diff options
Diffstat (limited to 'newlib/libm/mathfp/w_jn.c')
-rw-r--r-- | newlib/libm/mathfp/w_jn.c | 248 |
1 files changed, 0 insertions, 248 deletions
diff --git a/newlib/libm/mathfp/w_jn.c b/newlib/libm/mathfp/w_jn.c deleted file mode 100644 index 6806f01..0000000 --- a/newlib/libm/mathfp/w_jn.c +++ /dev/null @@ -1,248 +0,0 @@ - -/* @(#)w_jn.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<jN>>,<<jNf>>,<<yN>>,<<yNf>>---Bessel functions - -INDEX -j0 -INDEX -j0f -INDEX -j1 -INDEX -j1f -INDEX -jn -INDEX -jnf -INDEX -y0 -INDEX -y0f -INDEX -y1 -INDEX -y1f -INDEX -yn -INDEX -ynf - -ANSI_SYNOPSIS -#include <math.h> -double j0(double <[x]>); -float j0f(float <[x]>); -double j1(double <[x]>); -float j1f(float <[x]>); -double jn(int <[n]>, double <[x]>); -float jnf(int <[n]>, float <[x]>); -double y0(double <[x]>); -float y0f(float <[x]>); -double y1(double <[x]>); -float y1f(float <[x]>); -double yn(int <[n]>, double <[x]>); -float ynf(int <[n]>, float <[x]>); - -TRAD_SYNOPSIS -#include <math.h> - -double j0(<[x]>) -double <[x]>; -float j0f(<[x]>) -float <[x]>; -double j1(<[x]>) -double <[x]>; -float j1f(<[x]>) -float <[x]>; -double jn(<[n]>, <[x]>) -int <[n]>; -double <[x]>; -float jnf(<[n]>, <[x]>) -int <[n]>; -float <[x]>; - -double y0(<[x]>) -double <[x]>; -float y0f(<[x]>) -float <[x]>; -double y1(<[x]>) -double <[x]>; -float y1f(<[x]>) -float <[x]>; -double yn(<[n]>, <[x]>) -int <[n]>; -double <[x]>; -float ynf(<[n]>, <[x]>) -int <[n]>; -float <[x]>; - -DESCRIPTION -The Bessel functions are a family of functions that solve the -differential equation -@ifinfo -. 2 2 2 -. x y'' + xy' + (x - p )y = 0 -@end ifinfo -@tex -$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$ -@end tex -These functions have many applications in engineering and physics. - -<<jn>> calculates the Bessel function of the first kind of order -<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order -1 respectively. - -Similarly, <<yn>> calculates the Bessel function of the second kind of -order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and -1. - -<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the -same calculations, but on <<float>> rather than <<double>> values. - -RETURNS -The value of each Bessel function at <[x]> is returned. - -PORTABILITY -None of the Bessel functions are in ANSI C. -*/ - -/* - * wrapper jn(int n, double x), yn(int n, double x) - * floating point Bessel's function of the 1st and 2nd kind - * of order n - * - * Special cases: - * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; - * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. - * Note 2. About jn(n,x), yn(n,x) - * For n=0, j0(x) is called, - * for n=1, j1(x) is called, - * for n<x, forward recursion us used starting - * from values of j0(x) and j1(x). - * for n>x, a continued fraction approximation to - * j(n,x)/j(n-1,x) is evaluated and then backward - * recursion is used starting from a supposed value - * for j(n,x). The resulting value of j(0,x) is - * compared with the actual value to correct the - * supposed value of j(n,x). - * - * yn(n,x) is similar in all respects, except - * that forward recursion is used for all - * values of n>1. - * - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double jn(int n, double x) /* wrapper jn */ -#else - double jn(n,x) /* wrapper jn */ - double x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return jn(n,x); -#else - double z; - struct exception exc; - z = jn(n,x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(fabs(x)>X_TLOSS) { - /* jn(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "jn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - double yn(int n, double x) /* wrapper yn */ -#else - double yn(n,x) /* wrapper yn */ - double x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return yn(n,x); -#else - double z; - struct exception exc; - z = yn(n,x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(x <= 0.0){ - /* yn(n,0) = -inf or yn(x<0) = NaN */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "yn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(x>X_TLOSS) { - /* yn(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "yn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ |