lr2ip (&operands[0]))
- output_asm_insn ("mov%?\t%|ip, %|lr", operands);
-
- if (TARGET_THUMB_INTERWORK)
- {
- output_asm_insn ("ldr%?\t%|ip, %0", operands);
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
- output_asm_insn ("bx%?\t%|ip", operands);
- }
- else
- {
- output_asm_insn ("mov%?\t%|lr, %|pc", operands);
- output_asm_insn ("ldr%?\t%|pc, %0", operands);
- }
-
- return "";
-}
-
-
-/* Output a move from arm registers to an fpu registers.
- OPERANDS[0] is an fpu register.
- OPERANDS[1] is the first registers of an arm register pair. */
-
-char *
-output_mov_long_double_fpu_from_arm (operands)
- rtx *operands;
-{
- int arm_reg0 = REGNO (operands[1]);
- rtx ops[3];
-
- if (arm_reg0 == 12)
- abort();
-
- ops[0] = gen_rtx (REG, SImode, arm_reg0);
- ops[1] = gen_rtx (REG, SImode, 1 + arm_reg0);
- ops[2] = gen_rtx (REG, SImode, 2 + arm_reg0);
-
- output_asm_insn ("stm%?fd\t%|sp!, {%0, %1, %2}", ops);
- output_asm_insn ("ldf%?e\t%0, [%|sp], #12", operands);
- return "";
-}
-
-/* Output a move from an fpu register to arm registers.
- OPERANDS[0] is the first registers of an arm register pair.
- OPERANDS[1] is an fpu register. */
-
-char *
-output_mov_long_double_arm_from_fpu (operands)
- rtx *operands;
-{
- int arm_reg0 = REGNO (operands[0]);
- rtx ops[3];
-
- if (arm_reg0 == 12)
- abort();
-
- ops[0] = gen_rtx (REG, SImode, arm_reg0);
- ops[1] = gen_rtx (REG, SImode, 1 + arm_reg0);
- ops[2] = gen_rtx (REG, SImode, 2 + arm_reg0);
-
- output_asm_insn ("stf%?e\t%1, [%|sp, #-12]!", operands);
- output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1, %2}", ops);
- return "";
-}
-
-/* Output a move from arm registers to arm registers of a long double
- OPERANDS[0] is the destination.
- OPERANDS[1] is the source. */
-char *
-output_mov_long_double_arm_from_arm (operands)
- rtx *operands;
-{
- /* We have to be careful here because the two might overlap */
- int dest_start = REGNO (operands[0]);
- int src_start = REGNO (operands[1]);
- rtx ops[2];
- int i;
-
- if (dest_start < src_start)
- {
- for (i = 0; i < 3; i++)
- {
- ops[0] = gen_rtx (REG, SImode, dest_start + i);
- ops[1] = gen_rtx (REG, SImode, src_start + i);
- output_asm_insn ("mov%?\t%0, %1", ops);
- }
- }
- else
- {
- for (i = 2; i >= 0; i--)
- {
- ops[0] = gen_rtx (REG, SImode, dest_start + i);
- ops[1] = gen_rtx (REG, SImode, src_start + i);
- output_asm_insn ("mov%?\t%0, %1", ops);
- }
- }
-
- return "";
-}
-
-
-/* Output a move from arm registers to an fpu registers.
- OPERANDS[0] is an fpu register.
- OPERANDS[1] is the first registers of an arm register pair. */
-
-char *
-output_mov_double_fpu_from_arm (operands)
- rtx *operands;
-{
- int arm_reg0 = REGNO (operands[1]);
- rtx ops[2];
-
- if (arm_reg0 == 12)
- abort();
- ops[0] = gen_rtx (REG, SImode, arm_reg0);
- ops[1] = gen_rtx (REG, SImode, 1 + arm_reg0);
- output_asm_insn ("stm%?fd\t%|sp!, {%0, %1}", ops);
- output_asm_insn ("ldf%?d\t%0, [%|sp], #8", operands);
- return "";
-}
-
-/* Output a move from an fpu register to arm registers.
- OPERANDS[0] is the first registers of an arm register pair.
- OPERANDS[1] is an fpu register. */
-
-char *
-output_mov_double_arm_from_fpu (operands)
- rtx *operands;
-{
- int arm_reg0 = REGNO (operands[0]);
- rtx ops[2];
-
- if (arm_reg0 == 12)
- abort();
-
- ops[0] = gen_rtx (REG, SImode, arm_reg0);
- ops[1] = gen_rtx (REG, SImode, 1 + arm_reg0);
- output_asm_insn ("stf%?d\t%1, [%|sp, #-8]!", operands);
- output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1}", ops);
- return "";
-}
-
-/* Output a move between double words.
- It must be REG<-REG, REG<-CONST_DOUBLE, REG<-CONST_INT, REG<-MEM
- or MEM<-REG and all MEMs must be offsettable addresses. */
-
-char *
-output_move_double (operands)
- rtx *operands;
-{
- enum rtx_code code0 = GET_CODE (operands[0]);
- enum rtx_code code1 = GET_CODE (operands[1]);
- rtx otherops[3];
-
- if (code0 == REG)
- {
- int reg0 = REGNO (operands[0]);
-
- otherops[0] = gen_rtx (REG, SImode, 1 + reg0);
- if (code1 == REG)
- {
- int reg1 = REGNO (operands[1]);
- if (reg1 == 12)
- abort();
-
- /* Ensure the second source is not overwritten */
- if (reg1 == reg0 + (WORDS_BIG_ENDIAN ? -1 : 1))
- output_asm_insn("mov%?\t%Q0, %Q1\n\tmov%?\t%R0, %R1", operands);
- else
- output_asm_insn("mov%?\t%R0, %R1\n\tmov%?\t%Q0, %Q1", operands);
- }
- else if (code1 == CONST_DOUBLE)
- {
- if (GET_MODE (operands[1]) == DFmode)
- {
- long l[2];
- union real_extract u;
-
- bcopy ((char *) &CONST_DOUBLE_LOW (operands[1]), (char *) &u,
- sizeof (u));
- REAL_VALUE_TO_TARGET_DOUBLE (u.d, l);
- otherops[1] = GEN_INT(l[1]);
- operands[1] = GEN_INT(l[0]);
- }
- else if (GET_MODE (operands[1]) != VOIDmode)
- abort ();
- else if (WORDS_BIG_ENDIAN)
- {
-
- otherops[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
- operands[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
- }
- else
- {
-
- otherops[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
- operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
- }
- output_mov_immediate (operands);
- output_mov_immediate (otherops);
- }
- else if (code1 == CONST_INT)
- {
-#if HOST_BITS_PER_WIDE_INT > 32
- /* If HOST_WIDE_INT is more than 32 bits, the intval tells us
- what the upper word is. */
- if (WORDS_BIG_ENDIAN)
- {
- otherops[1] = GEN_INT (ARM_SIGN_EXTEND (INTVAL (operands[1])));
- operands[1] = GEN_INT (INTVAL (operands[1]) >> 32);
- }
- else
- {
- otherops[1] = GEN_INT (INTVAL (operands[1]) >> 32);
- operands[1] = GEN_INT (ARM_SIGN_EXTEND (INTVAL (operands[1])));
- }
-#else
- /* Sign extend the intval into the high-order word */
- if (WORDS_BIG_ENDIAN)
- {
- otherops[1] = operands[1];
- operands[1] = (INTVAL (operands[1]) < 0
- ? constm1_rtx : const0_rtx);
- }
- else
- otherops[1] = INTVAL (operands[1]) < 0 ? constm1_rtx : const0_rtx;
-#endif
- output_mov_immediate (otherops);
- output_mov_immediate (operands);
- }
- else if (code1 == MEM)
- {
- switch (GET_CODE (XEXP (operands[1], 0)))
- {
- case REG:
- output_asm_insn ("ldm%?ia\t%m1, %M0", operands);
- break;
-
- case PRE_INC:
- abort (); /* Should never happen now */
- break;
-
- case PRE_DEC:
- output_asm_insn ("ldm%?db\t%m1!, %M0", operands);
- break;
-
- case POST_INC:
- output_asm_insn ("ldm%?ia\t%m1!, %M0", operands);
- break;
-
- case POST_DEC:
- abort (); /* Should never happen now */
- break;
-
- case LABEL_REF:
- case CONST:
- output_asm_insn ("adr%?\t%0, %1", operands);
- output_asm_insn ("ldm%?ia\t%0, %M0", operands);
- break;
-
- default:
- if (arm_add_operand (XEXP (XEXP (operands[1], 0), 1)))
- {
- otherops[0] = operands[0];
- otherops[1] = XEXP (XEXP (operands[1], 0), 0);
- otherops[2] = XEXP (XEXP (operands[1], 0), 1);
- if (GET_CODE (XEXP (operands[1], 0)) == PLUS)
- {
- if (GET_CODE (otherops[2]) == CONST_INT)
- {
- switch (INTVAL (otherops[2]))
- {
- case -8:
- output_asm_insn ("ldm%?db\t%1, %M0", otherops);
- return "";
- case -4:
- output_asm_insn ("ldm%?da\t%1, %M0", otherops);
- return "";
- case 4:
- output_asm_insn ("ldm%?ib\t%1, %M0", otherops);
- return "";
- }
- if (!(const_ok_for_arm (INTVAL (otherops[2]))))
- output_asm_insn ("sub%?\t%0, %1, #%n2", otherops);
- else
- output_asm_insn ("add%?\t%0, %1, %2", otherops);
- }
- else
- output_asm_insn ("add%?\t%0, %1, %2", otherops);
- }
- else
- output_asm_insn ("sub%?\t%0, %1, %2", otherops);
- return "ldm%?ia\t%0, %M0";
- }
- else
- {
- otherops[1] = adj_offsettable_operand (operands[1], 4);
- /* Take care of overlapping base/data reg. */
- if (reg_mentioned_p (operands[0], operands[1]))
- {
- output_asm_insn ("ldr%?\t%0, %1", otherops);
- output_asm_insn ("ldr%?\t%0, %1", operands);
- }
- else
- {
- output_asm_insn ("ldr%?\t%0, %1", operands);
- output_asm_insn ("ldr%?\t%0, %1", otherops);
- }
- }
- }
- }
- else
- abort(); /* Constraints should prevent this */
- }
- else if (code0 == MEM && code1 == REG)
- {
- if (REGNO (operands[1]) == 12)
- abort();
-
- switch (GET_CODE (XEXP (operands[0], 0)))
- {
- case REG:
- output_asm_insn ("stm%?ia\t%m0, %M1", operands);
- break;
-
- case PRE_INC:
- abort (); /* Should never happen now */
- break;
-
- case PRE_DEC:
- output_asm_insn ("stm%?db\t%m0!, %M1", operands);
- break;
-
- case POST_INC:
- output_asm_insn ("stm%?ia\t%m0!, %M1", operands);
- break;
-
- case POST_DEC:
- abort (); /* Should never happen now */
- break;
-
- case PLUS:
- if (GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == CONST_INT)
- {
- switch (INTVAL (XEXP (XEXP (operands[0], 0), 1)))
- {
- case -8:
- output_asm_insn ("stm%?db\t%m0, %M1", operands);
- return "";
-
- case -4:
- output_asm_insn ("stm%?da\t%m0, %M1", operands);
- return "";
-
- case 4:
- output_asm_insn ("stm%?ib\t%m0, %M1", operands);
- return "";
- }
- }
- /* Fall through */
-
- default:
- otherops[0] = adj_offsettable_operand (operands[0], 4);
- otherops[1] = gen_rtx (REG, SImode, 1 + REGNO (operands[1]));
- output_asm_insn ("str%?\t%1, %0", operands);
- output_asm_insn ("str%?\t%1, %0", otherops);
- }
- }
- else
- abort(); /* Constraints should prevent this */
-
- return "";
-}
-
-
-/* Output an arbitrary MOV reg, #n.
- OPERANDS[0] is a register. OPERANDS[1] is a const_int. */
-
-char *
-output_mov_immediate (operands)
- rtx *operands;
-{
- HOST_WIDE_INT n = INTVAL (operands[1]);
- int n_ones = 0;
- int i;
-
- /* Try to use one MOV */
- if (const_ok_for_arm (n))
- {
- output_asm_insn ("mov%?\t%0, %1", operands);
- return "";
- }
-
- /* Try to use one MVN */
- if (const_ok_for_arm (~n))
- {
- operands[1] = GEN_INT (~n);
- output_asm_insn ("mvn%?\t%0, %1", operands);
- return "";
- }
-
- /* If all else fails, make it out of ORRs or BICs as appropriate. */
-
- for (i=0; i < 32; i++)
- if (n & 1 << i)
- n_ones++;
-
- if (n_ones > 16) /* Shorter to use MVN with BIC in this case. */
- output_multi_immediate(operands, "mvn%?\t%0, %1", "bic%?\t%0, %0, %1", 1,
- ~n);
- else
- output_multi_immediate(operands, "mov%?\t%0, %1", "orr%?\t%0, %0, %1", 1,
- n);
-
- return "";
-}
-
-
-/* Output an ADD r, s, #n where n may be too big for one instruction. If
- adding zero to one register, output nothing. */
-
-char *
-output_add_immediate (operands)
- rtx *operands;
-{
- HOST_WIDE_INT n = INTVAL (operands[2]);
-
- if (n != 0 || REGNO (operands[0]) != REGNO (operands[1]))
- {
- if (n < 0)
- output_multi_immediate (operands,
- "sub%?\t%0, %1, %2", "sub%?\t%0, %0, %2", 2,
- -n);
- else
- output_multi_immediate (operands,
- "add%?\t%0, %1, %2", "add%?\t%0, %0, %2", 2,
- n);
- }
-
- return "";
-}
-
-/* Output a multiple immediate operation.
- OPERANDS is the vector of operands referred to in the output patterns.
- INSTR1 is the output pattern to use for the first constant.
- INSTR2 is the output pattern to use for subsequent constants.
- IMMED_OP is the index of the constant slot in OPERANDS.
- N is the constant value. */
-
-static char *
-output_multi_immediate (operands, instr1, instr2, immed_op, n)
- rtx *operands;
- char *instr1, *instr2;
- int immed_op;
- HOST_WIDE_INT n;
-{
-#if HOST_BITS_PER_WIDE_INT > 32
- n &= 0xffffffff;
-#endif
-
- if (n == 0)
- {
- operands[immed_op] = const0_rtx;
- output_asm_insn (instr1, operands); /* Quick and easy output */
- }
- else
- {
- int i;
- char *instr = instr1;
-
- /* Note that n is never zero here (which would give no output) */
- for (i = 0; i < 32; i += 2)
- {
- if (n & (3 << i))
- {
- operands[immed_op] = GEN_INT (n & (255 << i));
- output_asm_insn (instr, operands);
- instr = instr2;
- i += 6;
- }
- }
- }
- return "";
-}
-
-
-/* Return the appropriate ARM instruction for the operation code.
- The returned result should not be overwritten. OP is the rtx of the
- operation. SHIFT_FIRST_ARG is TRUE if the first argument of the operator
- was shifted. */
-
-char *
-arithmetic_instr (op, shift_first_arg)
- rtx op;
- int shift_first_arg;
-{
- switch (GET_CODE (op))
- {
- case PLUS:
- return "add";
-
- case MINUS:
- return shift_first_arg ? "rsb" : "sub";
-
- case IOR:
- return "orr";
-
- case XOR:
- return "eor";
-
- case AND:
- return "and";
-
- default:
- abort ();
- }
-}
-
-
-/* Ensure valid constant shifts and return the appropriate shift mnemonic
- for the operation code. The returned result should not be overwritten.
- OP is the rtx code of the shift.
- On exit, *AMOUNTP will be -1 if the shift is by a register, or a constant
- shift. */
-
-static char *
-shift_op (op, amountp)
- rtx op;
- HOST_WIDE_INT *amountp;
-{
- char *mnem;
- enum rtx_code code = GET_CODE (op);
-
- if (GET_CODE (XEXP (op, 1)) == REG || GET_CODE (XEXP (op, 1)) == SUBREG)
- *amountp = -1;
- else if (GET_CODE (XEXP (op, 1)) == CONST_INT)
- *amountp = INTVAL (XEXP (op, 1));
- else
- abort ();
-
- switch (code)
- {
- case ASHIFT:
- mnem = "asl";
- break;
-
- case ASHIFTRT:
- mnem = "asr";
- break;
-
- case LSHIFTRT:
- mnem = "lsr";
- break;
-
- case ROTATERT:
- mnem = "ror";
- break;
-
- case MULT:
- /* We never have to worry about the amount being other than a
- power of 2, since this case can never be reloaded from a reg. */
- if (*amountp != -1)
- *amountp = int_log2 (*amountp);
- else
- abort ();
- return "asl";
-
- default:
- abort ();
- }
-
- if (*amountp != -1)
- {
- /* This is not 100% correct, but follows from the desire to merge
- multiplication by a power of 2 with the recognizer for a
- shift. >=32 is not a valid shift for "asl", so we must try and
- output a shift that produces the correct arithmetical result.
- Using lsr #32 is identical except for the fact that the carry bit
- is not set correctly if we set the flags; but we never use the
- carry bit from such an operation, so we can ignore that. */
- if (code == ROTATERT)
- *amountp &= 31; /* Rotate is just modulo 32 */
- else if (*amountp != (*amountp & 31))
- {
- if (code == ASHIFT)
- mnem = "lsr";
- *amountp = 32;
- }
-
- /* Shifts of 0 are no-ops. */
- if (*amountp == 0)
- return NULL;
- }
-
- return mnem;
-}
-
-
-/* Obtain the shift from the POWER of two. */
-
-static HOST_WIDE_INT
-int_log2 (power)
- HOST_WIDE_INT power;
-{
- HOST_WIDE_INT shift = 0;
-
- while (((((HOST_WIDE_INT) 1) << shift) & power) == 0)
- {
- if (shift > 31)
- abort ();
- shift++;
- }
-
- return shift;
-}
-
-/* Output a .ascii pseudo-op, keeping track of lengths. This is because
- /bin/as is horribly restrictive. */
-
-void
-output_ascii_pseudo_op (stream, p, len)
- FILE *stream;
- unsigned char *p;
- int len;
-{
- int i;
- int len_so_far = 1000;
- int chars_so_far = 0;
-
- for (i = 0; i < len; i++)
- {
- register int c = p[i];
-
- if (len_so_far > 50)
- {
- if (chars_so_far)
- fputs ("\"\n", stream);
- fputs ("\t.ascii\t\"", stream);
- len_so_far = 0;
- /* CYGNUS LOCAL */
- arm_increase_location (chars_so_far);
- /* END CYGNUS LOCAL */
- chars_so_far = 0;
- }
-
- if (c == '\"' || c == '\\')
- {
- putc('\\', stream);
- len_so_far++;
- }
-
- if (c >= ' ' && c < 0177)
- {
- putc (c, stream);
- len_so_far++;
- }
- else
- {
- fprintf (stream, "\\%03o", c);
- len_so_far +=4;
- }
-
- chars_so_far++;
- }
-
- fputs ("\"\n", stream);
- /* CYGNUS LOCAL */
- arm_increase_location (chars_so_far);
- /* END CYGNUS LOCAL */
-}
-
-
-/* Try to determine whether a pattern really clobbers the link register.
- This information is useful when peepholing, so that lr need not be pushed
- if we combine a call followed by a return.
- NOTE: This code does not check for side-effect expressions in a SET_SRC:
- such a check should not be needed because these only update an existing
- value within a register; the register must still be set elsewhere within
- the function. */
-
-static int
-pattern_really_clobbers_lr (x)
- rtx x;
-{
- int i;
-
- switch (GET_CODE (x))
- {
- case SET:
- switch (GET_CODE (SET_DEST (x)))
- {
- case REG:
- return REGNO (SET_DEST (x)) == 14;
-
- case SUBREG:
- if (GET_CODE (XEXP (SET_DEST (x), 0)) == REG)
- return REGNO (XEXP (SET_DEST (x), 0)) == 14;
-
- if (GET_CODE (XEXP (SET_DEST (x), 0)) == MEM)
- return 0;
- abort ();
-
- default:
- return 0;
- }
-
- case PARALLEL:
- for (i = 0; i < XVECLEN (x, 0); i++)
- if (pattern_really_clobbers_lr (XVECEXP (x, 0, i)))
- return 1;
- return 0;
-
- case CLOBBER:
- switch (GET_CODE (XEXP (x, 0)))
- {
- case REG:
- return REGNO (XEXP (x, 0)) == 14;
-
- case SUBREG:
- if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG)
- return REGNO (XEXP (XEXP (x, 0), 0)) == 14;
- abort ();
-
- default:
- return 0;
- }
-
- case UNSPEC:
- return 1;
-
- default:
- return 0;
- }
-}
-
-static int
-function_really_clobbers_lr (first)
- rtx first;
-{
- rtx insn, next;
-
- for (insn = first; insn; insn = next_nonnote_insn (insn))
- {
- switch (GET_CODE (insn))
- {
- case BARRIER:
- case NOTE:
- case CODE_LABEL:
- case JUMP_INSN: /* Jump insns only change the PC (and conds) */
- case INLINE_HEADER:
- break;
-
- case INSN:
- if (pattern_really_clobbers_lr (PATTERN (insn)))
- return 1;
- break;
-
- case CALL_INSN:
- /* Don't yet know how to handle those calls that are not to a
- SYMBOL_REF */
- if (GET_CODE (PATTERN (insn)) != PARALLEL)
- abort ();
-
- switch (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)))
- {
- case CALL:
- if (GET_CODE (XEXP (XEXP (XVECEXP (PATTERN (insn), 0, 0), 0), 0))
- != SYMBOL_REF)
- return 1;
- break;
-
- case SET:
- if (GET_CODE (XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn),
- 0, 0)), 0), 0))
- != SYMBOL_REF)
- return 1;
- break;
-
- default: /* Don't recognize it, be safe */
- return 1;
- }
-
- /* A call can be made (by peepholing) not to clobber lr iff it is
- followed by a return. There may, however, be a use insn iff
- we are returning the result of the call.
- If we run off the end of the insn chain, then that means the
- call was at the end of the function. Unfortunately we don't
- have a return insn for the peephole to recognize, so we
- must reject this. (Can this be fixed by adding our own insn?) */
- if ((next = next_nonnote_insn (insn)) == NULL)
- return 1;
-
- /* No need to worry about lr if the call never returns */
- if (GET_CODE (next) == BARRIER)
- break;
-
- if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == USE
- && (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
- && (REGNO (SET_DEST (XVECEXP (PATTERN (insn), 0, 0)))
- == REGNO (XEXP (PATTERN (next), 0))))
- if ((next = next_nonnote_insn (next)) == NULL)
- return 1;
-
- if (GET_CODE (next) == JUMP_INSN
- && GET_CODE (PATTERN (next)) == RETURN)
- break;
- return 1;
-
- default:
- abort ();
- }
- }
-
- /* We have reached the end of the chain so lr was _not_ clobbered */
- return 0;
-}
-
-char *
-output_return_instruction (operand, really_return, reverse)
- rtx operand;
- int really_return;
- int reverse;
-{
- char instr[100];
- int reg, live_regs = 0;
- int volatile_func = (optimize > 0
- && TREE_THIS_VOLATILE (current_function_decl));
-
- return_used_this_function = 1;
-
- if (volatile_func)
- {
- rtx ops[2];
- /* If this function was declared non-returning, and we have found a tail
- call, then we have to trust that the called function won't return. */
- if (! really_return)
- return "";
-
- /* Otherwise, trap an attempted return by aborting. */
- ops[0] = operand;
- ops[1] = gen_rtx (SYMBOL_REF, Pmode, "abort");
- assemble_external_libcall (ops[1]);
- output_asm_insn (reverse ? "bl%D0\t%a1" : "bl%d0\t%a1", ops);
- return "";
- }
-
- if (current_function_calls_alloca && ! really_return)
- abort();
-
- for (reg = 0; reg <= 10; reg++)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- live_regs++;
-
- if (live_regs || (regs_ever_live[14] && ! lr_save_eliminated))
- live_regs++;
-
- if (frame_pointer_needed)
- live_regs += 4;
-
- if (live_regs)
- {
- if (lr_save_eliminated || ! regs_ever_live[14])
- live_regs++;
-
- if (frame_pointer_needed)
- strcpy (instr,
- reverse ? "ldm%?%D0ea\t%|fp, {" : "ldm%?%d0ea\t%|fp, {");
- else
- strcpy (instr,
- reverse ? "ldm%?%D0fd\t%|sp!, {" : "ldm%?%d0fd\t%|sp!, {");
-
- for (reg = 0; reg <= 10; reg++)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- strcat (instr, "%|");
- strcat (instr, reg_names[reg]);
- if (--live_regs)
- strcat (instr, ", ");
- }
-
- if (frame_pointer_needed)
- {
- strcat (instr, "%|");
- strcat (instr, reg_names[11]);
- strcat (instr, ", ");
- strcat (instr, "%|");
- strcat (instr, reg_names[13]);
- strcat (instr, ", ");
- strcat (instr, "%|");
- strcat (instr, TARGET_THUMB_INTERWORK || (! really_return)
- ? reg_names[14] : reg_names[15] );
- }
- else
- {
- strcat (instr, "%|");
- if (TARGET_THUMB_INTERWORK && really_return)
- strcat (instr, reg_names[12]);
- else
- strcat (instr, really_return ? reg_names[15] : reg_names[14]);
- }
- strcat (instr, (TARGET_APCS_32 || !really_return) ? "}" : "}^");
- output_asm_insn (instr, &operand);
-
- if (TARGET_THUMB_INTERWORK && really_return)
- {
- strcpy (instr, "bx%?");
- strcat (instr, reverse ? "%D0" : "%d0");
- strcat (instr, "\t%|");
- strcat (instr, frame_pointer_needed ? "lr" : "ip");
-
- output_asm_insn (instr, & operand);
- }
- }
- else if (really_return)
- {
- /* CYGNUS LOCAL unknown */
- if (operand && GET_MODE_CLASS (GET_MODE (XEXP (operand, 0))) != MODE_CC)
- output_asm_insn ("ldr%?\t%|ip, %0", & operand);
- /* END CYGNUS LOCAL */
-
- if (TARGET_THUMB_INTERWORK)
- sprintf (instr, "bx%%?%%%s0\t%%|lr", reverse ? "D" : "d");
- else
- sprintf (instr, "mov%%?%%%s0%s\t%%|pc, %%|lr",
- reverse ? "D" : "d", TARGET_APCS_32 ? "" : "s");
-
- output_asm_insn (instr, & operand);
- }
-
- return "";
-}
-
-/* Return nonzero if optimizing and the current function is volatile.
- Such functions never return, and many memory cycles can be saved
- by not storing register values that will never be needed again.
- This optimization was added to speed up context switching in a
- kernel application. */
-
-int
-arm_volatile_func ()
-{
- return (optimize > 0 && TREE_THIS_VOLATILE (current_function_decl));
-}
-
-/* CYGNUS LOCAL unknown */
-/* Return the size of the prologue. It's not too bad if we slightly
- over-estimate. */
-
-static int
-get_prologue_size ()
-{
- return profile_flag ? 12 : 0;
-}
-/* END CYGNUS LOCAL */
-
-/* The amount of stack adjustment that happens here, in output_return and in
- output_epilogue must be exactly the same as was calculated during reload,
- or things will point to the wrong place. The only time we can safely
- ignore this constraint is when a function has no arguments on the stack,
- no stack frame requirement and no live registers execpt for `lr'. If we
- can guarantee that by making all function calls into tail calls and that
- lr is not clobbered in any other way, then there is no need to push lr
- onto the stack. */
-
-void
-output_func_prologue (f, frame_size)
- FILE *f;
- int frame_size;
-{
- int reg, live_regs_mask = 0;
- int volatile_func = (optimize > 0
- && TREE_THIS_VOLATILE (current_function_decl));
-
- /* Nonzero if we must stuff some register arguments onto the stack as if
- they were passed there. */
- int store_arg_regs = 0;
-
- if (arm_ccfsm_state || arm_target_insn)
- abort (); /* Sanity check */
-
- if (arm_naked_function_p (current_function_decl))
- return;
-
- return_used_this_function = 0;
- lr_save_eliminated = 0;
-
- fprintf (f, "\t%s args = %d, pretend = %d, frame = %d\n",
- ASM_COMMENT_START, current_function_args_size,
- current_function_pretend_args_size, frame_size);
- fprintf (f, "\t%s frame_needed = %d, current_function_anonymous_args = %d\n",
- ASM_COMMENT_START, frame_pointer_needed,
- current_function_anonymous_args);
-
- if (volatile_func)
- fprintf (f, "\t%s Volatile function.\n", ASM_COMMENT_START);
-
- if (current_function_anonymous_args && current_function_pretend_args_size)
- store_arg_regs = 1;
-
- for (reg = 0; reg <= 10; reg++)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- live_regs_mask |= (1 << reg);
-
- if (frame_pointer_needed)
- live_regs_mask |= 0xD800;
- else if (regs_ever_live[14])
- {
- if (! current_function_args_size
- && ! function_really_clobbers_lr (get_insns ()))
- lr_save_eliminated = 1;
- else
- live_regs_mask |= 0x4000;
- }
-
- if (live_regs_mask)
- {
- /* if a di mode load/store multiple is used, and the base register
- is r3, then r4 can become an ever live register without lr
- doing so, in this case we need to push lr as well, or we
- will fail to get a proper return. */
-
- live_regs_mask |= 0x4000;
- lr_save_eliminated = 0;
-
- }
-
- if (lr_save_eliminated)
- fprintf (f,"\t%s I don't think this function clobbers lr\n",
- ASM_COMMENT_START);
-
-#ifdef AOF_ASSEMBLER
- if (flag_pic)
- fprintf (f, "\tmov\t%sip, %s%s\n", REGISTER_PREFIX, REGISTER_PREFIX,
- reg_names[PIC_OFFSET_TABLE_REGNUM]);
-#endif
-}
-
-
-void
-output_func_epilogue (f, frame_size)
- FILE *f;
- int frame_size;
-{
- int reg, live_regs_mask = 0;
- /* CYGNUS LOCAL unknown */
- int code_size = 0;
- /* END CYGNUS LOCAL */
- /* If we need this then it will always be at least this much */
- int floats_offset = 12;
- rtx operands[3];
- int volatile_func = (optimize > 0
- && TREE_THIS_VOLATILE (current_function_decl));
-
- if (use_return_insn (FALSE) && return_used_this_function)
- {
- if ((frame_size + current_function_outgoing_args_size) != 0
- /* CYGNUS LOCAL bug fix */
- && !(frame_pointer_needed && TARGET_APCS))
- /* END CYGNUS LOCAL */
- abort ();
- goto epilogue_done;
- }
-
- /* Naked functions don't have epilogues. */
- if (arm_naked_function_p (current_function_decl))
- goto epilogue_done;
-
- /* A volatile function should never return. Call abort. */
- if (TARGET_ABORT_NORETURN && volatile_func)
- {
- rtx op = gen_rtx (SYMBOL_REF, Pmode, "abort");
- assemble_external_libcall (op);
- output_asm_insn ("bl\t%a0", &op);
- /* CYGNUS LOCAL unknown */
- code_size = 4;
- /* END CYGNUS LOCAL */
- goto epilogue_done;
- }
-
- for (reg = 0; reg <= 10; reg++)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- live_regs_mask |= (1 << reg);
- floats_offset += 4;
- }
-
- if (frame_pointer_needed)
- {
- if (arm_fpu_arch == FP_SOFT2)
- {
- for (reg = 23; reg > 15; reg--)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- floats_offset += 12;
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- fprintf (f, "\tldfe\t%s%s, [%sfp, #-%d]\n", REGISTER_PREFIX,
- reg_names[reg], REGISTER_PREFIX, floats_offset);
- }
- }
- else
- {
- int start_reg = 23;
-
- for (reg = 23; reg > 15; reg--)
- {
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- floats_offset += 12;
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- /* We can't unstack more than four registers at once */
- if (start_reg - reg == 3)
- {
- fprintf (f, "\tlfm\t%s%s, 4, [%sfp, #-%d]\n",
- REGISTER_PREFIX, reg_names[reg],
- REGISTER_PREFIX, floats_offset);
- start_reg = reg - 1;
- }
- }
- else
- {
- if (reg != start_reg)
- /* CYGNUS LOCAL unknown */
- {
- code_size += 4;
- fprintf (f, "\tlfm\t%s%s, %d, [%sfp, #-%d]\n",
- REGISTER_PREFIX, reg_names[reg + 1],
- start_reg - reg, REGISTER_PREFIX, floats_offset);
- }
- /* END CYGNUS LOCAL */
- start_reg = reg - 1;
- }
- }
-
- /* Just in case the last register checked also needs unstacking. */
- if (reg != start_reg)
- /* CYGNUS LOCAL unknown */
- {
- code_size += 4;
- fprintf (f, "\tlfm\t%s%s, %d, [%sfp, #-%d]\n",
- REGISTER_PREFIX, reg_names[reg + 1],
- start_reg - reg, REGISTER_PREFIX, floats_offset);
- }
- /* END CYGNUS LOCAL */
- }
-
- if (TARGET_THUMB_INTERWORK)
- {
- live_regs_mask |= 0x6800;
- print_multi_reg (f, "ldmea\t%sfp", live_regs_mask, FALSE);
- fprintf (f, "\tbx\t%slr\n", REGISTER_PREFIX);
- /* CYGNUS LOCAL unknown */
- code_size += 8;
- /* END CYGNUS LOCAL */
- }
- else
- {
- live_regs_mask |= 0xA800;
- print_multi_reg (f, "ldmea\t%sfp", live_regs_mask,
- TARGET_APCS_32 ? FALSE : TRUE);
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- }
- }
- else
- {
- /* Restore stack pointer if necessary. */
- if (frame_size + current_function_outgoing_args_size != 0)
- {
- operands[0] = operands[1] = stack_pointer_rtx;
- operands[2] = GEN_INT (frame_size
- + current_function_outgoing_args_size);
- output_add_immediate (operands);
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- }
-
- if (arm_fpu_arch == FP_SOFT2)
- {
- for (reg = 16; reg < 24; reg++)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- fprintf (f, "\tldfe\t%s%s, [%ssp], #12\n", REGISTER_PREFIX,
- reg_names[reg], REGISTER_PREFIX);
- }
- }
- else
- {
- int start_reg = 16;
-
- for (reg = 16; reg < 24; reg++)
- {
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- if (reg - start_reg == 3)
- {
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- fprintf (f, "\tlfmfd\t%s%s, 4, [%ssp]!\n",
- REGISTER_PREFIX, reg_names[start_reg],
- REGISTER_PREFIX);
- start_reg = reg + 1;
- }
- }
- else
- {
- if (reg != start_reg)
- {
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- fprintf (f, "\tlfmfd\t%s%s, %d, [%ssp]!\n",
- REGISTER_PREFIX, reg_names[start_reg],
- reg - start_reg, REGISTER_PREFIX);
- }
-
- start_reg = reg + 1;
- }
- }
-
- /* Just in case the last register checked also needs unstacking. */
- if (reg != start_reg)
- {
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- fprintf (f, "\tlfmfd\t%s%s, %d, [%ssp]!\n",
- REGISTER_PREFIX, reg_names[start_reg],
- reg - start_reg, REGISTER_PREFIX);
- }
- }
-
- if (current_function_pretend_args_size == 0 && regs_ever_live[14])
- {
- if (TARGET_THUMB_INTERWORK)
- {
- /* CYGNUS LOCAL */
- if (! lr_save_eliminated)
- live_regs_mask |= 0x4000;
-
- if (live_regs_mask != 0)
- {
- code_size += 4;
- print_multi_reg (f, "ldmfd\t%ssp!", live_regs_mask, FALSE);
- }
- /* END CYGNUS LOCAL */
-
- fprintf (f, "\tbx\t%slr\n", REGISTER_PREFIX);
- }
- else if (lr_save_eliminated)
- fprintf (f, (TARGET_APCS_32 ? "\tmov\t%spc, %slr\n"
- : "\tmovs\t%spc, %slr\n"),
- REGISTER_PREFIX, REGISTER_PREFIX, f);
- else
- print_multi_reg (f, "ldmfd\t%ssp!", live_regs_mask | 0x8000,
- TARGET_APCS_32 ? FALSE : TRUE);
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- }
- else
- {
- if (live_regs_mask || regs_ever_live[14])
- {
- /* Restore the integer regs, and the return address into lr */
- if (! lr_save_eliminated)
- live_regs_mask |= 0x4000;
-
- if (live_regs_mask != 0)
- /* CYGNUS LOCAL unknown */
- {
- code_size += 4;
- print_multi_reg (f, "ldmfd\t%ssp!", live_regs_mask, FALSE);
- }
- /* END CYGNUS LOCAL */
- }
-
- if (current_function_pretend_args_size)
- {
- /* Unwind the pre-pushed regs */
- operands[0] = operands[1] = stack_pointer_rtx;
- operands[2] = GEN_INT (current_function_pretend_args_size);
- output_add_immediate (operands);
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- }
- /* And finally, go home */
- if (TARGET_THUMB_INTERWORK)
- fprintf (f, "\tbx\t%slr\n", REGISTER_PREFIX);
- else if (TARGET_APCS_32)
- fprintf (f, "\tmov\t%spc, %slr\n", REGISTER_PREFIX, REGISTER_PREFIX );
- else
- fprintf (f, "\tmovs\t%spc, %slr\n", REGISTER_PREFIX, REGISTER_PREFIX );
- /* CYGNUS LOCAL unknown */
- code_size += 4;
- /* END CYGNUS LOCAL */
- }
- }
-
-epilogue_done:
-
- /* CYGNUS LOCAL unknown */
- if (optimize > 0)
- arm_increase_location (code_size
- + insn_addresses[INSN_UID (get_last_insn ())]
- + get_prologue_size ());
- /* END CYGNUS LOCAL */
-
- current_function_anonymous_args = 0;
- after_arm_reorg = 0;
-}
-
-static void
-emit_multi_reg_push (mask)
- int mask;
-{
- int num_regs = 0;
- int i, j;
- rtx par;
-
- for (i = 0; i < 16; i++)
- if (mask & (1 << i))
- num_regs++;
-
- if (num_regs == 0 || num_regs > 16)
- abort ();
-
- par = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num_regs));
-
- for (i = 0; i < 16; i++)
- {
- if (mask & (1 << i))
- {
- XVECEXP (par, 0, 0)
- = gen_rtx (SET, VOIDmode, gen_rtx (MEM, BLKmode,
- gen_rtx (PRE_DEC, BLKmode,
- stack_pointer_rtx)),
- gen_rtx (UNSPEC, BLKmode,
- gen_rtvec (1, gen_rtx (REG, SImode, i)),
- 2));
- break;
- }
- }
-
- for (j = 1, i++; j < num_regs; i++)
- {
- if (mask & (1 << i))
- {
- XVECEXP (par, 0, j)
- = gen_rtx (USE, VOIDmode, gen_rtx (REG, SImode, i));
- j++;
- }
- }
-
- emit_insn (par);
-}
-
-static void
-emit_sfm (base_reg, count)
- int base_reg;
- int count;
-{
- rtx par;
- int i;
-
- par = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count));
-
- XVECEXP (par, 0, 0) = gen_rtx (SET, VOIDmode,
- gen_rtx (MEM, BLKmode,
- gen_rtx (PRE_DEC, BLKmode,
- stack_pointer_rtx)),
- gen_rtx (UNSPEC, BLKmode,
- gen_rtvec (1, gen_rtx (REG, XFmode,
- base_reg++)),
- 2));
- for (i = 1; i < count; i++)
- XVECEXP (par, 0, i) = gen_rtx (USE, VOIDmode,
- gen_rtx (REG, XFmode, base_reg++));
-
- emit_insn (par);
-}
-
-void
-arm_expand_prologue ()
-{
- int reg;
- rtx amount = GEN_INT (-(get_frame_size ()
- + current_function_outgoing_args_size));
- int live_regs_mask = 0;
- int store_arg_regs = 0;
- /* CYGNUS LOCAL unknown */
- int sp_overflow_check = 0;
- /* END CYGNUS LOCAL */
- int volatile_func = (optimize > 0
- && TREE_THIS_VOLATILE (current_function_decl));
-
- /* Naked functions don't have prologues. */
- if (arm_naked_function_p (current_function_decl))
- return;
-
- if (current_function_anonymous_args && current_function_pretend_args_size)
- store_arg_regs = 1;
-
- if (! volatile_func)
- for (reg = 0; reg <= 10; reg++)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- live_regs_mask |= 1 << reg;
-
- if (! volatile_func && regs_ever_live[14])
- live_regs_mask |= 0x4000;
-
- if (frame_pointer_needed)
- {
- live_regs_mask |= 0xD800;
- emit_insn (gen_movsi (gen_rtx (REG, SImode, 12),
- stack_pointer_rtx));
- }
-
- if (current_function_pretend_args_size)
- {
- if (store_arg_regs)
- emit_multi_reg_push ((0xf0 >> (current_function_pretend_args_size / 4))
- & 0xf);
- else
- emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
- GEN_INT (-current_function_pretend_args_size)));
- }
-
- if (live_regs_mask)
- {
- /* If we have to push any regs, then we must push lr as well, or
- we won't get a proper return. */
- live_regs_mask |= 0x4000;
- emit_multi_reg_push (live_regs_mask);
- }
-
- /* For now the integer regs are still pushed in output_func_epilogue (). */
-
- if (! volatile_func)
- {
- if (arm_fpu_arch == FP_SOFT2)
- {
- for (reg = 23; reg > 15; reg--)
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- emit_insn (gen_rtx (SET, VOIDmode,
- gen_rtx (MEM, XFmode,
- gen_rtx (PRE_DEC, XFmode,
- stack_pointer_rtx)),
- gen_rtx (REG, XFmode, reg)));
- }
- else
- {
- int start_reg = 23;
-
- for (reg = 23; reg > 15; reg--)
- {
- if (regs_ever_live[reg] && ! call_used_regs[reg])
- {
- if (start_reg - reg == 3)
- {
- emit_sfm (reg, 4);
- start_reg = reg - 1;
- }
- }
- else
- {
- if (start_reg != reg)
- emit_sfm (reg + 1, start_reg - reg);
- start_reg = reg - 1;
- }
- }
-
- if (start_reg != reg)
- emit_sfm (reg + 1, start_reg - reg);
- }
- }
-
- if (frame_pointer_needed)
- emit_insn (gen_addsi3 (hard_frame_pointer_rtx, gen_rtx (REG, SImode, 12),
- (GEN_INT
- (-(4 + current_function_pretend_args_size)))));
-
- /* CYGNUS LOCAL */
- /* The arm vxworks group wants the instructions setting up the frame */
- /* to be unscheduled or unbroken */
- if (TARGET_NO_SCHED_PRO)
- emit_insn (gen_blockage ());
-
- /* Checking whether the frame amount is zero is not a good enough
- marker for deciding whether we need to check for stack overflow.
- We are interested in whether anything has/is being stored on the
- stack. Since GCC always creates the frame structure at the
- moment, this is always true. When we add a machine specific flag
- to allow leaf functions to avoid creating an entry frame we will
- need to make this conditional (NOTE: This will probably not be a
- standard feature, since the debugging world may assume that EVERY
- function has a frame, whereas it is not actually a requirement of
- the APCS). */
- if (TARGET_APCS_STACK)
- {
- int bound = get_frame_size ();
-
- /* The software stack overflow handler has two forms. The first
- is for small stack frames, where 256bytes or less of stack is
- required:
- __rt_stkovf_split_small
-
- The second is for bigger stack frames of more than 256bytes:
- __rt_stkovf_split_big
-
- The run-time *MUST* provide these routines when software
- stack checking is enabled. After calling one of the above
- routines the fp/r11 and sp/r12 registers do not necessarily
- point into the same stack chunk. This means that arguments
- passed on the stack *MUST* be addressed by offsets from
- fp/r11 and *NOT* from sp/r13. The sl/r10 register should
- always be at the bottom of the current stack chunk, with at
- least 256bytes of stack available beneath it (this allows for
- leaf functions that use less than 256bytes of stack to avoid
- the stack limit check, aswell as giving the overflow
- functions some workspace).
-
- NOTE: The stack-checking APCS does *NOT* cope with alloca(),
- since the amount of stack required is not known until
- run-time. Similarly the use of run-time sized vectors causes
- the same problem. This means that the handler routines
- should only be used for raising aborts at the moment, and not
- for providing stack chunk extension.
-
- TODO: Check code generated for late stack pointer
- modifications. The APCS allows for these, but a similar
- stack overflow check and call must be inserted. */
-
- if (bound < 256)
- {
- /* Leaf functions that use less than 256bytes of stack do
- not need to perform a check: */
- if (frame_pointer_needed)
- {
- /* Stop the prologue being re-ordered: */
- emit_insn (gen_blockage ());
- emit_insn (gen_cond_call (stack_pointer_rtx,
- gen_rtx (REG, SImode, 10),
- gen_rtx (SYMBOL_REF, Pmode,
- "*__rt_stkovf_split_small"),
- gen_rtx (LTU, SImode, 24)));
- sp_overflow_check = 1;
- }
- }
- else
- {
- rtx bamount;
-
- if (!frame_pointer_needed)
- abort ();
-
- if (!const_ok_for_arm ((HOST_WIDE_INT) bound))
- {
- /* Find the closest 8bit rotated (by even amount) value
- above bound: */
- int count;
- for (count = 0; ((bound >> count) & ~0xFF); count +=2);
- bound = (bound & (0xFF << count)) + (1 << count);
- }
- bamount = GEN_INT (- bound);
-
- emit_insn (gen_blockage ()); /* stop prologue being re-ordered */
- emit_insn (gen_addsi3 (gen_rtx (REG, SImode, 12),
- stack_pointer_rtx, bamount));
- emit_insn (gen_cond_call (gen_rtx (REG, SImode, 12),
- gen_rtx (REG, SImode, 10),
- gen_rtx (SYMBOL_REF, Pmode,
- "*__rt_stkovf_split_big"),
- gen_rtx (LTU, SImode, 24)));
- sp_overflow_check = 1;
- }
- }
- /* END CYGNUS LOCAL */
-
- if (amount != const0_rtx)
- {
- emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, amount));
- emit_insn (gen_rtx (CLOBBER, VOIDmode,
- gen_rtx (MEM, BLKmode, stack_pointer_rtx)));
- }
-
- /* CYGNUS LOCAL */
- /* If we are profiling, make sure no instructions are scheduled before
- the call to mcount. Similarly do not allow instructions
- to be moved to before the stack overflow check or if the user has
- requested no scheduling in the prolog. */
- if (profile_flag || profile_block_flag || sp_overflow_check)
- emit_insn (gen_blockage ());
- /* END CYGNUS LOCAL */
-}
-
-
-/* If CODE is 'd', then the X is a condition operand and the instruction
- should only be executed if the condition is true.
- if CODE is 'D', then the X is a condition operand and the instruction
- should only be executed if the condition is false: however, if the mode
- of the comparison is CCFPEmode, then always execute the instruction -- we
- do this because in these circumstances !GE does not necessarily imply LT;
- in these cases the instruction pattern will take care to make sure that
- an instruction containing %d will follow, thereby undoing the effects of
- doing this instruction unconditionally.
- If CODE is 'N' then X is a floating point operand that must be negated
- before output.
- If CODE is 'B' then output a bitwise inverted value of X (a const int).
- If X is a REG and CODE is `M', output a ldm/stm style multi-reg. */
-
-void
-arm_print_operand (stream, x, code)
- FILE *stream;
- rtx x;
- int code;
-{
- switch (code)
- {
- case '@':
- fputs (ASM_COMMENT_START, stream);
- return;
-
- case '|':
- fputs (REGISTER_PREFIX, stream);
- return;
-
- case '?':
- if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4)
- fputs (arm_condition_codes[arm_current_cc], stream);
- return;
-
- case 'N':
- {
- REAL_VALUE_TYPE r;
- REAL_VALUE_FROM_CONST_DOUBLE (r, x);
- r = REAL_VALUE_NEGATE (r);
- fprintf (stream, "%s", fp_const_from_val (&r));
- }
- return;
-
- case 'B':
- if (GET_CODE (x) == CONST_INT)
- fprintf (stream,
-#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
- "%d",
-#else
- "%ld",
-#endif
- ARM_SIGN_EXTEND (~ INTVAL (x)));
- else
- {
- putc ('~', stream);
- output_addr_const (stream, x);
- }
- return;
-
- case 'i':
- fprintf (stream, "%s", arithmetic_instr (x, 1));
- return;
-
- case 'I':
- fprintf (stream, "%s", arithmetic_instr (x, 0));
- return;
-
- case 'S':
- {
- HOST_WIDE_INT val;
- char *shift = shift_op (x, &val);
-
- if (shift)
- {
- fprintf (stream, ", %s ", shift_op (x, &val));
- if (val == -1)
- arm_print_operand (stream, XEXP (x, 1), 0);
- else
- fprintf (stream,
-#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
- "#%d",
-#else
- "#%ld",
-#endif
- val);
- }
- }
- return;
-
- case 'Q':
- if (REGNO (x) > 15)
- abort ();
- fputs (REGISTER_PREFIX, stream);
- fputs (reg_names[REGNO (x) + (WORDS_BIG_ENDIAN ? 1 : 0)], stream);
- return;
-
- case 'R':
- if (REGNO (x) > 15)
- abort ();
- fputs (REGISTER_PREFIX, stream);
- fputs (reg_names[REGNO (x) + (WORDS_BIG_ENDIAN ? 0 : 1)], stream);
- return;
-
- case 'm':
- fputs (REGISTER_PREFIX, stream);
- if (GET_CODE (XEXP (x, 0)) == REG)
- fputs (reg_names[REGNO (XEXP (x, 0))], stream);
- else
- fputs (reg_names[REGNO (XEXP (XEXP (x, 0), 0))], stream);
- return;
-
- case 'M':
- fprintf (stream, "{%s%s-%s%s}", REGISTER_PREFIX, reg_names[REGNO (x)],
- REGISTER_PREFIX, reg_names[REGNO (x) - 1
- + ((GET_MODE_SIZE (GET_MODE (x))
- + GET_MODE_SIZE (SImode) - 1)
- / GET_MODE_SIZE (SImode))]);
- return;
-
- case 'd':
- if (x)
- fputs (arm_condition_codes[get_arm_condition_code (x)],
- stream);
- return;
-
- case 'D':
- if (x)
- fputs (arm_condition_codes[ARM_INVERSE_CONDITION_CODE
- (get_arm_condition_code (x))],
- stream);
- return;
-
- default:
- if (x == 0)
- abort ();
-
- if (GET_CODE (x) == REG)
- {
- fputs (REGISTER_PREFIX, stream);
- fputs (reg_names[REGNO (x)], stream);
- }
- else if (GET_CODE (x) == MEM)
- {
- output_memory_reference_mode = GET_MODE (x);
- output_address (XEXP (x, 0));
- }
- else if (GET_CODE (x) == CONST_DOUBLE)
- fprintf (stream, "#%s", fp_immediate_constant (x));
- else if (GET_CODE (x) == NEG)
- abort (); /* This should never happen now. */
- else
- {
- fputc ('#', stream);
- output_addr_const (stream, x);
- }
- }
-}
-
-/* CYGNUS LOCAL unknown */
-/* Increase the `arm_text_location' by AMOUNT if we're in the text
- segment. */
-
-void
-arm_increase_location (amount)
- int amount;
-{
- if (in_text_section ())
- arm_text_location += amount;
-}
-
-
-/* Output a label definition. If this label is within the .text segment, it
- is stored in OFFSET_TABLE, to be used when building `llc' instructions.
- Maybe GCC remembers names not starting with a `*' for a long time, but this
- is a minority anyway, so we just make a copy. Do not store the leading `*'
- if the name starts with one. */
-
-void
-arm_asm_output_label (stream, name)
- FILE * stream;
- char * name;
-{
- char * real_name;
- char * s;
- struct label_offset *cur;
- int hash = 0;
-
- assemble_name (stream, name);
- fputs (":\n", stream);
-
- if (! in_text_section ())
- return;
-
- if (name[0] == '*')
- {
- real_name = xmalloc (1 + strlen (&name[1]));
- strcpy (real_name, &name[1]);
- }
- else
- {
- real_name = xmalloc (2 + strlen (name));
- strcpy (real_name, user_label_prefix);
- strcat (real_name, name);
- }
- for (s = real_name; *s; s++)
- hash += *s;
-
- hash = hash % LABEL_HASH_SIZE;
- cur = (struct label_offset *) xmalloc (sizeof (struct label_offset));
- cur->name = real_name;
- cur->offset = arm_text_location;
- cur->cdr = offset_table[hash];
- offset_table[hash] = cur;
-}
-/* END CYGNUS LOCAL */
-
-/* A finite state machine takes care of noticing whether or not instructions
- can be conditionally executed, and thus decrease execution time and code
- size by deleting branch instructions. The fsm is controlled by
- final_prescan_insn, and controls the actions of ASM_OUTPUT_OPCODE. */
-
-/* The state of the fsm controlling condition codes are:
- 0: normal, do nothing special
- 1: make ASM_OUTPUT_OPCODE not output this instruction
- 2: make ASM_OUTPUT_OPCODE not output this instruction
- 3: make instructions conditional
- 4: make instructions conditional
-
- State transitions (state->state by whom under condition):
- 0 -> 1 final_prescan_insn if the `target' is a label
- 0 -> 2 final_prescan_insn if the `target' is an unconditional branch
- 1 -> 3 ASM_OUTPUT_OPCODE after not having output the conditional branch
- 2 -> 4 ASM_OUTPUT_OPCODE after not having output the conditional branch
- 3 -> 0 ASM_OUTPUT_INTERNAL_LABEL if the `target' label is reached
- (the target label has CODE_LABEL_NUMBER equal to arm_target_label).
- 4 -> 0 final_prescan_insn if the `target' unconditional branch is reached
- (the target insn is arm_target_insn).
-
- If the jump clobbers the conditions then we use states 2 and 4.
-
- A similar thing can be done with conditional return insns.
-
- XXX In case the `target' is an unconditional branch, this conditionalising
- of the instructions always reduces code size, but not always execution
- time. But then, I want to reduce the code size to somewhere near what
- /bin/cc produces. */
-
-/* Returns the index of the ARM condition code string in
- `arm_condition_codes'. COMPARISON should be an rtx like
- `(eq (...) (...))'. */
-
-static enum arm_cond_code
-get_arm_condition_code (comparison)
- rtx comparison;
-{
- enum machine_mode mode = GET_MODE (XEXP (comparison, 0));
- register int code;
- register enum rtx_code comp_code = GET_CODE (comparison);
-
- if (GET_MODE_CLASS (mode) != MODE_CC)
- mode = SELECT_CC_MODE (comp_code, XEXP (comparison, 0),
- XEXP (comparison, 1));
-
- switch (mode)
- {
- case CC_DNEmode: code = ARM_NE; goto dominance;
- case CC_DEQmode: code = ARM_EQ; goto dominance;
- case CC_DGEmode: code = ARM_GE; goto dominance;
- case CC_DGTmode: code = ARM_GT; goto dominance;
- case CC_DLEmode: code = ARM_LE; goto dominance;
- case CC_DLTmode: code = ARM_LT; goto dominance;
- case CC_DGEUmode: code = ARM_CS; goto dominance;
- case CC_DGTUmode: code = ARM_HI; goto dominance;
- case CC_DLEUmode: code = ARM_LS; goto dominance;
- case CC_DLTUmode: code = ARM_CC;
-
- dominance:
- if (comp_code != EQ && comp_code != NE)
- abort ();
-
- if (comp_code == EQ)
- return ARM_INVERSE_CONDITION_CODE (code);
- return code;
-
- case CC_NOOVmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case GE: return ARM_PL;
- case LT: return ARM_MI;
- default: abort ();
- }
-
- case CC_Zmode:
- case CCFPmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- default: abort ();
- }
-
- case CCFPEmode:
- switch (comp_code)
- {
- case GE: return ARM_GE;
- case GT: return ARM_GT;
- case LE: return ARM_LS;
- case LT: return ARM_MI;
- default: abort ();
- }
-
- case CC_SWPmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case GE: return ARM_LE;
- case GT: return ARM_LT;
- case LE: return ARM_GE;
- case LT: return ARM_GT;
- case GEU: return ARM_LS;
- case GTU: return ARM_CC;
- case LEU: return ARM_CS;
- case LTU: return ARM_HI;
- default: abort ();
- }
-
- case CC_Cmode:
- switch (comp_code)
- {
- case LTU: return ARM_CS;
- case GEU: return ARM_CC;
- default: abort ();
- }
-
- case CCmode:
- switch (comp_code)
- {
- case NE: return ARM_NE;
- case EQ: return ARM_EQ;
- case GE: return ARM_GE;
- case GT: return ARM_GT;
- case LE: return ARM_LE;
- case LT: return ARM_LT;
- case GEU: return ARM_CS;
- case GTU: return ARM_HI;
- case LEU: return ARM_LS;
- case LTU: return ARM_CC;
- default: abort ();
- }
-
- default: abort ();
- }
-
- abort ();
-}
-
-
-void
-final_prescan_insn (insn, opvec, noperands)
- rtx insn;
- rtx *opvec;
- int noperands;
-{
- /* BODY will hold the body of INSN. */
- register rtx body = PATTERN (insn);
-
- /* This will be 1 if trying to repeat the trick, and things need to be
- reversed if it appears to fail. */
- int reverse = 0;
-
- /* JUMP_CLOBBERS will be one implies that the conditions if a branch is
- taken are clobbered, even if the rtl suggests otherwise. It also
- means that we have to grub around within the jump expression to find
- out what the conditions are when the jump isn't taken. */
- int jump_clobbers = 0;
-
- /* If we start with a return insn, we only succeed if we find another one. */
- int seeking_return = 0;
-
- /* START_INSN will hold the insn from where we start looking. This is the
- first insn after the following code_label if REVERSE is true. */
- rtx start_insn = insn;
-
- /* If in state 4, check if the target branch is reached, in order to
- change back to state 0. */
- if (arm_ccfsm_state == 4)
- {
- if (insn == arm_target_insn)
- {
- arm_target_insn = NULL;
- arm_ccfsm_state = 0;
- }
- return;
- }
-
- /* If in state 3, it is possible to repeat the trick, if this insn is an
- unconditional branch to a label, and immediately following this branch
- is the previous target label which is only used once, and the label this
- branch jumps to is not too far off. */
- if (arm_ccfsm_state == 3)
- {
- if (simplejump_p (insn))
- {
- start_insn = next_nonnote_insn (start_insn);
- if (GET_CODE (start_insn) == BARRIER)
- {
- /* XXX Isn't this always a barrier? */
- start_insn = next_nonnote_insn (start_insn);
- }
- if (GET_CODE (start_insn) == CODE_LABEL
- && CODE_LABEL_NUMBER (start_insn) == arm_target_label
- && LABEL_NUSES (start_insn) == 1)
- reverse = TRUE;
- else
- return;
- }
- else if (GET_CODE (body) == RETURN)
- {
- start_insn = next_nonnote_insn (start_insn);
- if (GET_CODE (start_insn) == BARRIER)
- start_insn = next_nonnote_insn (start_insn);
- if (GET_CODE (start_insn) == CODE_LABEL
- && CODE_LABEL_NUMBER (start_insn) == arm_target_label
- && LABEL_NUSES (start_insn) == 1)
- {
- reverse = TRUE;
- seeking_return = 1;
- }
- else
- return;
- }
- else
- return;
- }
-
- if (arm_ccfsm_state != 0 && !reverse)
- abort ();
- if (GET_CODE (insn) != JUMP_INSN)
- return;
-
- /* This jump might be paralleled with a clobber of the condition codes
- the jump should always come first */
- if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
- body = XVECEXP (body, 0, 0);
-
-#if 0
- /* If this is a conditional return then we don't want to know */
- if (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
- && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
- && (GET_CODE (XEXP (SET_SRC (body), 1)) == RETURN
- || GET_CODE (XEXP (SET_SRC (body), 2)) == RETURN))
- return;
-#endif
-
- if (reverse
- || (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
- && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
- {
- int insns_skipped;
- int fail = FALSE, succeed = FALSE;
- /* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
- int then_not_else = TRUE;
- rtx this_insn = start_insn, label = 0;
-
- if (get_attr_conds (insn) == CONDS_JUMP_CLOB)
- {
- /* The code below is wrong for these, and I haven't time to
- fix it now. So we just do the safe thing and return. This
- whole function needs re-writing anyway. */
- jump_clobbers = 1;
- return;
- }
-
- /* Register the insn jumped to. */
- if (reverse)
- {
- if (!seeking_return)
- label = XEXP (SET_SRC (body), 0);
- }
- else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
- label = XEXP (XEXP (SET_SRC (body), 1), 0);
- else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
- {
- label = XEXP (XEXP (SET_SRC (body), 2), 0);
- then_not_else = FALSE;
- }
- else if (GET_CODE (XEXP (SET_SRC (body), 1)) == RETURN)
- seeking_return = 1;
- else if (GET_CODE (XEXP (SET_SRC (body), 2)) == RETURN)
- {
- seeking_return = 1;
- then_not_else = FALSE;
- }
- else
- abort ();
-
- /* See how many insns this branch skips, and what kind of insns. If all
- insns are okay, and the label or unconditional branch to the same
- label is not too far away, succeed. */
- for (insns_skipped = 0;
- !fail && !succeed && insns_skipped++ < max_insns_skipped;)
- {
- rtx scanbody;
-
- this_insn = next_nonnote_insn (this_insn);
- if (!this_insn)
- break;
-
- switch (GET_CODE (this_insn))
- {
- case CODE_LABEL:
- /* Succeed if it is the target label, otherwise fail since
- control falls in from somewhere else. */
- if (this_insn == label)
- {
- if (jump_clobbers)
- {
- arm_ccfsm_state = 2;
- this_insn = next_nonnote_insn (this_insn);
- }
- else
- arm_ccfsm_state = 1;
- succeed = TRUE;
- }
- else
- fail = TRUE;
- break;
-
- case BARRIER:
- /* Succeed if the following insn is the target label.
- Otherwise fail.
- If return insns are used then the last insn in a function
- will be a barrier. */
- this_insn = next_nonnote_insn (this_insn);
- if (this_insn && this_insn == label)
- {
- if (jump_clobbers)
- {
- arm_ccfsm_state = 2;
- this_insn = next_nonnote_insn (this_insn);
- }
- else
- arm_ccfsm_state = 1;
- succeed = TRUE;
- }
- else
- fail = TRUE;
- break;
-
- case CALL_INSN:
- /* If using 32-bit addresses the cc is not preserved over
- calls */
- if (TARGET_APCS_32)
- {
- /* Succeed if the following insn is the target label,
- or if the following two insns are a barrier and
- the target label. */
- this_insn = next_nonnote_insn (this_insn);
- if (this_insn && GET_CODE (this_insn) == BARRIER)
- this_insn = next_nonnote_insn (this_insn);
-
- if (this_insn && this_insn == label
- && insns_skipped < max_insns_skipped)
- {
- if (jump_clobbers)
- {
- arm_ccfsm_state = 2;
- this_insn = next_nonnote_insn (this_insn);
- }
- else
- arm_ccfsm_state = 1;
- succeed = TRUE;
- }
- else
- fail = TRUE;
- }
- break;
-
- case JUMP_INSN:
- /* If this is an unconditional branch to the same label, succeed.
- If it is to another label, do nothing. If it is conditional,
- fail. */
- /* XXX Probably, the tests for SET and the PC are unnecessary. */
-
- scanbody = PATTERN (this_insn);
- if (GET_CODE (scanbody) == SET
- && GET_CODE (SET_DEST (scanbody)) == PC)
- {
- if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
- && XEXP (SET_SRC (scanbody), 0) == label && !reverse)
- {
- arm_ccfsm_state = 2;
- succeed = TRUE;
- }
- else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
- fail = TRUE;
- }
- /* Fail if a conditional return is undesirable (eg on a
- StrongARM), but still allow this if optimizing for size. */
- else if (GET_CODE (scanbody) == RETURN
- && ! use_return_insn (TRUE)
- && ! optimize_size)
- fail = TRUE;
- else if (GET_CODE (scanbody) == RETURN
- && seeking_return)
- {
- arm_ccfsm_state = 2;
- succeed = TRUE;
- }
- else if (GET_CODE (scanbody) == PARALLEL)
- {
- switch (get_attr_conds (this_insn))
- {
- case CONDS_NOCOND:
- break;
- default:
- fail = TRUE;
- break;
- }
- }
- break;
-
- case INSN:
- /* Instructions using or affecting the condition codes make it
- fail. */
- scanbody = PATTERN (this_insn);
- if (! (GET_CODE (scanbody) == SET
- || GET_CODE (scanbody) == PARALLEL)
- || get_attr_conds (this_insn) != CONDS_NOCOND)
- fail = TRUE;
- break;
-
- default:
- break;
- }
- }
- if (succeed)
- {
- if ((!seeking_return) && (arm_ccfsm_state == 1 || reverse))
- arm_target_label = CODE_LABEL_NUMBER (label);
- else if (seeking_return || arm_ccfsm_state == 2)
- {
- while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
- {
- this_insn = next_nonnote_insn (this_insn);
- if (this_insn && (GET_CODE (this_insn) == BARRIER
- || GET_CODE (this_insn) == CODE_LABEL))
- abort ();
- }
- if (!this_insn)
- {
- /* Oh, dear! we ran off the end.. give up */
- recog (PATTERN (insn), insn, NULL_PTR);
- arm_ccfsm_state = 0;
- arm_target_insn = NULL;
- return;
- }
- arm_target_insn = this_insn;
- }
- else
- abort ();
- if (jump_clobbers)
- {
- if (reverse)
- abort ();
- arm_current_cc =
- get_arm_condition_code (XEXP (XEXP (XEXP (SET_SRC (body),
- 0), 0), 1));
- if (GET_CODE (XEXP (XEXP (SET_SRC (body), 0), 0)) == AND)
- arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
- if (GET_CODE (XEXP (SET_SRC (body), 0)) == NE)
- arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
- }
- else
- {
- /* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
- what it was. */
- if (!reverse)
- arm_current_cc = get_arm_condition_code (XEXP (SET_SRC (body),
- 0));
- }
-
- if (reverse || then_not_else)
- arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
- }
- /* restore recog_operand (getting the attributes of other insns can
- destroy this array, but final.c assumes that it remains intact
- across this call; since the insn has been recognized already we
- call recog direct). */
- recog (PATTERN (insn), insn, NULL_PTR);
- }
-}
-
-#ifdef AOF_ASSEMBLER
-/* Special functions only needed when producing AOF syntax assembler. */
-
-rtx aof_pic_label = NULL_RTX;
-struct pic_chain
-{
- struct pic_chain *next;
- char *symname;
-};
-
-static struct pic_chain *aof_pic_chain = NULL;
-
-rtx
-aof_pic_entry (x)
- rtx x;
-{
- struct pic_chain **chainp;
- int offset;
-
- if (aof_pic_label == NULL_RTX)
- {
- /* This needs to persist throughout the compilation. */
- end_temporary_allocation ();
- aof_pic_label = gen_rtx (SYMBOL_REF, Pmode, "x$adcons");
- resume_temporary_allocation ();
- }
-
- for (offset = 0, chainp = &aof_pic_chain; *chainp;
- offset += 4, chainp = &(*chainp)->next)
- if ((*chainp)->symname == XSTR (x, 0))
- return plus_constant (aof_pic_label, offset);
-
- *chainp = (struct pic_chain *) xmalloc (sizeof (struct pic_chain));
- (*chainp)->next = NULL;
- (*chainp)->symname = XSTR (x, 0);
- return plus_constant (aof_pic_label, offset);
-}
-
-void
-aof_dump_pic_table (f)
- FILE *f;
-{
- struct pic_chain *chain;
-
- if (aof_pic_chain == NULL)
- return;
-
- fprintf (f, "\tAREA |%s$$adcons|, BASED %s%s\n",
- reg_names[PIC_OFFSET_TABLE_REGNUM], REGISTER_PREFIX,
- reg_names[PIC_OFFSET_TABLE_REGNUM]);
- fputs ("|x$adcons|\n", f);
-
- for (chain = aof_pic_chain; chain; chain = chain->next)
- {
- fputs ("\tDCD\t", f);
- assemble_name (f, chain->symname);
- fputs ("\n", f);
- }
-}
-
-int arm_text_section_count = 1;
-
-char *
-aof_text_section ()
-{
- static char buf[100];
- sprintf (buf, "\tAREA |C$$code%d|, CODE, READONLY",
- arm_text_section_count++);
- if (flag_pic)
- strcat (buf, ", PIC, REENTRANT");
- return buf;
-}
-
-static int arm_data_section_count = 1;
-
-char *
-aof_data_section ()
-{
- static char buf[100];
- sprintf (buf, "\tAREA |C$$data%d|, DATA", arm_data_section_count++);
- return buf;
-}
-
-/* The AOF assembler is religiously strict about declarations of
- imported and exported symbols, so that it is impossible to declare
- a function as imported near the beginning of the file, and then to
- export it later on. It is, however, possible to delay the decision
- until all the functions in the file have been compiled. To get
- around this, we maintain a list of the imports and exports, and
- delete from it any that are subsequently defined. At the end of
- compilation we spit the remainder of the list out before the END
- directive. */
-
-struct import
-{
- struct import *next;
- char *name;
-};
-
-static struct import *imports_list = NULL;
-
-void
-aof_add_import (name)
- char *name;
-{
- struct import *new;
-
- for (new = imports_list; new; new = new->next)
- if (new->name == name)
- return;
-
- new = (struct import *) xmalloc (sizeof (struct import));
- new->next = imports_list;
- imports_list = new;
- new->name = name;
-}
-
-void
-aof_delete_import (name)
- char *name;
-{
- struct import **old;
-
- for (old = &imports_list; *old; old = & (*old)->next)
- {
- if ((*old)->name == name)
- {
- *old = (*old)->next;
- return;
- }
- }
-}
-
-int arm_main_function = 0;
-
-void
-aof_dump_imports (f)
- FILE *f;
-{
- /* The AOF assembler needs this to cause the startup code to be extracted
- from the library. Brining in __main causes the whole thing to work
- automagically. */
- if (arm_main_function)
- {
- text_section ();
- fputs ("\tIMPORT __main\n", f);
- fputs ("\tDCD __main\n", f);
- }
-
- /* Now dump the remaining imports. */
- while (imports_list)
- {
- fprintf (f, "\tIMPORT\t");
- assemble_name (f, imports_list->name);
- fputc ('\n', f);
- imports_list = imports_list->next;
- }
-}
-#endif /* AOF_ASSEMBLER */
-
-/* CYGNUS LOCAL */
-
-/* Return non-zero if X is a symbolic operand (contains a SYMBOL_REF). */
-int
-symbolic_operand (mode, x)
- enum machine_mode mode;
- rtx x;
-{
- switch (GET_CODE (x))
- {
- case CONST_DOUBLE:
- case CONST:
- case MEM:
- case PLUS:
- return symbolic_operand (mode, XEXP (x, 0));
- case SYMBOL_REF:
- case LABEL_REF:
- return 1;
- default:
- return 0;
- }
-}
-
-/* Handle a special case when computing the offset
- of an argument from the frame pointer. */
-int
-arm_debugger_arg_offset (value, addr)
- int value;
- struct rtx_def * addr;
-{
- rtx insn;
-
- /* We are only interested if dbxout_parms() failed to compute the offset. */
- if (value != 0)
- return 0;
-
- /* We can only cope with the case where the address is held in a register. */
- if (GET_CODE (addr) != REG)
- return 0;
-
- /* If we are using the frame pointer to point at the argument, then an offset of 0 is correct. */
- if (REGNO (addr) == HARD_FRAME_POINTER_REGNUM)
- return 0;
-
- /* Oh dear. The argument is pointed to by a register rather
- than being held in a register, or being stored at a known
- offset from the frame pointer. Since GDB only understands
- those two kinds of argument we must translate the address
- held in the register into an offset from the frame pointer.
- We do this by searching through the insns for the function
- looking to see where this register gets its value. If the
- register is initialised from the frame pointer plus an offset
- then we are in luck and we can continue, otherwise we give up.
-
- This code is exercised by producing debugging information
- for a function with arguments like this:
-
- double func (double a, double b, int c, double d) {return d;}
-
- Without this code the stab for parameter 'd' will be set to
- an offset of 0 from the frame pointer, rather than 8. */
-
- /* The if() statement says:
-
- If the insn is a normal instruction
- and if the insn is setting the value in a register
- and if the register being set is the register holding the address of the argument
- and if the address is computing by an addition
- that involves adding to a register
- which is the frame pointer
- a constant integer
-
- then... */
-
- for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
- {
- if ( GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SET
- && REGNO (XEXP (PATTERN (insn), 0)) == REGNO (addr)
- && GET_CODE (XEXP (PATTERN (insn), 1)) == PLUS
- && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 0)) == REG
- && REGNO (XEXP (XEXP (PATTERN (insn), 1), 0)) == HARD_FRAME_POINTER_REGNUM
- && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 1)) == CONST_INT
- )
- {
- value = INTVAL (XEXP (XEXP (PATTERN (insn), 1), 1));
-
- break;
- }
- }
-
- if (value == 0)
- {
- warning ("Unable to compute real location of stacked parameter" );
- value = 8; /* XXX magic hack */
- }
-
- return value;
-}
-
-/* Return nonzero if this insn is a call insn. */
-
-static int
-is_call_insn (insn)
- rtx insn;
-{
- if (GET_CODE (insn) == CALL_INSN)
- return 1;
-
- if (GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) == SEQUENCE
- && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
- return 1;
-
- return 0;
-}
-
-/* Return nonzero if this insn, which is known to occur after a call insn,
- will not stop the call from being interpreted as a tail call. */
-
-static int
-is_safe_after_call_insn (insn)
- rtx insn;
-{
- if (GET_CODE (insn) == NOTE)
- return 1;
-
- if (GET_CODE (insn) == INSN)
- {
- rtx pattern = PATTERN (insn);
-
- if (GET_CODE (pattern) == USE)
- return 1;
-
- /* Special case: Assignment of the result of the call that
- has just been made to the return value for this function
- will result in a move from the result register to itself.
- Detect this case and rely upon the fact that a later pass
- will eliminate this redundant move. */
-
- if (GET_CODE (pattern) == SET
- && GET_CODE (SET_SRC (pattern)) == REG
- && GET_CODE (SET_DEST (pattern)) == REG
- && REGNO (SET_SRC (pattern)) == REGNO (SET_DEST (pattern)))
- return 1;
- }
-
- return 0;
-}
-
-/* Return nonzero if this function is suitable for a tail call optimisation. */
-
-int
-can_tail_call_optimise ()
-{
- rtx insn;
- int found_call = 0;
-
- /* Functions that need frames cannot have tail call optimisations applied. */
- if (get_frame_size() > 0
- || current_function_anonymous_args)
- return 0;
-
- /* Functions that perform more than one function call,
- or that perform some computation after their only
- function call cannot be optimised either. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- {
- if (is_call_insn (insn))
- {
- if (found_call)
- return 0;
- else
- found_call = 1;
- }
- else if (found_call)
- {
- if (! is_safe_after_call_insn (insn))
- return 0;
- }
- }
-
- /* Repeat the tests for the insns in the epilogue list. */
- for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
- {
- if (is_call_insn (insn))
- {
- if (found_call)
- return 0;
- else
- found_call = 1;
- }
- else if (found_call)
- {
- if (! is_safe_after_call_insn (insn))
- return 0;
- }
- }
-
- return found_call;
-}
-/* END CYGNUS LOCAL */
-
-/* CYGNUS LOCAL nickc */
-int
-ok_integer_or_other (operand)
- rtx operand;
-{
- if (GET_CODE (operand) == CONST_INT)
- {
- if (const_ok_for_arm (INTVAL (operand))
- || const_ok_for_arm (~INTVAL (operand)))
- return 1;
- return 0;
- }
-
- return 1;
-}
-/* END CYGNUS LOCAL */