/* Definitions of target machine for GNU compiler, for Zilog Z8000 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. Contributed by Steve Chamberlain (sac@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #define TARGET_Z8000 #define TARGET_SEGMENTED 1 /* Names to predefine in the preprocessor for this target machine. */ #define CPP_PREDEFINES "-D__Z8000__ -Dz8000" /* Write out defines which depend on the compilation options */ #define NO_BUILTIN_PTRDIFF_TYPE #define NO_BUILTIN_SIZE_TYPE #define SIZE_TYPE (TARGET_BIG ? "long unsigned int" : "unsigned int") #define PTRDIFF_TYPE (TARGET_BIG ? "long int" : "int") #define CPP_SPEC \ "%{mz8001:-D__Z8001__ -D__PTRDIFF_TYPE__=long\\ int} \ %{!mz8001:-D__Z8002__ -D__PTRDIFF_TYPE__=int} \ %{mz8001:-D__SIZE_TYPE__=long\\ unsigned\\ int} \ %{!mz8001:-D__SIZE_TYPE__=unsigned\\ int} \ %{!mint32:-D__INT_MAX__=32767} %{mstd:-D__STD_CALL__} %{mint32:-D__INT_MAX__=2147483647}" #define LINK_SPEC "%{mz8001:-m z8001}" /* Fetch the libraries from the right place */ #define LIB_SPEC "-lc" /* Turn on listing when asked */ #define ASM_SPEC "%{mlist:-ahld}" /* Print subsidiary information on the compiler version in use. */ #define TARGET_VERSION fprintf (stderr, " (z8000)"); /* Run-time compilation parameters selecting different hardware subsets. */ int target_flags; /* This means that the target is a Z8001, so we use `big' mode addressing */ #define TARGET_BIG_BIT 1 #define TARGET_BIG (target_flags & TARGET_BIG_BIT) /* This means that the target is a z8002, so we use `small' mode addressing */ #define TARGET_SMALL (!TARGET_BIG) /* This means that the target is a z8001, and we insert extra to allow objects larger than 64k */ #define TARGET_HUGE_BIT 2 #define TARGET_HUGE (target_flags & TARGET_HUGE_BIT) /* This makes ints 32 bits long by default rather than 16 bits */ #define TARGET_INT32_BIT 4 #define TARGET_INT32 (target_flags & TARGET_INT32_BIT) /* For debugging: print out how big the compiler thinks each instruction is */ #define TARGET_ISIZE_BIT 8 #define TARGET_ISIZE (target_flags & TARGET_ISIZE_BIT) /* output YASM syntax assembler rather than gas syntax */ #define TARGET_YASM_BIT 16 #define TARGET_YASM (target_flags & TARGET_YASM_BIT) /* pass args in registers rather than on the stack */ #define TARGET_REGPARMS_BIT 32 #define TARGET_REGPARMS (target_flags & TARGET_REGPARMS_BIT) /* print .line for each line */ #define TARGET_LINE_BIT 64 #define TARGET_LINE (target_flags & TARGET_LINE_BIT) /* print source for each line */ #define TARGET_SOURCE_BIT 128 #define TARGET_SOURCE (target_flags & TARGET_SOURCE_BIT) /* print defs for each line */ #define TARGET_DEFS_BIT 256 #define TARGET_DEFS (target_flags & TARGET_DEFS_BIT) /* print defs for each line */ #define TARGET_LDIR_BIT 512 #define TARGET_LDIR (target_flags & TARGET_LDIR_BIT) /* Nonzero to align doubles on 64 bit boundaries */ #define TARGET_ALIGN_DOUBLE_BIT 1024 #define TARGET_ALIGN_DOUBLE (target_flags & TARGET_ALIGN_DOUBLE_BIT) /* Nonzero to generate section pic code */ #define TARGET_PIC_BIT 2048 #define TARGET_PIC (target_flags & TARGET_PIC_BIT) /* print defs for each line */ #define TARGET_COMBINE_BIT 4096 #define TARGET_COMBINE (target_flags & TARGET_COMBINE_BIT) /* chose fast code over small code */ #define TARGET_FAST_BIT 8192 #define TARGET_FAST (target_flags & TARGET_FAST_BIT) /* enable djnz insns */ #define TARGET_DJNZ_BIT (1<<14) #define TARGET_DJNZ (target_flags & TARGET_DJNZ_BIT) /* enable byte aligned structures */ #define TARGET_STRUCT_BYTE_ALIGN_BIT (1<<15) #define TARGET_STRUCT_BYTE_ALIGN (target_flags & TARGET_STRUCT_BYTE_ALIGN_BIT) /* enable 64bit long longs */ #define TARGET_TYPE64_BIT (1<<17) #define TARGET_TYPE64 (target_flags & TARGET_TYPE64_BIT) /* enable 64bit doubles */ #define TARGET_TYPED64_BIT (1<<18) #define TARGET_TYPED64 (target_flags & TARGET_TYPED64_BIT) #define TARGET_PCCBITF_BIT (1<<19) #define TARGET_PCCBITF (target_flags & TARGET_PCCBITF_BIT) #define TARGET_STD_FRAME_BIT (1<<20) #define TARGET_STD_FRAME (target_flags & TARGET_STD_FRAME_BIT) #define TARGET_STD_RET_BIT (1<<21) #define TARGET_STD_RET (target_flags & TARGET_STD_RET_BIT) #define TARGET_STD_BIT (1<<22) #define TARGET_STD (target_flags & TARGET_STD_BIT) /* Macro to define tables used to set the flags. This is a list in braces of pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits to set or minus the bits to clear. An empty string NAME is used to identify the default VALUE. */ #define TARGET_SWITCHES \ { { "sb", TARGET_STRUCT_BYTE_ALIGN_BIT}, \ { "nosb", -TARGET_STRUCT_BYTE_ALIGN_BIT}, \ { "pb", TARGET_PCCBITF_BIT}, \ { "nopb", -TARGET_PCCBITF_BIT}, \ { "int32", TARGET_INT32_BIT}, \ { "t64", TARGET_TYPE64_BIT}, \ { "d64", TARGET_TYPED64_BIT}, \ { "int16", -TARGET_INT32_BIT}, \ { "z8001", TARGET_BIG_BIT}, \ { "z8002", -TARGET_BIG_BIT}, \ { "huge", TARGET_HUGE_BIT}, \ { "size", TARGET_ISIZE_BIT}, \ { "yasm", TARGET_YASM_BIT}, \ { "line", TARGET_LINE_BIT}, \ { "source", TARGET_SOURCE_BIT}, \ { "defs", TARGET_DEFS_BIT}, \ { "noyasm", -TARGET_YASM_BIT}, \ { "regparms", TARGET_REGPARMS_BIT}, \ { "ldir", TARGET_LDIR_BIT}, \ { "combine", TARGET_COMBINE_BIT}, \ { "fast", TARGET_FAST_BIT}, \ { "pic", TARGET_PIC_BIT}, \ { "noldir", -TARGET_LDIR_BIT}, \ { "djnz", TARGET_DJNZ_BIT}, \ { "pushargs", -TARGET_REGPARMS_BIT}, \ { "stdfp", TARGET_STD_FRAME_BIT}, \ { "stdret", TARGET_STD_RET_BIT}, \ { "std", TARGET_STD_BIT}, \ { "", TARGET_DEFAULT}} #define TARGET_DEFAULT \ (TARGET_REGPARMS_BIT|TARGET_STRUCT_BYTE_ALIGN_BIT|\ TARGET_TYPE64_BIT|TARGET_TYPED64_BIT) /* -m options which take arguments */ char *call_used_option; char *args_in_option; char *args_mlist; char *fakes_option; #define TARGET_OPTIONS { { "call-used-",&call_used_option},\ { "args-in", &args_in_option}, \ { "fakes-", &fakes_option}, \ { "list", &args_mlist}} /* Do any checking or such that is needed after processing the -m switches. */ #define OVERRIDE_OPTIONS override_options() /* Define this to change the optimizations performed by default. */ #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \ { \ if ((LEVEL) >= 1) \ { \ flag_force_mem = 1; \ flag_omit_frame_pointer = 1; \ } \ } /* Target machine storage layout */ /* Define to use software floating point emulator for REAL_ARITHMETIC and decimal <-> binary conversion. */ #define REAL_ARITHMETIC /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. There are no such instructions on the z8000, but the documentation is little endian for bits. */ #define BITS_BIG_ENDIAN 0 /* Define this if most significant byte of a word is the lowest numbered. This is true on the z8000. */ #define BYTES_BIG_ENDIAN 1 /* Define this if most significant word of a multiword number is lowest numbered. For the z8000 this is true */ #define WORDS_BIG_ENDIAN 1 /* number of bits in an addressable storage unit */ #define BITS_PER_UNIT 8 /* Width in bits of a "word", which is the contents of a machine register. Note that this is not necessarily the width of data type `int'; if using 16-bit ints on a 68000, this would still be 32. But on a machine with 16-bit registers, this would be 16. */ #define BITS_PER_WORD 16 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD 2 /* Define the size of `short' */ #define SHORT_TYPE_SIZE 16 /* Define the size of `int'. */ #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16) /* Define the size of `long'. */ #define LONG_TYPE_SIZE 32 /* Define the size of `long long' */ #define LONG_LONG_TYPE_SIZE (TARGET_TYPE64 ? 64 : 32) /* We only support one size of floating-point number, both `float' and `double' are 32 bits long */ #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE (TARGET_TYPED64 ? 64 : 32) #define LONG_DOUBLE_TYPE_SIZE 64 #define WCHAR_TYPE "short int" #define WCHAR_TYPE_SIZE 16 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */ #define POINTER_SIZE (TARGET_BIG ? 32: 16) /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY 16 /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY 16 /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 16 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 16 /* Every structure's size must be a multiple of this. */ #define STRUCTURE_SIZE_BOUNDARY (TARGET_STRUCT_BYTE_ALIGN ? 8 : 16) /* A bitfield declared as `int' forces `int' alignment for the struct. */ #define PCC_BITFIELD_TYPE_MATTERS (TARGET_PCCBITF) /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT 16 /* Make strings word-aligned so strcpy from constants will be faster. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ (TREE_CODE (EXP) == STRING_CST \ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) /* Make arrays of chars word-aligned for the same reasons. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ (TREE_CODE (TYPE) == ARRAY_TYPE \ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) /* Set this non-zero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. We define 16 integer registers, ignoring the addressable high bytes of r0..r7. The 17th register is the fake arg pointer which has gone by code emission time, and the 18th register is the fake return address pointer which has to be gone by code emission time. */ #define FIRST_PSEUDO_REGISTER 19 /* 1 for registers that have pervasive standard uses and are not available for the register allocator. In small mode we pretend that the stack pointer is really in r14, and renumber the r14 and r15 on output. This allows us to leave it alone when we switch between z8001 and z8002 modes, but still gets the alignment right when in small mode */ #define FIXED_REGISTERS \ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1} /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. */ /* This is filled in in z8k.c since it changes depending upon various -t flags */ #define CALL_USED_REGISTERS \ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1} /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ (((REGNO)==ARG_POINTER_REGNUM) ? 1 :((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER]; #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. */ #define MODES_TIEABLE_P(MODE1, MODE2) 1 /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* z8000 pc isn't overloaded on a register that the compiler knows about. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 14 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 10 /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. This is computed in `reload', in reload1.c. */ #define FRAME_POINTER_REQUIRED 0 /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 16 /* Fake register that holds the address on the stack of the current function's return address. */ #define RETURN_ADDRESS_POINTER_REGNUM 18 /* Register in which static-chain is passed to a function. For the z8000 this hasn't been tested */ #define STATIC_CHAIN_REGNUM 0 /* Register in which address to store a structure value arrives in the function. On the z8000, the address is passed as a hidden argument. */ #define STRUCT_VALUE 0 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* ??? If we need two DFmode/DImode reloads, then they must go into 2/3/4/5 and 6/7/8/9. If the first goes into 4/5/6/7 we lose. We put 4 early, so that it will be more likely to be used for register allocation, and thus less likely to be used for reloads. */ #define REG_ALLOC_ORDER { 4,5,2,3,0,1,6,7,8,9,10,11,12,13,14,15,16,17} /* ??? In order to make sure that we can allocate 2 group 4 reloads, put regs 2-9 last. */ /* ??? Hack, see reload1.c. */ #define RELOAD_ALLOC_ORDER { 0,1,12,13,2,3,4,5,6,7,8,9,10,11,14,15,16,17} #define GENERAL_REGS ALL_REGS enum reg_class { NO_REGS, SQI_REGS, QI_REGS,NOTQI_REGS, SP_REGS, PTR_REGS, SP_QI_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ {"NO_REGS", "SQI_REGS", "QI_REGS", "NOTQI_REGS", "SP_REGS", "PTR_REGS", "SP_QI_REGS", "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS \ { 0x00000, /* NO_REGS */ \ 0x000fe, /* SQI_REGS */ \ 0x000ff, /* QI_REGS */ \ 0x0c000, /* SP_REGS */ \ 0x0ff00, /* NOTQI_REGS */ \ 0x1fffe, /* PTR_REGS */ \ 0x0c0ff, /* SP_QI_REGS */ \ 0x1ffff } /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #define REGNO_REG_CLASS(REGNO) \ (((REGNO) == 14 || (REGNO) == 15) ? SP_REGS : \ (REGNO >= 8 && REGNO <= 13) ? NOTQI_REGS : \ (REGNO > 15) ? PTR_REGS : \ (REGNO == 0) ? QI_REGS : \ SQI_REGS) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS PTR_REGS #define BASE_REG_CLASS PTR_REGS /* When defined, the compiler allows registers explicitly used in the rtl to be used as spill registers but prevents the compiler from extending the lifetime of these registers. */ #define SMALL_REGISTER_CLASSES 1 /* Get reg_class from a letter such as appears in the machine description. */ #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'u' ? QI_REGS : \ ((C) == 'v' ? PTR_REGS : \ ((C) == 'q' ? SP_REGS : \ ((C) == 'r' ? GENERAL_REGS : \ (NO_REGS))))) /* Define this macro to change register usage conditional on target flags. */ #define CONDITIONAL_REGISTER_USAGE /* The letters I, J, K, L, M, N, O, and P in a register constraint string can be used to stand for particular ranges of immediate operands. This macro defines what the ranges are. C is the letter, and VALUE is a constant value. Return 1 if VALUE is in the range specified by C. For z8k `I' is the constant 0. `J' is a constant for an inc (1..16) `K' is a constant for a dec (-1..-16) `L' is 0..15, used in shifts and ldk `M' is the constant 1, used in shifts `N' is the constant 2, used in shifts `O' is a power of two `P' is a comp power of two */ #define POWER_OF_2(I) ((I) && POWER_OF_2_or_0(I)) #define POWER_OF_2_or_0(I) (((I) & ((unsigned)(I) - 1)) == 0) #define CONST_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'I' ? (VALUE) == 0 \ : (C) == 'J' ? (VALUE) >= 1 && (VALUE) <= 16 \ : (C) == 'K' ? (VALUE) <= -1 && (VALUE) >= -16 \ : (C) == 'L' ? (VALUE) >= 0 && (VALUE) <= 15 \ : (C) == 'M' ? (VALUE) == 1 \ : (C) == 'N' ? (VALUE) == 2 \ : (C) == 'O' ? POWER_OF_2(VALUE) \ : (C) == 'P' ? COM_POWER_OF_2(VALUE) \ : 0) /* Similar, but for floating or large integer constants, and defining letters G and H. Here VALUE is the CONST_DOUBLE rtx itself. For z8k, we don't have anything special here */ #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. On the z8k, it's better to have characters in the QI_REGS. */ #define PREFERRED_RELOAD_CLASS(X, CLASS) \ ((GET_MODE(X) == QImode) ? QI_REGS : CLASS) /* Return the register class of a scratch register needed to copy IN into or out of a register in CLASS in MODE. If it can be done directly, NO_REGS is returned. */ #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ (secondary_reload_class (CLASS, MODE, IN)) /* Place additional restrictions on the register class to use when it is necessary to be able to hold a value of mode MODE in a reload register for which class CLASS would ordinarily be used. */ /*#define LIMIT_RELOAD_CLASS(MODE, CLASS) \ ((MODE) == QImode && ((CLASS) == GENERAL_REGS) \ ? QI_REGS : (CLASS)) */ /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Define the cost of moving between registers of various classes. moving between QI_REGS and anything else may be expensive since the other regs don't do QI mode too well */ #define REGISTER_MOVE_COST(CLASS1, CLASS2) ((CLASS1) == (CLASS2) ? 2: 5) /* A C expressions returning the cost of moving data of MODE from a register to or from memory. */ /*#define MEMORY_MOVE_COST(MODE,CLASS,IN) 6*/ /* Provide the cost of a branch. Exact meaning under development. */ /*#define BRANCH_COST 5*/ /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET 0 /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On the z8k, we always push words */ #define PUSH_ROUNDING(X) (((X) + 1) & ~1) /* Define this if the maximum size of all the outgoing args is to be accumulated and pushed during the prologue. The amount can be found in the variable current_function_outgoing_args_size. */ /*#define ACCUMULATE_OUTGOING_ARGS*/ /* Offset of first parameter from the argument pointer register value. */ #define ELIMINABLE_REGS \ {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} #define CAN_ELIMINATE(FROM, TO) \ (!frame_pointer_needed \ || ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ || ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \ && (TO) == FRAME_POINTER_REGNUM)) /* On the z8k, the first parm is offset by the saved return address and the frame pointer - but we use eliminable regs so it should be 0*/ #define FIRST_PARM_OFFSET(FNDECL) 0 /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) OFFSET=io(FROM,TO); /* Define this if stack space is still allocated for a parameter passed in a register. */ /** #define REG_PARM_STACK_SPACE */ /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. */ #define RETURN_POPS_ARGS(FNDECL,FUNTYPE,SIZE) 0 /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. Two ways to return on the Z8k. in r2/rr2/rq2 for HI, SI, DI stuff or r7/rr6/rq4 stuff. */ #define FUNCTION_VALUE(VALTYPE, FUNC) \ LIBCALL_VALUE (TYPE_MODE (VALTYPE)) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) \ gen_rtx (REG, MODE, \ (TARGET_STD_RET ? (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE(HImode) ? 7 : \ GET_MODE_SIZE (MODE) <= GET_MODE_SIZE(SImode) ? 6 : 4) : 2)) /* 1 if N is a possible register number for a function value as seen by the caller. */ #define FUNCTION_VALUE_REGNO_P(N) (TARGET_STD_RET ? ((N) >= 4 && ((N) <= 7)) : (N) == 2) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. On z8k, this is a single integer, which is a number of words of arguments scanned so far. */ #define CUMULATIVE_ARGS int /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. */ #define NPARM_REGS 6 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ (CUM) = 7 ; /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ extern struct rtx_def* z8k_function_arg(); #define FUNCTION_ARG(CUM,MODE,TYPE,NAMED) \ z8k_function_arg(CUM,MODE,TYPE,NAMED) extern int arg_regs[FIRST_PSEUDO_REGISTER]; #define FUNCTION_ARG_REGNO_P(N) arg_regs[N] #define FUNCTION_ARG_ADVANCE(CUM,MODE,TYPE,NAMED)\ CUM=faa(CUM,MODE,TYPE,NAMED) /* Round a register number down to a proper boundary for an arg of mode MODE. We round down to an even reg for things larger than a word */ #define ROUND_REG(X, MODE) \ ((TARGET_ALIGN_DOUBLE \ && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \ ? ((X) - ((X) & 1)) : (X)) #define ROUND_ADVANCE(SIZE) \ ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* This macro generates the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This macro is responsible for knowing which registers should not be saved even if used. */ #define FUNCTION_PROLOGUE(FILE, SIZE) ; /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ #define EXIT_IGNORE_STACK 0 /* This macro generates the assembly code for function exit, on machines that need it. If FUNCTION_EPILOGUE is not defined then individual return instructions are generated for each return statement. Args are same as for FUNCTION_PROLOGUE. The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ #define FUNCTION_EPILOGUE(FILE, SIZE) ; /* Output assembler code for a block containing the constant parts of a trampoline, leaving space for the variable parts. big model 1 .z8001 2 0000 14001234 ldl rr0,#0x12345678 2 5678 3 0006 5E008000 jp t,foo 3 0000 4 000c 0000 small model 1 .z8002 2 0000 21001234 ld r0,#0x1234 3 0004 5E000000 jp t,foo 4 0008 0000 */ #define TRAMPOLINE_TEMPLATE(FILE) \ { \ if (TARGET_BIG) \ { \ fprintf (FILE," ldl rr0,#0x12345678\n"); \ fprintf (FILE," jp t,0x12345678\n"); \ } \ else \ { \ fprintf (FILE," ld r0,#0x1234\n"); \ fprintf (FILE," jp t,0x1234\n"); \ } \ } /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE (TARGET_BIG ? 12 : 8) /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. We assume here that a function will be called many more times than its address is taken (e.g., it might be passed to qsort), so we take the trouble to initialize the "hint" field in the JMP insn. */ #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ { \ if (TARGET_BIG) \ { \ emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \ emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR);\ } \ else \ { \ emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 2)), CXT); \ emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 6)), FNADDR);\ } \ } \ #define RETURN_ADDR_RTX(count, frame) \ ((count == 0) \ ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM)) \ : (rtx) 0) /* Addressing modes, and classification of registers for them. */ /* #define HAVE_POST_INCREMENT 0 */ /* #define HAVE_POST_DECREMENT 0 */ /* #define HAVE_PRE_DECREMENT 0 */ /* #define HAVE_PRE_INCREMENT 0 */ /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ (((REGNO) < FIRST_PSEUDO_REGISTER) \ || (reg_renumber[REGNO] < FIRST_PSEUDO_REGISTER && reg_renumber[REGNO] >= 0)) /* It's ok for a base reg if it's in a hard reg which is not 0 or it will be renumbered on the way out and its not -1 or 0 */ #define REGNO_OK_FOR_BASE_P(REGNO) \ (((REGNO) < FIRST_PSEUDO_REGISTER && (REGNO) != 0 ) \ || (reg_renumber[REGNO] < FIRST_PSEUDO_REGISTER && reg_renumber[REGNO] > 0)) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 1 /* Recognize any constant value that is a valid address. For the z8k, any constant is a valid address */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ || GET_CODE (X) == HIGH) /* Include all constant integers and constant doubles, but not floating-point, except for floating-point zero. */ #define LEGITIMATE_CONSTANT_P(X) (GET_CODE(X) != CONST_DOUBLE) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ #ifndef REG_OK_STRICT #define IS_STRICT 0 /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg. */ #define REG_OK_FOR_INDEX_P(X) (REGNO (X) > FIRST_PSEUDO_REGISTER) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg. */ #define REG_OK_FOR_BASE_P(X) \ ( GET_MODE(X) == Pmode && ( REGNO(X) > FIRST_PSEUDO_REGISTER || (REGNO(X) != 0))) #else #define IS_STRICT 1 /* Nonzero if X is a hard reg that can be used as an index. */ #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) /* Nonzero if X is a hard reg that can be used as a base reg. */ #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #endif /* 'Q' ir or da PTR reg or direct address 'R' x address + HI reg - never valid in huge mode 'S' ba or bx disp + PTR reg (or PTR reg + reg never in huge) 'T' ba */ #define INSIDE(op,side) XEXP(op,side) /* Also accept (MEM (pseudo)) here during reload, because the psuedo is guaranteed to be reloaded into a PTR reg. */ #define IR_P(op) \ (GET_CODE (op) == MEM \ && ((REG_P (XEXP (op, 0)) && REG_OK_FOR_BASE_P (XEXP (op, 0))) \ || (reload_in_progress && GET_CODE (XEXP (op, 0)) == REG \ && REGNO (op) >= FIRST_PSEUDO_REGISTER))) #define INSIDE_DA_P(op) DATA_REF_P(op) #define DA_P(op) \ ((GET_CODE(op) == MEM) && DATA_REF_P(INSIDE(op,0))) #define X_P(op) x_p(op, IS_STRICT) /* ptr sized reg + 16 bit index only ok in huge mode if reg is sp */ /* Also accept unallocated pseudo-regs here, since these will become references to sp plus an offset. */ /* Also accept (MEM (PLUS (pseudo) CONST_INT)), since the pseudo will always be allocated to a PTR reg. We can not do this in inside_ba_p, because then it would affect GO_IF_LEGITIMATE_ADDRESS which is wrong. */ #define BA_P(op) \ (ba_p (op, IS_STRICT) \ || (reload_in_progress && GET_CODE (op) == REG \ && REGNO (op) >= FIRST_PSEUDO_REGISTER) \ || (reload_in_progress && GET_CODE (op) == MEM \ && GET_CODE (XEXP (op, 0)) == PLUS \ && GET_CODE (XEXP (XEXP (op, 0), 0)) == REG \ && REGNO (op) >= FIRST_PSEUDO_REGISTER \ && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT \ && (INTVAL (XEXP (XEXP (op, 0), 1)) & 0x1) == 0)) /* ptr sized reg + sign extended int reg */ #define BX_P(op) bx_p(op, IS_STRICT) #define EXTRA_CONSTRAINT(op, c) \ (((c) == 'Q') ? (IR_P(op) || DA_P(op)) : \ (((c) == 'R') ? (X_P(op)) : \ (((c) == 'T') ? (BA_P(op)) : \ (((c) == 'S') ? (BA_P(op) || BX_P(op)) : 0)))) /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. */ /* in any mode the z8k allows (reg) eg ld r0,(r0) (da) eg ld r0,foo (reg+disp) eg ld r0,rr2(#8) (pre-dec of the sp) eg push sp,#9 in non huge mode we can also (pre-dec of any reg) eg push r0,#9 (address+reg) eg ld r0,address(r0) in small mode (reg+reg) eg ld r0,r1(r0) */ /* true if the value may be used as a displacement (-32768<=x<=32767) (can also be a displacement if it's a symbol and we're in small mode */ #define DISP_P(X) disp_p(X) #define DATA_REF_P_1(X) data_ref_p_1(X) #define DATA_REF_P(X) data_ref_p(X) #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \ { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \ goto ADDR; \ if (INSIDE_DA_P(X)) goto ADDR; \ if (inside_ba_p(X,IS_STRICT)) goto ADDR; \ if (GET_CODE(X) == PRE_DEC \ && MODE==HImode \ && REGNO(XEXP(X,0))==STACK_POINTER_REGNUM) goto ADDR;\ } #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ { \ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \ if(GET_CODE(X)==PRE_DEC \ && MODE==HImode \ && REG_OK_FOR_BASE_P(XEXP(X,0))) goto ADDR; \ if (inside_x_p(X,IS_STRICT)) goto ADDR; \ if (GET_MODE_SIZE(MODE) <= 4 && inside_bx_p(X,IS_STRICT)) goto ADDR; \ } \ \ /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. */ extern struct rtx_def *legitimize_address(); #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) x = legitimize_address(oldx,mode) /* Go to LABEL if ADDR (a legitimate address expression) has an effect that depends on the machine mode it is used for. For the z8k, pushing and poping needs to know the mode */ #define GO_IF_MODE_DEPENDENT_ADDRESS(A,L) \ { if (GET_CODE (A) == POST_INC || GET_CODE (A) == PRE_DEC) goto L; } /* Compute the cost of an address. */ /* For z8k, it is better to use a complex address than let gcc copy the address into a reg and make a new pseudo. But not if the address requires to two regs - that would mean more pseudos with longer lifetimes. */ #define ADDRESS_COST(RTX) address_cost(RTX) /* Define this if some processing needs to be done immediately before emitting code for an insn. */ /* We use when asked to print out how big the compiler thought the instructions were */ #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \ { \ static int old = 0; \ extern int *insn_addresses; \ int uid = INSN_UID (INSN); \ if (TARGET_ISIZE && insn_addresses) \ { \ fprintf (asm_out_file, "! %d %d\n", insn_addresses[uid], \ insn_addresses[uid] - old); \ old = insn_addresses[uid]; \ } \ } \ /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE HImode /* Define as C expression which evaluates to nonzero if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ #define CASE_VECTOR_PC_RELATIVE 1 /* Specify the tree operation to be used to convert reals to integers. */ #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR /* This is the kind of divide that is easiest to do in the general case. */ #define EASY_DIV_EXPR TRUNC_DIV_EXPR /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 0 /* This flag, if defined, says the same insns that convert to a signed fixnum also convert validly to an unsigned one. We actually lie a bit here as overflow conditions are different. But they aren't being checked anyway. */ #define FIXUNS_TRUNC_LIKE_FIX_TRUNC /* Max number of bytes we can move to or from memory in one reasonably fast instruction. */ #define MOVE_MAX 4 /* Largest number of bytes of an object that can be placed in a register. */ #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (SImode) /* Nonzero if access to memory by bytes is no faster than for words. Also non-zero if doing byte operations (specifically shifts) in registers is undesirable. */ #define SLOW_BYTE_ACCESS 1 /* Define if normal loads of shorter-than-word items from memory clears the rest of the bits in the register. */ /*#define BYTE_LOADS_ZERO_EXTEND */ /* Define if normal loads of shorter-than-word items from memory sign-extends the rest of the bits in the register. */ /*#define BYTE_LOADS_SIGN_EXTEND*/ #define SDB_DEBUGGING_INFO /* Output DBX (stabs) debugging information if using -gstabs. */ #include "dbxcoff.h" /* Do not break .stabs pseudos into continuations. */ #define DBX_CONTIN_LENGTH 0 /* Don't try to use the `x' type-cross-reference character in DBX data. Also has the consequence of putting each struct, union or enum into a separate .stabs, containing only cross-refs to the others. */ #define DBX_NO_XREFS /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* We assume that the store-condition-codes instructions store 0 for false and some other value for true. This is the value stored for true. */ #define STORE_FLAG_VALUE 1 /* Define the value returned by a floating-point comparison instruction. */ /*#define FLOAT_STORE_FLAG_VALUE 0.5*/ /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ int pmode; #define Pmode pmode /* set in z8k.c */ #define Imode HImode /* Mode of a function address in a call instruction (for indexing purposes). */ #define FUNCTION_MODE QImode /* Define this if addresses of constant functions shouldn't be put through pseudo regs where they can be cse'd. Desirable on machines where ordinary constants are expensive but a CALL with constant address is cheap. */ #define NO_FUNCTION_CSE /* Define this if shift instructions ignore all but the low-order few bits. */ /*#define SHIFT_COUNT_TRUNCATED*/ /* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. We only care about the cost if it is valid in an insn, so all constants are cheap. */ #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ case CONST_INT: \ if (CONST_OK_FOR_LETTER_P(INTVAL(RTX), 'I')) return 0; \ if (CONST_OK_FOR_LETTER_P(INTVAL(RTX), 'L')) return 1; \ return 2; \ case CONST_DOUBLE: \ return 8; \ case SYMBOL_REF: \ case LABEL_REF: \ return 30; \ case CONST: \ return 2; /* Provide the costs of a rtl expression. This is in the body of a switch on CODE. */ #define RTX_COSTS(X,CODE,OUTER_CODE) \ case PLUS: \ case MINUS: \ break; \ case MULT: \ return COSTS_N_INSNS (10); \ case DIV: \ case UDIV: \ case MOD: \ case UMOD: \ return COSTS_N_INSNS (TARGET_FAST ? 17 : 2); /* Control the assembler format that we output. */ /* Output at beginning of assembler file. */ /* Z8000 CPU Section Name */ #define SECTION_NAME (z8k_sect.sect_name != 0 && strlen(z8k_sect.sect_name) > 0 \ ? z8k_sect.sect_name : "not") #define ASM_FILE_START(STREAM) \ asm_file_start (STREAM, f_options, sizeof f_options / sizeof f_options[0], \ W_options, sizeof W_options / sizeof W_options[0]); #define ASM_FILE_END(file) asm_file_end(file) /* Output to assembler file text saying following lines may contain character constants, extra white space, comments, etc. */ #define ASM_APP_ON "" /* Output to assembler file text saying following lines no longer contain unusual constructs. */ #define ASM_APP_OFF "" #define TEXT_SECTION_ASM_OP (TARGET_YASM ? "\trsect\tUSRROM" : "\t.text") #define CTORS_SECTION_ASM_OP (TARGET_YASM ?"\trsect\t.CTORS" : "\t.section\t.ctors") #define DTORS_SECTION_ASM_OP (TARGET_YASM ?"\trsect\t.DTORS" : "\t.section\t.dtors") #define READONLY_DATA_SECTION_ASM_OP (TARGET_YASM ? "\trsect\tUSRROM" : "\tsect .rdata") #define INIT_SECTION_ASM_OP (TARGET_YASM ? "\trsect\tINIT" : "\t.init") /* Output before writable data. */ #define DATA_SECTION_ASM_OP (TARGET_YASM ? "\tsect\tUSRRAM" : "\t.data") /* Define an extra section for read-only data, a routine to enter it, and indicate that it is for read-only data. */ #define EXTRA_SECTIONS readonly_data, in_ctors, in_dtors #define EXTRA_SECTION_FUNCTIONS \ void \ ctors_section() \ { \ if (in_section != in_ctors) \ { \ fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \ in_section = in_ctors; \ } \ } \ void \ dtors_section() \ { \ if (in_section != in_dtors) \ { \ fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \ in_section = in_dtors; \ } \ } \ void \ literal_section () \ { \ if (in_section != readonly_data) \ { \ fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \ in_section = readonly_data; \ } \ } \ #define READONLY_DATA_SECTION literal_section #define ASM_OUTPUT_PTR(FILE,NAME) \ do { fprintf (FILE, "\t%s\t_%s\n", TARGET_BIG ? "lval" : "wval", NAME);} while(0) #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \ do { ctors_section(); ASM_OUTPUT_PTR(FILE, NAME); } while (0) #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \ do { dtors_section(); ASM_OUTPUT_PTR(FILE, NAME); } while (0) #undef DO_GLOBAL_CTORS_BODY #define DO_GLOBAL_CTORS_BODY \ { \ typedef (*pfunc)(); \ extern pfunc __ctors[]; \ extern pfunc __ctors_end[]; \ pfunc *p; \ for (p = __ctors_end; p > __ctors; ) \ { \ (*--p)(); \ } \ } #undef DO_GLOBAL_DTORS_BODY #define DO_GLOBAL_DTORS_BODY \ { \ typedef (*pfunc)(); \ extern pfunc __dtors[]; \ extern pfunc __dtors_end[]; \ pfunc *p; \ for (p = __dtors; p < __dtors_end; p++) \ { \ (*p)(); \ } \ } /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ { "r0","r1","r2","r3","r4","r5","r6","r7", \ "r8","r9","r10","r11","r12","r13","r14","r15","apl","aph","rap"} /* How to renumber registers for dbx and gdb. */ #define DBX_REGISTER_NUMBER(REGNO) (REGNO) /* This is how to output the definition of a user-level label named NAME, such as the label on a static function or variable NAME. */ #define ASM_OUTPUT_LABEL(FILE,NAME) \ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) /* This is how to output a command to make the user-level label named NAME defined for reference from other files. */ #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ do { fputs ("\tglobal\t", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) /* A C statement to output to the stdio stream STREAM any text necessary for declaring the name of an external symbol named NAME which is referenced in this compilation but not defined. */ #define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME)\ do { if (TARGET_YASM) z8k_output_external (NAME); } while (0) /* Similar, but for libcalls. */ #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \ do { if (TARGET_YASM) z8k_output_external (XSTR (FUN, 0)); } while (0) /* This is how to output a reference to a user-level label named NAME. `assemble_name' uses this. */ #define ASM_OUTPUT_LABELREF(FILE,NAME) \ fprintf (FILE, TARGET_YASM ? "%s" : "_%s", NAME) /* This is how to output an internal numbered label where PREFIX is the class of label and NUM is the number within the class. */ #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ fprintf (FILE, "E%s%d:\n", PREFIX, NUM) /* This is how to output a label for a jump table. Arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is passed. */ /*#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }*/ /* This is how to store into the string LABEL the symbol_ref name of an internal numbered label where PREFIX is the class of label and NUM is the number within the class. This is suitable for output with `assemble_name'. */ #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf (LABEL, "*E%s%d", PREFIX, NUM) /* This is how to output an assembler line defining a `double' constant. */ #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ do { char dstr[30]; \ REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \ fprintf (FILE, "\t.double %s\n", dstr); \ } while (0) /* This is how to output an assembler line defining a `float' constant. */ #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ do { char dstr[30]; \ REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \ fprintf (FILE, "\t.float %s\n", dstr); \ } while (0) /* This is how to output an assembler line defining an 4 byte constant. */ #define ASM_OUTPUT_INT(FILE,VALUE) \ ( fprintf (FILE, "\tlval "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* Likewise for `char' and `short' constants. */ #define ASM_OUTPUT_SHORT(FILE,VALUE) \ ( fprintf (FILE, "\twval "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #define ASM_OUTPUT_CHAR(FILE,VALUE) \ ( fprintf (FILE, "\tbval "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* We use the default ASCII-output routine, except that we don't write more than 50 characters since the assembler doesn't support very long lines. */ /* A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes at PTR. */ #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \ asm_output_ascii (FILE, P, SIZE) /* This is how to output an insn to push a register on the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ fprintf (FILE, "\tpushl %s\n", reg_names[REGNO]) /* This is how to output an insn to pop a register from the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO]) /* This is how to output an assembler line for a numeric constant byte. */ #define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\tbval %d\n", (VALUE)) /* This is how to output an element of a case-vector that is absolute. */ #define JUMP_TABLES_IN_TEXT_SECTION 1 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\t%s EL%d\n", TARGET_BIG ? "lval":"wval", VALUE) /* This is how to output an element of a case-vector that is relative. (Alpha does not use such vectors, but we must define this macro anyway.) */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ fprintf (FILE, "\twval EL%d-EL%d\n", VALUE, REL) extern char *z8k_asm_output_opcode(); #define ASM_OUTPUT_OPCODE(f,s) s = z8k_asm_output_opcode(f,s) /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if (LOG==1) fprintf(FILE,"\teven\n"); \ else fprintf (FILE, "\t.align %d\n", (LOG)) /* This is how to advance the location counter by SIZE bytes. */ #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\tblock %u\n", (SIZE)) /* This says how to output an assembler line to define a global common symbol. */ #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ asm_output_common (FILE, NAME, SIZE, ROUNDED) /* This says how to output an assembler line to define a local common symbol. */ #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ asm_output_local (FILE, NAME, SIZE, ROUNDED) /* This says how to output an assembler line to start an object definition. */ #define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \ asm_output_name (FILE, NAME) /* This says how to output an assembler line to start a function definition. */ #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ z8k_declare_function_name (FILE, NAME, DECL); /* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */ #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s__%d", (NAME), (LABELNO))) /* Define the parentheses used to group arithmetic operations in assembler code. */ #define ASM_OPEN_PAREN "(" #define ASM_CLOSE_PAREN ")" /* Define results of standard character escape sequences. */ #define TARGET_BELL 007 #define TARGET_BS 010 #define TARGET_TAB 011 #define TARGET_NEWLINE 012 #define TARGET_VT 013 #define TARGET_FF 014 #define TARGET_CR 015 /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) /* Determine which codes are valid without a following integer. These must not be alphabetic. */ #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '^') /* Print a memory address as an operand to reference that memory location. */ #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR) #define NOTICE_UPDATE_CC(exp, insn) \ { \ enum attr_cond type = get_attr_cond (insn); \ switch (type) \ { \ case COND_NOTRASHCC: \ if (GET_CODE (exp) == SET) \ { \ if (cc_status.value1 \ && reg_overlap_mentioned_p (SET_DEST (exp), \ cc_status.value1)) \ cc_status.value1 = 0; \ if (cc_status.value2 \ && reg_overlap_mentioned_p (SET_DEST (exp), \ cc_status.value2)) \ cc_status.value2 = 0; \ } \ break; \ case COND_TRASHCC: \ CC_STATUS_INIT; \ break; \ case COND_SETCC: \ if (GET_CODE (exp) == SET) \ { \ cc_status.flags = 0; \ cc_status.value1 = XEXP (exp, 0); \ cc_status.value2 = XEXP (exp, 1); \ } \ else \ CC_STATUS_INIT; \ break; \ case COND_LOGCC: \ if (GET_CODE (exp) == SET) \ { \ cc_status.flags = CC_NO_OVERFLOW; \ cc_status.value1 = XEXP (exp, 0); \ cc_status.value2 = XEXP (exp, 1); \ } \ else \ CC_STATUS_INIT; \ break; \ case COND_SETREVCC: \ cc_status.flags = CC_REVERSED; \ cc_status.value1 = XEXP (exp, 0); \ cc_status.value2 = XEXP (exp, 1); \ break; \ } \ } /* A C statement to output DBX or SDB debugging information before code for line number LINE of the current source file to the stdio stream STREAM. */ /* ??? stabs-in-coff will not work until this conflict is resolved. */ #undef DBX_DEBUGGING_INFO #undef ASM_OUTPUT_SOURCE_LINE #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \ (TARGET_YASM ? print_source_line(STREAM,LINE) : \ fprintf (file, "\t.ln\t%d\n", ((sdb_begin_function_line > -1) \ ? (LINE) - sdb_begin_function_line : 1))); /* A C statement to output DBX or SDB debugging information which indicates that filename NAME is the current source file to the stdio stream STREAM. */ #define ASM_OUTPUT_SOURCE_FILENAME(STREAM,NAME) \ { char *quote = TARGET_YASM ? "" : "\""; \ fprintf (STREAM, " name %s%s%s\n", quote, NAME, quote); \ } /* STUFF NEEDED TO DISABLE DEBUG OUTPUT */ #define DP if (!TARGET_YASM || TARGET_DEFS) #define PUT_SDB_SCL(a) DP fprintf(asm_out_file, "\t.scl\t%d%s", (a), SDB_DELIM) #define PUT_SDB_INT_VAL(a) DP fprintf (asm_out_file, "\t.val\t%d%s", (a), SDB_DELIM) #define PUT_SDB_VAL(a) DP \ ( fputs ("\t.val\t", asm_out_file), \ output_addr_const (asm_out_file, (a)), \ fprintf (asm_out_file, SDB_DELIM)) #define PUT_SDB_DEF(a) \ do { DP { fprintf (asm_out_file, "\t.def\t"); \ ASM_OUTPUT_LABELREF (asm_out_file, a); \ fprintf (asm_out_file, SDB_DELIM); } } while (0) #define PUT_SDB_PLAIN_DEF(a) DP fprintf(asm_out_file,"\t.def\t.%s%s",a, SDB_DELIM) #define PUT_SDB_ENDEF DP fputs("\t.endef\n", asm_out_file) #define PUT_SDB_TYPE(a) DP fprintf(asm_out_file, "\t.type\t0%o%s", a, SDB_DELIM) #define PUT_SDB_SIZE(a) DP fprintf(asm_out_file, "\t.size\t%d%s", a, SDB_DELIM) #define PUT_SDB_START_DIM DP fprintf(asm_out_file, "\t.dim\t") #define PUT_SDB_NEXT_DIM(a) DP fprintf(asm_out_file, "%d,", a) #define PUT_SDB_LAST_DIM(a) DP fprintf(asm_out_file, "%d%s", a, SDB_DELIM) #define PUT_SDB_TAG(a) DP \ do { fprintf (asm_out_file, "\t.tag\t"); \ ASM_OUTPUT_LABELREF (asm_out_file, a); \ fprintf (asm_out_file, SDB_DELIM); } while (0) #define PUT_SDB_BLOCK_START(LINE) DP \ fprintf (asm_out_file, \ "\t.def\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_BLOCK_END(LINE) DP \ fprintf (asm_out_file, \ "\t.def\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_FUNCTION_START(LINE) DP \ fprintf (asm_out_file, \ "\t.def\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_FUNCTION_END(LINE) DP \ fprintf (asm_out_file, \ "\t.def\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_EPILOGUE_END(NAME) \ do { DP { fprintf (asm_out_file, "\t.def\t"); \ ASM_OUTPUT_LABELREF (asm_out_file, NAME); \ fprintf (asm_out_file, \ "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM); } } while (0) int saved_reg_on_stack_hack; #define TARGET_MEM_FUNCTIONS char *output_move64(); extern void z8k_declare_function_name ();