summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorcamthesaxman <cameronghall@cox.net>2017-06-15 19:37:42 -0500
committercamthesaxman <cameronghall@cox.net>2017-06-15 19:37:42 -0500
commit3344d86d906405843827c098b3da98b7f7855df1 (patch)
tree64da23b0ac416e71502237d9e0602b2b6f6393e8
parente09e1da6c252e17cf6db429ad142b05dbf156548 (diff)
move trig data to C
-rw-r--r--data/sine_degree_table.inc183
-rw-r--r--data/sine_table.inc323
-rw-r--r--data/trig.s10
-rw-r--r--include/trig.h2
-rw-r--r--ld_script.txt2
-rw-r--r--src/trig.c510
6 files changed, 511 insertions, 519 deletions
diff --git a/data/sine_degree_table.inc b/data/sine_degree_table.inc
deleted file mode 100644
index a9cf05b62..000000000
--- a/data/sine_degree_table.inc
+++ /dev/null
@@ -1,183 +0,0 @@
-@ values of sin(x) as Q4.12 fixed-point numbers from x = 0° to x = 179°
- .align 1
-gSineDegreeTable:: @ 82085C4
- .2byte 0x0000 @ sin(0°) = 0
- .2byte 0x0047 @ sin(1°) = 0.017333984375
- .2byte 0x008F @ sin(2°) = 0.034912109375
- .2byte 0x00D6 @ sin(3°) = 0.05224609375
- .2byte 0x011E @ sin(4°) = 0.06982421875
- .2byte 0x0165 @ sin(5°) = 0.087158203125
- .2byte 0x01AC @ sin(6°) = 0.1044921875
- .2byte 0x01F3 @ sin(7°) = 0.121826171875
- .2byte 0x023A @ sin(8°) = 0.13916015625
- .2byte 0x0281 @ sin(9°) = 0.156494140625
- .2byte 0x02C7 @ sin(10°) = 0.173583984375
- .2byte 0x030E @ sin(11°) = 0.19091796875
- .2byte 0x0354 @ sin(12°) = 0.2080078125
- .2byte 0x0399 @ sin(13°) = 0.224853515625
- .2byte 0x03DF @ sin(14°) = 0.241943359375
- .2byte 0x0424 @ sin(15°) = 0.2587890625
- .2byte 0x0469 @ sin(16°) = 0.275634765625
- .2byte 0x04AE @ sin(17°) = 0.29248046875
- .2byte 0x04F2 @ sin(18°) = 0.30908203125
- .2byte 0x0536 @ sin(19°) = 0.32568359375
- .2byte 0x0579 @ sin(20°) = 0.342041015625
- .2byte 0x05BC @ sin(21°) = 0.3583984375
- .2byte 0x05FE @ sin(22°) = 0.37451171875
- .2byte 0x0640 @ sin(23°) = 0.390625
- .2byte 0x0682 @ sin(24°) = 0.40673828125
- .2byte 0x06C3 @ sin(25°) = 0.422607421875
- .2byte 0x0704 @ sin(26°) = 0.4384765625
- .2byte 0x0744 @ sin(27°) = 0.4541015625
- .2byte 0x0783 @ sin(28°) = 0.469482421875
- .2byte 0x07C2 @ sin(29°) = 0.48486328125
- .2byte 0x0800 @ sin(30°) = 0.5
- .2byte 0x083E @ sin(31°) = 0.51513671875
- .2byte 0x087B @ sin(32°) = 0.530029296875
- .2byte 0x08B7 @ sin(33°) = 0.544677734375
- .2byte 0x08F2 @ sin(34°) = 0.55908203125
- .2byte 0x092D @ sin(35°) = 0.573486328125
- .2byte 0x0968 @ sin(36°) = 0.587890625
- .2byte 0x09A1 @ sin(37°) = 0.601806640625
- .2byte 0x09DA @ sin(38°) = 0.61572265625
- .2byte 0x0A12 @ sin(39°) = 0.62939453125
- .2byte 0x0A49 @ sin(40°) = 0.642822265625
- .2byte 0x0A7F @ sin(41°) = 0.656005859375
- .2byte 0x0AB5 @ sin(42°) = 0.669189453125
- .2byte 0x0AE9 @ sin(43°) = 0.681884765625
- .2byte 0x0B1D @ sin(44°) = 0.694580078125
- .2byte 0x0B50 @ sin(45°) = 0.70703125
- .2byte 0x0B82 @ sin(46°) = 0.71923828125
- .2byte 0x0BB4 @ sin(47°) = 0.7314453125
- .2byte 0x0BE4 @ sin(48°) = 0.7431640625
- .2byte 0x0C13 @ sin(49°) = 0.754638671875
- .2byte 0x0C42 @ sin(50°) = 0.76611328125
- .2byte 0x0C6F @ sin(51°) = 0.777099609375
- .2byte 0x0C9C @ sin(52°) = 0.7880859375
- .2byte 0x0CC7 @ sin(53°) = 0.798583984375
- .2byte 0x0CF2 @ sin(54°) = 0.80908203125
- .2byte 0x0D1B @ sin(55°) = 0.819091796875
- .2byte 0x0D44 @ sin(56°) = 0.8291015625
- .2byte 0x0D6B @ sin(57°) = 0.838623046875
- .2byte 0x0D92 @ sin(58°) = 0.84814453125
- .2byte 0x0DB7 @ sin(59°) = 0.857177734375
- .2byte 0x0DDB @ sin(60°) = 0.865966796875
- .2byte 0x0DFE @ sin(61°) = 0.87451171875
- .2byte 0x0E21 @ sin(62°) = 0.883056640625
- .2byte 0x0E42 @ sin(63°) = 0.89111328125
- .2byte 0x0E61 @ sin(64°) = 0.898681640625
- .2byte 0x0E80 @ sin(65°) = 0.90625
- .2byte 0x0E9E @ sin(66°) = 0.91357421875
- .2byte 0x0EBA @ sin(67°) = 0.92041015625
- .2byte 0x0ED6 @ sin(68°) = 0.92724609375
- .2byte 0x0EF0 @ sin(69°) = 0.93359375
- .2byte 0x0F09 @ sin(70°) = 0.939697265625
- .2byte 0x0F21 @ sin(71°) = 0.945556640625
- .2byte 0x0F38 @ sin(72°) = 0.951171875
- .2byte 0x0F4D @ sin(73°) = 0.956298828125
- .2byte 0x0F61 @ sin(74°) = 0.961181640625
- .2byte 0x0F74 @ sin(75°) = 0.9658203125
- .2byte 0x0F86 @ sin(76°) = 0.97021484375
- .2byte 0x0F97 @ sin(77°) = 0.974365234375
- .2byte 0x0FA6 @ sin(78°) = 0.97802734375
- .2byte 0x0FB5 @ sin(79°) = 0.981689453125
- .2byte 0x0FC2 @ sin(80°) = 0.98486328125
- .2byte 0x0FCE @ sin(81°) = 0.98779296875
- .2byte 0x0FD8 @ sin(82°) = 0.990234375
- .2byte 0x0FE1 @ sin(83°) = 0.992431640625
- .2byte 0x0FE9 @ sin(84°) = 0.994384765625
- .2byte 0x0FF0 @ sin(85°) = 0.99609375
- .2byte 0x0FF6 @ sin(86°) = 0.99755859375
- .2byte 0x0FFA @ sin(87°) = 0.99853515625
- .2byte 0x0FFD @ sin(88°) = 0.999267578125
- .2byte 0x0FFF @ sin(89°) = 0.999755859375
- .2byte 0x1000 @ sin(90°) = 1
- .2byte 0x0FFF @ sin(91°) = 0.999755859375
- .2byte 0x0FFD @ sin(92°) = 0.999267578125
- .2byte 0x0FFA @ sin(93°) = 0.99853515625
- .2byte 0x0FF6 @ sin(94°) = 0.99755859375
- .2byte 0x0FF0 @ sin(95°) = 0.99609375
- .2byte 0x0FE9 @ sin(96°) = 0.994384765625
- .2byte 0x0FE1 @ sin(97°) = 0.992431640625
- .2byte 0x0FD8 @ sin(98°) = 0.990234375
- .2byte 0x0FCE @ sin(99°) = 0.98779296875
- .2byte 0x0FC2 @ sin(100°) = 0.98486328125
- .2byte 0x0FB5 @ sin(101°) = 0.981689453125
- .2byte 0x0FA6 @ sin(102°) = 0.97802734375
- .2byte 0x0F97 @ sin(103°) = 0.974365234375
- .2byte 0x0F86 @ sin(104°) = 0.97021484375
- .2byte 0x0F74 @ sin(105°) = 0.9658203125
- .2byte 0x0F61 @ sin(106°) = 0.961181640625
- .2byte 0x0F4D @ sin(107°) = 0.956298828125
- .2byte 0x0F38 @ sin(108°) = 0.951171875
- .2byte 0x0F21 @ sin(109°) = 0.945556640625
- .2byte 0x0F09 @ sin(110°) = 0.939697265625
- .2byte 0x0EF0 @ sin(111°) = 0.93359375
- .2byte 0x0ED6 @ sin(112°) = 0.92724609375
- .2byte 0x0EBA @ sin(113°) = 0.92041015625
- .2byte 0x0E9E @ sin(114°) = 0.91357421875
- .2byte 0x0E80 @ sin(115°) = 0.90625
- .2byte 0x0E61 @ sin(116°) = 0.898681640625
- .2byte 0x0E42 @ sin(117°) = 0.89111328125
- .2byte 0x0E21 @ sin(118°) = 0.883056640625
- .2byte 0x0DFE @ sin(119°) = 0.87451171875
- .2byte 0x0DDB @ sin(120°) = 0.865966796875
- .2byte 0x0DB7 @ sin(121°) = 0.857177734375
- .2byte 0x0D92 @ sin(122°) = 0.84814453125
- .2byte 0x0D6B @ sin(123°) = 0.838623046875
- .2byte 0x0D44 @ sin(124°) = 0.8291015625
- .2byte 0x0D1B @ sin(125°) = 0.819091796875
- .2byte 0x0CF2 @ sin(126°) = 0.80908203125
- .2byte 0x0CC7 @ sin(127°) = 0.798583984375
- .2byte 0x0C9C @ sin(128°) = 0.7880859375
- .2byte 0x0C6F @ sin(129°) = 0.777099609375
- .2byte 0x0C42 @ sin(130°) = 0.76611328125
- .2byte 0x0C13 @ sin(131°) = 0.754638671875
- .2byte 0x0BE4 @ sin(132°) = 0.7431640625
- .2byte 0x0BB4 @ sin(133°) = 0.7314453125
- .2byte 0x0B82 @ sin(134°) = 0.71923828125
- .2byte 0x0B50 @ sin(135°) = 0.70703125
- .2byte 0x0B1D @ sin(136°) = 0.694580078125
- .2byte 0x0AE9 @ sin(137°) = 0.681884765625
- .2byte 0x0AB5 @ sin(138°) = 0.669189453125
- .2byte 0x0A7F @ sin(139°) = 0.656005859375
- .2byte 0x0A49 @ sin(140°) = 0.642822265625
- .2byte 0x0A12 @ sin(141°) = 0.62939453125
- .2byte 0x09DA @ sin(142°) = 0.61572265625
- .2byte 0x09A1 @ sin(143°) = 0.601806640625
- .2byte 0x0968 @ sin(144°) = 0.587890625
- .2byte 0x092D @ sin(145°) = 0.573486328125
- .2byte 0x08F2 @ sin(146°) = 0.55908203125
- .2byte 0x08B7 @ sin(147°) = 0.544677734375
- .2byte 0x087B @ sin(148°) = 0.530029296875
- .2byte 0x083E @ sin(149°) = 0.51513671875
- .2byte 0x0800 @ sin(150°) = 0.5
- .2byte 0x07C2 @ sin(151°) = 0.48486328125
- .2byte 0x0783 @ sin(152°) = 0.469482421875
- .2byte 0x0744 @ sin(153°) = 0.4541015625
- .2byte 0x0704 @ sin(154°) = 0.4384765625
- .2byte 0x06C3 @ sin(155°) = 0.422607421875
- .2byte 0x0682 @ sin(156°) = 0.40673828125
- .2byte 0x0640 @ sin(157°) = 0.390625
- .2byte 0x05FE @ sin(158°) = 0.37451171875
- .2byte 0x05BC @ sin(159°) = 0.3583984375
- .2byte 0x0579 @ sin(160°) = 0.342041015625
- .2byte 0x0536 @ sin(161°) = 0.32568359375
- .2byte 0x04F2 @ sin(162°) = 0.30908203125
- .2byte 0x04AE @ sin(163°) = 0.29248046875
- .2byte 0x0469 @ sin(164°) = 0.275634765625
- .2byte 0x0424 @ sin(165°) = 0.2587890625
- .2byte 0x03DF @ sin(166°) = 0.241943359375
- .2byte 0x0399 @ sin(167°) = 0.224853515625
- .2byte 0x0354 @ sin(168°) = 0.2080078125
- .2byte 0x030E @ sin(169°) = 0.19091796875
- .2byte 0x02C7 @ sin(170°) = 0.173583984375
- .2byte 0x0281 @ sin(171°) = 0.156494140625
- .2byte 0x023A @ sin(172°) = 0.13916015625
- .2byte 0x01F3 @ sin(173°) = 0.121826171875
- .2byte 0x01AC @ sin(174°) = 0.1044921875
- .2byte 0x0165 @ sin(175°) = 0.087158203125
- .2byte 0x011E @ sin(176°) = 0.06982421875
- .2byte 0x00D6 @ sin(177°) = 0.05224609375
- .2byte 0x008F @ sin(178°) = 0.034912109375
- .2byte 0x0047 @ sin(179°) = 0.017333984375
diff --git a/data/sine_table.inc b/data/sine_table.inc
deleted file mode 100644
index fd1a5da72..000000000
--- a/data/sine_table.inc
+++ /dev/null
@@ -1,323 +0,0 @@
-@ values of sin(x*(π/128)) as Q8.8 fixed-point numbers from x = 0 to x = 319
- .align 1
-gSineTable:: @ 8208344
- .2byte 0x0000 @ sin(0*(π/128)) = 0
- .2byte 0x0006 @ sin(1*(π/128)) = 0.0234375
- .2byte 0x000C @ sin(2*(π/128)) = 0.046875
- .2byte 0x0012 @ sin(3*(π/128)) = 0.0703125
- .2byte 0x0019 @ sin(4*(π/128)) = 0.09765625
- .2byte 0x001F @ sin(5*(π/128)) = 0.12109375
- .2byte 0x0025 @ sin(6*(π/128)) = 0.14453125
- .2byte 0x002B @ sin(7*(π/128)) = 0.16796875
- .2byte 0x0031 @ sin(8*(π/128)) = 0.19140625
- .2byte 0x0038 @ sin(9*(π/128)) = 0.21875
- .2byte 0x003E @ sin(10*(π/128)) = 0.2421875
- .2byte 0x0044 @ sin(11*(π/128)) = 0.265625
- .2byte 0x004A @ sin(12*(π/128)) = 0.2890625
- .2byte 0x0050 @ sin(13*(π/128)) = 0.3125
- .2byte 0x0056 @ sin(14*(π/128)) = 0.3359375
- .2byte 0x005C @ sin(15*(π/128)) = 0.359375
- .2byte 0x0061 @ sin(16*(π/128)) = 0.37890625
- .2byte 0x0067 @ sin(17*(π/128)) = 0.40234375
- .2byte 0x006D @ sin(18*(π/128)) = 0.42578125
- .2byte 0x0073 @ sin(19*(π/128)) = 0.44921875
- .2byte 0x0078 @ sin(20*(π/128)) = 0.46875
- .2byte 0x007E @ sin(21*(π/128)) = 0.4921875
- .2byte 0x0083 @ sin(22*(π/128)) = 0.51171875
- .2byte 0x0088 @ sin(23*(π/128)) = 0.53125
- .2byte 0x008E @ sin(24*(π/128)) = 0.5546875
- .2byte 0x0093 @ sin(25*(π/128)) = 0.57421875
- .2byte 0x0098 @ sin(26*(π/128)) = 0.59375
- .2byte 0x009D @ sin(27*(π/128)) = 0.61328125
- .2byte 0x00A2 @ sin(28*(π/128)) = 0.6328125
- .2byte 0x00A7 @ sin(29*(π/128)) = 0.65234375
- .2byte 0x00AB @ sin(30*(π/128)) = 0.66796875
- .2byte 0x00B0 @ sin(31*(π/128)) = 0.6875
- .2byte 0x00B5 @ sin(32*(π/128)) = 0.70703125
- .2byte 0x00B9 @ sin(33*(π/128)) = 0.72265625
- .2byte 0x00BD @ sin(34*(π/128)) = 0.73828125
- .2byte 0x00C1 @ sin(35*(π/128)) = 0.75390625
- .2byte 0x00C5 @ sin(36*(π/128)) = 0.76953125
- .2byte 0x00C9 @ sin(37*(π/128)) = 0.78515625
- .2byte 0x00CD @ sin(38*(π/128)) = 0.80078125
- .2byte 0x00D1 @ sin(39*(π/128)) = 0.81640625
- .2byte 0x00D4 @ sin(40*(π/128)) = 0.828125
- .2byte 0x00D8 @ sin(41*(π/128)) = 0.84375
- .2byte 0x00DB @ sin(42*(π/128)) = 0.85546875
- .2byte 0x00DE @ sin(43*(π/128)) = 0.8671875
- .2byte 0x00E1 @ sin(44*(π/128)) = 0.87890625
- .2byte 0x00E4 @ sin(45*(π/128)) = 0.890625
- .2byte 0x00E7 @ sin(46*(π/128)) = 0.90234375
- .2byte 0x00EA @ sin(47*(π/128)) = 0.9140625
- .2byte 0x00EC @ sin(48*(π/128)) = 0.921875
- .2byte 0x00EE @ sin(49*(π/128)) = 0.9296875
- .2byte 0x00F1 @ sin(50*(π/128)) = 0.94140625
- .2byte 0x00F3 @ sin(51*(π/128)) = 0.94921875
- .2byte 0x00F4 @ sin(52*(π/128)) = 0.953125
- .2byte 0x00F6 @ sin(53*(π/128)) = 0.9609375
- .2byte 0x00F8 @ sin(54*(π/128)) = 0.96875
- .2byte 0x00F9 @ sin(55*(π/128)) = 0.97265625
- .2byte 0x00FB @ sin(56*(π/128)) = 0.98046875
- .2byte 0x00FC @ sin(57*(π/128)) = 0.984375
- .2byte 0x00FD @ sin(58*(π/128)) = 0.98828125
- .2byte 0x00FE @ sin(59*(π/128)) = 0.9921875
- .2byte 0x00FE @ sin(60*(π/128)) = 0.9921875
- .2byte 0x00FF @ sin(61*(π/128)) = 0.99609375
- .2byte 0x00FF @ sin(62*(π/128)) = 0.99609375
- .2byte 0x00FF @ sin(63*(π/128)) = 0.99609375
- .2byte 0x0100 @ sin(64*(π/128)) = 1
- .2byte 0x00FF @ sin(65*(π/128)) = 0.99609375
- .2byte 0x00FF @ sin(66*(π/128)) = 0.99609375
- .2byte 0x00FF @ sin(67*(π/128)) = 0.99609375
- .2byte 0x00FE @ sin(68*(π/128)) = 0.9921875
- .2byte 0x00FE @ sin(69*(π/128)) = 0.9921875
- .2byte 0x00FD @ sin(70*(π/128)) = 0.98828125
- .2byte 0x00FC @ sin(71*(π/128)) = 0.984375
- .2byte 0x00FB @ sin(72*(π/128)) = 0.98046875
- .2byte 0x00F9 @ sin(73*(π/128)) = 0.97265625
- .2byte 0x00F8 @ sin(74*(π/128)) = 0.96875
- .2byte 0x00F6 @ sin(75*(π/128)) = 0.9609375
- .2byte 0x00F4 @ sin(76*(π/128)) = 0.953125
- .2byte 0x00F3 @ sin(77*(π/128)) = 0.94921875
- .2byte 0x00F1 @ sin(78*(π/128)) = 0.94140625
- .2byte 0x00EE @ sin(79*(π/128)) = 0.9296875
- .2byte 0x00EC @ sin(80*(π/128)) = 0.921875
- .2byte 0x00EA @ sin(81*(π/128)) = 0.9140625
- .2byte 0x00E7 @ sin(82*(π/128)) = 0.90234375
- .2byte 0x00E4 @ sin(83*(π/128)) = 0.890625
- .2byte 0x00E1 @ sin(84*(π/128)) = 0.87890625
- .2byte 0x00DE @ sin(85*(π/128)) = 0.8671875
- .2byte 0x00DB @ sin(86*(π/128)) = 0.85546875
- .2byte 0x00D8 @ sin(87*(π/128)) = 0.84375
- .2byte 0x00D4 @ sin(88*(π/128)) = 0.828125
- .2byte 0x00D1 @ sin(89*(π/128)) = 0.81640625
- .2byte 0x00CD @ sin(90*(π/128)) = 0.80078125
- .2byte 0x00C9 @ sin(91*(π/128)) = 0.78515625
- .2byte 0x00C5 @ sin(92*(π/128)) = 0.76953125
- .2byte 0x00C1 @ sin(93*(π/128)) = 0.75390625
- .2byte 0x00BD @ sin(94*(π/128)) = 0.73828125
- .2byte 0x00B9 @ sin(95*(π/128)) = 0.72265625
- .2byte 0x00B5 @ sin(96*(π/128)) = 0.70703125
- .2byte 0x00B0 @ sin(97*(π/128)) = 0.6875
- .2byte 0x00AB @ sin(98*(π/128)) = 0.66796875
- .2byte 0x00A7 @ sin(99*(π/128)) = 0.65234375
- .2byte 0x00A2 @ sin(100*(π/128)) = 0.6328125
- .2byte 0x009D @ sin(101*(π/128)) = 0.61328125
- .2byte 0x0098 @ sin(102*(π/128)) = 0.59375
- .2byte 0x0093 @ sin(103*(π/128)) = 0.57421875
- .2byte 0x008E @ sin(104*(π/128)) = 0.5546875
- .2byte 0x0088 @ sin(105*(π/128)) = 0.53125
- .2byte 0x0083 @ sin(106*(π/128)) = 0.51171875
- .2byte 0x007E @ sin(107*(π/128)) = 0.4921875
- .2byte 0x0078 @ sin(108*(π/128)) = 0.46875
- .2byte 0x0073 @ sin(109*(π/128)) = 0.44921875
- .2byte 0x006D @ sin(110*(π/128)) = 0.42578125
- .2byte 0x0067 @ sin(111*(π/128)) = 0.40234375
- .2byte 0x0061 @ sin(112*(π/128)) = 0.37890625
- .2byte 0x005C @ sin(113*(π/128)) = 0.359375
- .2byte 0x0056 @ sin(114*(π/128)) = 0.3359375
- .2byte 0x0050 @ sin(115*(π/128)) = 0.3125
- .2byte 0x004A @ sin(116*(π/128)) = 0.2890625
- .2byte 0x0044 @ sin(117*(π/128)) = 0.265625
- .2byte 0x003E @ sin(118*(π/128)) = 0.2421875
- .2byte 0x0038 @ sin(119*(π/128)) = 0.21875
- .2byte 0x0031 @ sin(120*(π/128)) = 0.19140625
- .2byte 0x002B @ sin(121*(π/128)) = 0.16796875
- .2byte 0x0025 @ sin(122*(π/128)) = 0.14453125
- .2byte 0x001F @ sin(123*(π/128)) = 0.12109375
- .2byte 0x0019 @ sin(124*(π/128)) = 0.09765625
- .2byte 0x0012 @ sin(125*(π/128)) = 0.0703125
- .2byte 0x000C @ sin(126*(π/128)) = 0.046875
- .2byte 0x0006 @ sin(127*(π/128)) = 0.0234375
- .2byte 0x0000 @ sin(128*(π/128)) = 0
- .2byte 0xFFFA @ sin(129*(π/128)) = -0.0234375
- .2byte 0xFFF4 @ sin(130*(π/128)) = -0.046875
- .2byte 0xFFEE @ sin(131*(π/128)) = -0.0703125
- .2byte 0xFFE7 @ sin(132*(π/128)) = -0.09765625
- .2byte 0xFFE1 @ sin(133*(π/128)) = -0.12109375
- .2byte 0xFFDB @ sin(134*(π/128)) = -0.14453125
- .2byte 0xFFD5 @ sin(135*(π/128)) = -0.16796875
- .2byte 0xFFCF @ sin(136*(π/128)) = -0.19140625
- .2byte 0xFFC8 @ sin(137*(π/128)) = -0.21875
- .2byte 0xFFC2 @ sin(138*(π/128)) = -0.2421875
- .2byte 0xFFBC @ sin(139*(π/128)) = -0.265625
- .2byte 0xFFB6 @ sin(140*(π/128)) = -0.2890625
- .2byte 0xFFB0 @ sin(141*(π/128)) = -0.3125
- .2byte 0xFFAA @ sin(142*(π/128)) = -0.3359375
- .2byte 0xFFA4 @ sin(143*(π/128)) = -0.359375
- .2byte 0xFF9F @ sin(144*(π/128)) = -0.37890625
- .2byte 0xFF99 @ sin(145*(π/128)) = -0.40234375
- .2byte 0xFF93 @ sin(146*(π/128)) = -0.42578125
- .2byte 0xFF8D @ sin(147*(π/128)) = -0.44921875
- .2byte 0xFF88 @ sin(148*(π/128)) = -0.46875
- .2byte 0xFF82 @ sin(149*(π/128)) = -0.4921875
- .2byte 0xFF7D @ sin(150*(π/128)) = -0.51171875
- .2byte 0xFF78 @ sin(151*(π/128)) = -0.53125
- .2byte 0xFF72 @ sin(152*(π/128)) = -0.5546875
- .2byte 0xFF6D @ sin(153*(π/128)) = -0.57421875
- .2byte 0xFF68 @ sin(154*(π/128)) = -0.59375
- .2byte 0xFF63 @ sin(155*(π/128)) = -0.61328125
- .2byte 0xFF5E @ sin(156*(π/128)) = -0.6328125
- .2byte 0xFF59 @ sin(157*(π/128)) = -0.65234375
- .2byte 0xFF55 @ sin(158*(π/128)) = -0.66796875
- .2byte 0xFF50 @ sin(159*(π/128)) = -0.6875
- .2byte 0xFF4B @ sin(160*(π/128)) = -0.70703125
- .2byte 0xFF47 @ sin(161*(π/128)) = -0.72265625
- .2byte 0xFF43 @ sin(162*(π/128)) = -0.73828125
- .2byte 0xFF3F @ sin(163*(π/128)) = -0.75390625
- .2byte 0xFF3B @ sin(164*(π/128)) = -0.76953125
- .2byte 0xFF37 @ sin(165*(π/128)) = -0.78515625
- .2byte 0xFF33 @ sin(166*(π/128)) = -0.80078125
- .2byte 0xFF2F @ sin(167*(π/128)) = -0.81640625
- .2byte 0xFF2C @ sin(168*(π/128)) = -0.828125
- .2byte 0xFF28 @ sin(169*(π/128)) = -0.84375
- .2byte 0xFF25 @ sin(170*(π/128)) = -0.85546875
- .2byte 0xFF22 @ sin(171*(π/128)) = -0.8671875
- .2byte 0xFF1F @ sin(172*(π/128)) = -0.87890625
- .2byte 0xFF1C @ sin(173*(π/128)) = -0.890625
- .2byte 0xFF19 @ sin(174*(π/128)) = -0.90234375
- .2byte 0xFF16 @ sin(175*(π/128)) = -0.9140625
- .2byte 0xFF14 @ sin(176*(π/128)) = -0.921875
- .2byte 0xFF12 @ sin(177*(π/128)) = -0.9296875
- .2byte 0xFF0F @ sin(178*(π/128)) = -0.94140625
- .2byte 0xFF0D @ sin(179*(π/128)) = -0.94921875
- .2byte 0xFF0C @ sin(180*(π/128)) = -0.953125
- .2byte 0xFF0A @ sin(181*(π/128)) = -0.9609375
- .2byte 0xFF08 @ sin(182*(π/128)) = -0.96875
- .2byte 0xFF07 @ sin(183*(π/128)) = -0.97265625
- .2byte 0xFF05 @ sin(184*(π/128)) = -0.98046875
- .2byte 0xFF04 @ sin(185*(π/128)) = -0.984375
- .2byte 0xFF03 @ sin(186*(π/128)) = -0.98828125
- .2byte 0xFF02 @ sin(187*(π/128)) = -0.9921875
- .2byte 0xFF02 @ sin(188*(π/128)) = -0.9921875
- .2byte 0xFF01 @ sin(189*(π/128)) = -0.99609375
- .2byte 0xFF01 @ sin(190*(π/128)) = -0.99609375
- .2byte 0xFF01 @ sin(191*(π/128)) = -0.99609375
- .2byte 0xFF00 @ sin(192*(π/128)) = -1
- .2byte 0xFF01 @ sin(193*(π/128)) = -0.99609375
- .2byte 0xFF01 @ sin(194*(π/128)) = -0.99609375
- .2byte 0xFF01 @ sin(195*(π/128)) = -0.99609375
- .2byte 0xFF02 @ sin(196*(π/128)) = -0.9921875
- .2byte 0xFF02 @ sin(197*(π/128)) = -0.9921875
- .2byte 0xFF03 @ sin(198*(π/128)) = -0.98828125
- .2byte 0xFF04 @ sin(199*(π/128)) = -0.984375
- .2byte 0xFF05 @ sin(200*(π/128)) = -0.98046875
- .2byte 0xFF07 @ sin(201*(π/128)) = -0.97265625
- .2byte 0xFF08 @ sin(202*(π/128)) = -0.96875
- .2byte 0xFF0A @ sin(203*(π/128)) = -0.9609375
- .2byte 0xFF0C @ sin(204*(π/128)) = -0.953125
- .2byte 0xFF0D @ sin(205*(π/128)) = -0.94921875
- .2byte 0xFF0F @ sin(206*(π/128)) = -0.94140625
- .2byte 0xFF12 @ sin(207*(π/128)) = -0.9296875
- .2byte 0xFF14 @ sin(208*(π/128)) = -0.921875
- .2byte 0xFF16 @ sin(209*(π/128)) = -0.9140625
- .2byte 0xFF19 @ sin(210*(π/128)) = -0.90234375
- .2byte 0xFF1C @ sin(211*(π/128)) = -0.890625
- .2byte 0xFF1F @ sin(212*(π/128)) = -0.87890625
- .2byte 0xFF22 @ sin(213*(π/128)) = -0.8671875
- .2byte 0xFF25 @ sin(214*(π/128)) = -0.85546875
- .2byte 0xFF28 @ sin(215*(π/128)) = -0.84375
- .2byte 0xFF2C @ sin(216*(π/128)) = -0.828125
- .2byte 0xFF2F @ sin(217*(π/128)) = -0.81640625
- .2byte 0xFF33 @ sin(218*(π/128)) = -0.80078125
- .2byte 0xFF37 @ sin(219*(π/128)) = -0.78515625
- .2byte 0xFF3B @ sin(220*(π/128)) = -0.76953125
- .2byte 0xFF3F @ sin(221*(π/128)) = -0.75390625
- .2byte 0xFF43 @ sin(222*(π/128)) = -0.73828125
- .2byte 0xFF47 @ sin(223*(π/128)) = -0.72265625
- .2byte 0xFF4B @ sin(224*(π/128)) = -0.70703125
- .2byte 0xFF50 @ sin(225*(π/128)) = -0.6875
- .2byte 0xFF55 @ sin(226*(π/128)) = -0.66796875
- .2byte 0xFF59 @ sin(227*(π/128)) = -0.65234375
- .2byte 0xFF5E @ sin(228*(π/128)) = -0.6328125
- .2byte 0xFF63 @ sin(229*(π/128)) = -0.61328125
- .2byte 0xFF68 @ sin(230*(π/128)) = -0.59375
- .2byte 0xFF6D @ sin(231*(π/128)) = -0.57421875
- .2byte 0xFF72 @ sin(232*(π/128)) = -0.5546875
- .2byte 0xFF78 @ sin(233*(π/128)) = -0.53125
- .2byte 0xFF7D @ sin(234*(π/128)) = -0.51171875
- .2byte 0xFF82 @ sin(235*(π/128)) = -0.4921875
- .2byte 0xFF88 @ sin(236*(π/128)) = -0.46875
- .2byte 0xFF8D @ sin(237*(π/128)) = -0.44921875
- .2byte 0xFF93 @ sin(238*(π/128)) = -0.42578125
- .2byte 0xFF99 @ sin(239*(π/128)) = -0.40234375
- .2byte 0xFF9F @ sin(240*(π/128)) = -0.37890625
- .2byte 0xFFA4 @ sin(241*(π/128)) = -0.359375
- .2byte 0xFFAA @ sin(242*(π/128)) = -0.3359375
- .2byte 0xFFB0 @ sin(243*(π/128)) = -0.3125
- .2byte 0xFFB6 @ sin(244*(π/128)) = -0.2890625
- .2byte 0xFFBC @ sin(245*(π/128)) = -0.265625
- .2byte 0xFFC2 @ sin(246*(π/128)) = -0.2421875
- .2byte 0xFFC8 @ sin(247*(π/128)) = -0.21875
- .2byte 0xFFCF @ sin(248*(π/128)) = -0.19140625
- .2byte 0xFFD5 @ sin(249*(π/128)) = -0.16796875
- .2byte 0xFFDB @ sin(250*(π/128)) = -0.14453125
- .2byte 0xFFE1 @ sin(251*(π/128)) = -0.12109375
- .2byte 0xFFE7 @ sin(252*(π/128)) = -0.09765625
- .2byte 0xFFEE @ sin(253*(π/128)) = -0.0703125
- .2byte 0xFFF4 @ sin(254*(π/128)) = -0.046875
- .2byte 0xFFFA @ sin(255*(π/128)) = -0.0234375
- .2byte 0x0000 @ sin(256*(π/128)) = 0
- .2byte 0x0006 @ sin(257*(π/128)) = 0.0234375
- .2byte 0x000C @ sin(258*(π/128)) = 0.046875
- .2byte 0x0012 @ sin(259*(π/128)) = 0.0703125
- .2byte 0x0019 @ sin(260*(π/128)) = 0.09765625
- .2byte 0x001F @ sin(261*(π/128)) = 0.12109375
- .2byte 0x0025 @ sin(262*(π/128)) = 0.14453125
- .2byte 0x002B @ sin(263*(π/128)) = 0.16796875
- .2byte 0x0031 @ sin(264*(π/128)) = 0.19140625
- .2byte 0x0038 @ sin(265*(π/128)) = 0.21875
- .2byte 0x003E @ sin(266*(π/128)) = 0.2421875
- .2byte 0x0044 @ sin(267*(π/128)) = 0.265625
- .2byte 0x004A @ sin(268*(π/128)) = 0.2890625
- .2byte 0x0050 @ sin(269*(π/128)) = 0.3125
- .2byte 0x0056 @ sin(270*(π/128)) = 0.3359375
- .2byte 0x005C @ sin(271*(π/128)) = 0.359375
- .2byte 0x0061 @ sin(272*(π/128)) = 0.37890625
- .2byte 0x0067 @ sin(273*(π/128)) = 0.40234375
- .2byte 0x006D @ sin(274*(π/128)) = 0.42578125
- .2byte 0x0073 @ sin(275*(π/128)) = 0.44921875
- .2byte 0x0078 @ sin(276*(π/128)) = 0.46875
- .2byte 0x007E @ sin(277*(π/128)) = 0.4921875
- .2byte 0x0083 @ sin(278*(π/128)) = 0.51171875
- .2byte 0x0088 @ sin(279*(π/128)) = 0.53125
- .2byte 0x008E @ sin(280*(π/128)) = 0.5546875
- .2byte 0x0093 @ sin(281*(π/128)) = 0.57421875
- .2byte 0x0098 @ sin(282*(π/128)) = 0.59375
- .2byte 0x009D @ sin(283*(π/128)) = 0.61328125
- .2byte 0x00A2 @ sin(284*(π/128)) = 0.6328125
- .2byte 0x00A7 @ sin(285*(π/128)) = 0.65234375
- .2byte 0x00AB @ sin(286*(π/128)) = 0.66796875
- .2byte 0x00B0 @ sin(287*(π/128)) = 0.6875
- .2byte 0x00B5 @ sin(288*(π/128)) = 0.70703125
- .2byte 0x00B9 @ sin(289*(π/128)) = 0.72265625
- .2byte 0x00BD @ sin(290*(π/128)) = 0.73828125
- .2byte 0x00C1 @ sin(291*(π/128)) = 0.75390625
- .2byte 0x00C5 @ sin(292*(π/128)) = 0.76953125
- .2byte 0x00C9 @ sin(293*(π/128)) = 0.78515625
- .2byte 0x00CD @ sin(294*(π/128)) = 0.80078125
- .2byte 0x00D1 @ sin(295*(π/128)) = 0.81640625
- .2byte 0x00D4 @ sin(296*(π/128)) = 0.828125
- .2byte 0x00D8 @ sin(297*(π/128)) = 0.84375
- .2byte 0x00DB @ sin(298*(π/128)) = 0.85546875
- .2byte 0x00DE @ sin(299*(π/128)) = 0.8671875
- .2byte 0x00E1 @ sin(300*(π/128)) = 0.87890625
- .2byte 0x00E4 @ sin(301*(π/128)) = 0.890625
- .2byte 0x00E7 @ sin(302*(π/128)) = 0.90234375
- .2byte 0x00EA @ sin(303*(π/128)) = 0.9140625
- .2byte 0x00EC @ sin(304*(π/128)) = 0.921875
- .2byte 0x00EE @ sin(305*(π/128)) = 0.9296875
- .2byte 0x00F1 @ sin(306*(π/128)) = 0.94140625
- .2byte 0x00F3 @ sin(307*(π/128)) = 0.94921875
- .2byte 0x00F4 @ sin(308*(π/128)) = 0.953125
- .2byte 0x00F6 @ sin(309*(π/128)) = 0.9609375
- .2byte 0x00F8 @ sin(310*(π/128)) = 0.96875
- .2byte 0x00F9 @ sin(311*(π/128)) = 0.97265625
- .2byte 0x00FB @ sin(312*(π/128)) = 0.98046875
- .2byte 0x00FC @ sin(313*(π/128)) = 0.984375
- .2byte 0x00FD @ sin(314*(π/128)) = 0.98828125
- .2byte 0x00FE @ sin(315*(π/128)) = 0.9921875
- .2byte 0x00FE @ sin(316*(π/128)) = 0.9921875
- .2byte 0x00FF @ sin(317*(π/128)) = 0.99609375
- .2byte 0x00FF @ sin(318*(π/128)) = 0.99609375
- .2byte 0x00FF @ sin(319*(π/128)) = 0.99609375
diff --git a/data/trig.s b/data/trig.s
deleted file mode 100644
index 6f9c95971..000000000
--- a/data/trig.s
+++ /dev/null
@@ -1,10 +0,0 @@
- .include "asm/macros.inc"
- .include "constants/constants.inc"
-
- .section .rodata
-
-@ 8208344
- .include "data/sine_table.inc"
-
-@ 82085C4
- .include "data/sine_degree_table.inc"
diff --git a/include/trig.h b/include/trig.h
index 03d8c453e..a2f98a3e6 100644
--- a/include/trig.h
+++ b/include/trig.h
@@ -1,7 +1,7 @@
#ifndef GUARD_TRIG_H
#define GUARD_TRIG_H
-extern s16 gSineTable[];
+extern const s16 gSineTable[];
s16 Sin(s16 index, s16 amplitude);
s16 Cos(s16 index, s16 amplitude);
diff --git a/ld_script.txt b/ld_script.txt
index 7d44b019a..0e1910c53 100644
--- a/ld_script.txt
+++ b/ld_script.txt
@@ -341,7 +341,7 @@ SECTIONS {
data/data2.o(.rodata);
data/pokemon.o(.rodata);
. = ALIGN(4);
- data/trig.o(.rodata);
+ src/trig.o(.rodata);
data/util.o(.rodata);
data/daycare.o(.rodata);
data/egg_hatch.o(.rodata);
diff --git a/src/trig.c b/src/trig.c
index d64231087..bfaeb16e8 100644
--- a/src/trig.c
+++ b/src/trig.c
@@ -1,7 +1,515 @@
#include "global.h"
#include "trig.h"
-extern s16 gSineDegreeTable[];
+// values of sin(x*(π/128)) as Q8.8 fixed-point numbers from x = 0 to x = 319
+const s16 gSineTable[] =
+{
+ 0x0000, // sin(0*(π/128)) = 0
+ 0x0006, // sin(1*(π/128)) = 0.0234375
+ 0x000C, // sin(2*(π/128)) = 0.046875
+ 0x0012, // sin(3*(π/128)) = 0.0703125
+ 0x0019, // sin(4*(π/128)) = 0.09765625
+ 0x001F, // sin(5*(π/128)) = 0.12109375
+ 0x0025, // sin(6*(π/128)) = 0.14453125
+ 0x002B, // sin(7*(π/128)) = 0.16796875
+ 0x0031, // sin(8*(π/128)) = 0.19140625
+ 0x0038, // sin(9*(π/128)) = 0.21875
+ 0x003E, // sin(10*(π/128)) = 0.2421875
+ 0x0044, // sin(11*(π/128)) = 0.265625
+ 0x004A, // sin(12*(π/128)) = 0.2890625
+ 0x0050, // sin(13*(π/128)) = 0.3125
+ 0x0056, // sin(14*(π/128)) = 0.3359375
+ 0x005C, // sin(15*(π/128)) = 0.359375
+ 0x0061, // sin(16*(π/128)) = 0.37890625
+ 0x0067, // sin(17*(π/128)) = 0.40234375
+ 0x006D, // sin(18*(π/128)) = 0.42578125
+ 0x0073, // sin(19*(π/128)) = 0.44921875
+ 0x0078, // sin(20*(π/128)) = 0.46875
+ 0x007E, // sin(21*(π/128)) = 0.4921875
+ 0x0083, // sin(22*(π/128)) = 0.51171875
+ 0x0088, // sin(23*(π/128)) = 0.53125
+ 0x008E, // sin(24*(π/128)) = 0.5546875
+ 0x0093, // sin(25*(π/128)) = 0.57421875
+ 0x0098, // sin(26*(π/128)) = 0.59375
+ 0x009D, // sin(27*(π/128)) = 0.61328125
+ 0x00A2, // sin(28*(π/128)) = 0.6328125
+ 0x00A7, // sin(29*(π/128)) = 0.65234375
+ 0x00AB, // sin(30*(π/128)) = 0.66796875
+ 0x00B0, // sin(31*(π/128)) = 0.6875
+ 0x00B5, // sin(32*(π/128)) = 0.70703125
+ 0x00B9, // sin(33*(π/128)) = 0.72265625
+ 0x00BD, // sin(34*(π/128)) = 0.73828125
+ 0x00C1, // sin(35*(π/128)) = 0.75390625
+ 0x00C5, // sin(36*(π/128)) = 0.76953125
+ 0x00C9, // sin(37*(π/128)) = 0.78515625
+ 0x00CD, // sin(38*(π/128)) = 0.80078125
+ 0x00D1, // sin(39*(π/128)) = 0.81640625
+ 0x00D4, // sin(40*(π/128)) = 0.828125
+ 0x00D8, // sin(41*(π/128)) = 0.84375
+ 0x00DB, // sin(42*(π/128)) = 0.85546875
+ 0x00DE, // sin(43*(π/128)) = 0.8671875
+ 0x00E1, // sin(44*(π/128)) = 0.87890625
+ 0x00E4, // sin(45*(π/128)) = 0.890625
+ 0x00E7, // sin(46*(π/128)) = 0.90234375
+ 0x00EA, // sin(47*(π/128)) = 0.9140625
+ 0x00EC, // sin(48*(π/128)) = 0.921875
+ 0x00EE, // sin(49*(π/128)) = 0.9296875
+ 0x00F1, // sin(50*(π/128)) = 0.94140625
+ 0x00F3, // sin(51*(π/128)) = 0.94921875
+ 0x00F4, // sin(52*(π/128)) = 0.953125
+ 0x00F6, // sin(53*(π/128)) = 0.9609375
+ 0x00F8, // sin(54*(π/128)) = 0.96875
+ 0x00F9, // sin(55*(π/128)) = 0.97265625
+ 0x00FB, // sin(56*(π/128)) = 0.98046875
+ 0x00FC, // sin(57*(π/128)) = 0.984375
+ 0x00FD, // sin(58*(π/128)) = 0.98828125
+ 0x00FE, // sin(59*(π/128)) = 0.9921875
+ 0x00FE, // sin(60*(π/128)) = 0.9921875
+ 0x00FF, // sin(61*(π/128)) = 0.99609375
+ 0x00FF, // sin(62*(π/128)) = 0.99609375
+ 0x00FF, // sin(63*(π/128)) = 0.99609375
+ 0x0100, // sin(64*(π/128)) = 1
+ 0x00FF, // sin(65*(π/128)) = 0.99609375
+ 0x00FF, // sin(66*(π/128)) = 0.99609375
+ 0x00FF, // sin(67*(π/128)) = 0.99609375
+ 0x00FE, // sin(68*(π/128)) = 0.9921875
+ 0x00FE, // sin(69*(π/128)) = 0.9921875
+ 0x00FD, // sin(70*(π/128)) = 0.98828125
+ 0x00FC, // sin(71*(π/128)) = 0.984375
+ 0x00FB, // sin(72*(π/128)) = 0.98046875
+ 0x00F9, // sin(73*(π/128)) = 0.97265625
+ 0x00F8, // sin(74*(π/128)) = 0.96875
+ 0x00F6, // sin(75*(π/128)) = 0.9609375
+ 0x00F4, // sin(76*(π/128)) = 0.953125
+ 0x00F3, // sin(77*(π/128)) = 0.94921875
+ 0x00F1, // sin(78*(π/128)) = 0.94140625
+ 0x00EE, // sin(79*(π/128)) = 0.9296875
+ 0x00EC, // sin(80*(π/128)) = 0.921875
+ 0x00EA, // sin(81*(π/128)) = 0.9140625
+ 0x00E7, // sin(82*(π/128)) = 0.90234375
+ 0x00E4, // sin(83*(π/128)) = 0.890625
+ 0x00E1, // sin(84*(π/128)) = 0.87890625
+ 0x00DE, // sin(85*(π/128)) = 0.8671875
+ 0x00DB, // sin(86*(π/128)) = 0.85546875
+ 0x00D8, // sin(87*(π/128)) = 0.84375
+ 0x00D4, // sin(88*(π/128)) = 0.828125
+ 0x00D1, // sin(89*(π/128)) = 0.81640625
+ 0x00CD, // sin(90*(π/128)) = 0.80078125
+ 0x00C9, // sin(91*(π/128)) = 0.78515625
+ 0x00C5, // sin(92*(π/128)) = 0.76953125
+ 0x00C1, // sin(93*(π/128)) = 0.75390625
+ 0x00BD, // sin(94*(π/128)) = 0.73828125
+ 0x00B9, // sin(95*(π/128)) = 0.72265625
+ 0x00B5, // sin(96*(π/128)) = 0.70703125
+ 0x00B0, // sin(97*(π/128)) = 0.6875
+ 0x00AB, // sin(98*(π/128)) = 0.66796875
+ 0x00A7, // sin(99*(π/128)) = 0.65234375
+ 0x00A2, // sin(100*(π/128)) = 0.6328125
+ 0x009D, // sin(101*(π/128)) = 0.61328125
+ 0x0098, // sin(102*(π/128)) = 0.59375
+ 0x0093, // sin(103*(π/128)) = 0.57421875
+ 0x008E, // sin(104*(π/128)) = 0.5546875
+ 0x0088, // sin(105*(π/128)) = 0.53125
+ 0x0083, // sin(106*(π/128)) = 0.51171875
+ 0x007E, // sin(107*(π/128)) = 0.4921875
+ 0x0078, // sin(108*(π/128)) = 0.46875
+ 0x0073, // sin(109*(π/128)) = 0.44921875
+ 0x006D, // sin(110*(π/128)) = 0.42578125
+ 0x0067, // sin(111*(π/128)) = 0.40234375
+ 0x0061, // sin(112*(π/128)) = 0.37890625
+ 0x005C, // sin(113*(π/128)) = 0.359375
+ 0x0056, // sin(114*(π/128)) = 0.3359375
+ 0x0050, // sin(115*(π/128)) = 0.3125
+ 0x004A, // sin(116*(π/128)) = 0.2890625
+ 0x0044, // sin(117*(π/128)) = 0.265625
+ 0x003E, // sin(118*(π/128)) = 0.2421875
+ 0x0038, // sin(119*(π/128)) = 0.21875
+ 0x0031, // sin(120*(π/128)) = 0.19140625
+ 0x002B, // sin(121*(π/128)) = 0.16796875
+ 0x0025, // sin(122*(π/128)) = 0.14453125
+ 0x001F, // sin(123*(π/128)) = 0.12109375
+ 0x0019, // sin(124*(π/128)) = 0.09765625
+ 0x0012, // sin(125*(π/128)) = 0.0703125
+ 0x000C, // sin(126*(π/128)) = 0.046875
+ 0x0006, // sin(127*(π/128)) = 0.0234375
+ 0x0000, // sin(128*(π/128)) = 0
+ 0xFFFA, // sin(129*(π/128)) = -0.0234375
+ 0xFFF4, // sin(130*(π/128)) = -0.046875
+ 0xFFEE, // sin(131*(π/128)) = -0.0703125
+ 0xFFE7, // sin(132*(π/128)) = -0.09765625
+ 0xFFE1, // sin(133*(π/128)) = -0.12109375
+ 0xFFDB, // sin(134*(π/128)) = -0.14453125
+ 0xFFD5, // sin(135*(π/128)) = -0.16796875
+ 0xFFCF, // sin(136*(π/128)) = -0.19140625
+ 0xFFC8, // sin(137*(π/128)) = -0.21875
+ 0xFFC2, // sin(138*(π/128)) = -0.2421875
+ 0xFFBC, // sin(139*(π/128)) = -0.265625
+ 0xFFB6, // sin(140*(π/128)) = -0.2890625
+ 0xFFB0, // sin(141*(π/128)) = -0.3125
+ 0xFFAA, // sin(142*(π/128)) = -0.3359375
+ 0xFFA4, // sin(143*(π/128)) = -0.359375
+ 0xFF9F, // sin(144*(π/128)) = -0.37890625
+ 0xFF99, // sin(145*(π/128)) = -0.40234375
+ 0xFF93, // sin(146*(π/128)) = -0.42578125
+ 0xFF8D, // sin(147*(π/128)) = -0.44921875
+ 0xFF88, // sin(148*(π/128)) = -0.46875
+ 0xFF82, // sin(149*(π/128)) = -0.4921875
+ 0xFF7D, // sin(150*(π/128)) = -0.51171875
+ 0xFF78, // sin(151*(π/128)) = -0.53125
+ 0xFF72, // sin(152*(π/128)) = -0.5546875
+ 0xFF6D, // sin(153*(π/128)) = -0.57421875
+ 0xFF68, // sin(154*(π/128)) = -0.59375
+ 0xFF63, // sin(155*(π/128)) = -0.61328125
+ 0xFF5E, // sin(156*(π/128)) = -0.6328125
+ 0xFF59, // sin(157*(π/128)) = -0.65234375
+ 0xFF55, // sin(158*(π/128)) = -0.66796875
+ 0xFF50, // sin(159*(π/128)) = -0.6875
+ 0xFF4B, // sin(160*(π/128)) = -0.70703125
+ 0xFF47, // sin(161*(π/128)) = -0.72265625
+ 0xFF43, // sin(162*(π/128)) = -0.73828125
+ 0xFF3F, // sin(163*(π/128)) = -0.75390625
+ 0xFF3B, // sin(164*(π/128)) = -0.76953125
+ 0xFF37, // sin(165*(π/128)) = -0.78515625
+ 0xFF33, // sin(166*(π/128)) = -0.80078125
+ 0xFF2F, // sin(167*(π/128)) = -0.81640625
+ 0xFF2C, // sin(168*(π/128)) = -0.828125
+ 0xFF28, // sin(169*(π/128)) = -0.84375
+ 0xFF25, // sin(170*(π/128)) = -0.85546875
+ 0xFF22, // sin(171*(π/128)) = -0.8671875
+ 0xFF1F, // sin(172*(π/128)) = -0.87890625
+ 0xFF1C, // sin(173*(π/128)) = -0.890625
+ 0xFF19, // sin(174*(π/128)) = -0.90234375
+ 0xFF16, // sin(175*(π/128)) = -0.9140625
+ 0xFF14, // sin(176*(π/128)) = -0.921875
+ 0xFF12, // sin(177*(π/128)) = -0.9296875
+ 0xFF0F, // sin(178*(π/128)) = -0.94140625
+ 0xFF0D, // sin(179*(π/128)) = -0.94921875
+ 0xFF0C, // sin(180*(π/128)) = -0.953125
+ 0xFF0A, // sin(181*(π/128)) = -0.9609375
+ 0xFF08, // sin(182*(π/128)) = -0.96875
+ 0xFF07, // sin(183*(π/128)) = -0.97265625
+ 0xFF05, // sin(184*(π/128)) = -0.98046875
+ 0xFF04, // sin(185*(π/128)) = -0.984375
+ 0xFF03, // sin(186*(π/128)) = -0.98828125
+ 0xFF02, // sin(187*(π/128)) = -0.9921875
+ 0xFF02, // sin(188*(π/128)) = -0.9921875
+ 0xFF01, // sin(189*(π/128)) = -0.99609375
+ 0xFF01, // sin(190*(π/128)) = -0.99609375
+ 0xFF01, // sin(191*(π/128)) = -0.99609375
+ 0xFF00, // sin(192*(π/128)) = -1
+ 0xFF01, // sin(193*(π/128)) = -0.99609375
+ 0xFF01, // sin(194*(π/128)) = -0.99609375
+ 0xFF01, // sin(195*(π/128)) = -0.99609375
+ 0xFF02, // sin(196*(π/128)) = -0.9921875
+ 0xFF02, // sin(197*(π/128)) = -0.9921875
+ 0xFF03, // sin(198*(π/128)) = -0.98828125
+ 0xFF04, // sin(199*(π/128)) = -0.984375
+ 0xFF05, // sin(200*(π/128)) = -0.98046875
+ 0xFF07, // sin(201*(π/128)) = -0.97265625
+ 0xFF08, // sin(202*(π/128)) = -0.96875
+ 0xFF0A, // sin(203*(π/128)) = -0.9609375
+ 0xFF0C, // sin(204*(π/128)) = -0.953125
+ 0xFF0D, // sin(205*(π/128)) = -0.94921875
+ 0xFF0F, // sin(206*(π/128)) = -0.94140625
+ 0xFF12, // sin(207*(π/128)) = -0.9296875
+ 0xFF14, // sin(208*(π/128)) = -0.921875
+ 0xFF16, // sin(209*(π/128)) = -0.9140625
+ 0xFF19, // sin(210*(π/128)) = -0.90234375
+ 0xFF1C, // sin(211*(π/128)) = -0.890625
+ 0xFF1F, // sin(212*(π/128)) = -0.87890625
+ 0xFF22, // sin(213*(π/128)) = -0.8671875
+ 0xFF25, // sin(214*(π/128)) = -0.85546875
+ 0xFF28, // sin(215*(π/128)) = -0.84375
+ 0xFF2C, // sin(216*(π/128)) = -0.828125
+ 0xFF2F, // sin(217*(π/128)) = -0.81640625
+ 0xFF33, // sin(218*(π/128)) = -0.80078125
+ 0xFF37, // sin(219*(π/128)) = -0.78515625
+ 0xFF3B, // sin(220*(π/128)) = -0.76953125
+ 0xFF3F, // sin(221*(π/128)) = -0.75390625
+ 0xFF43, // sin(222*(π/128)) = -0.73828125
+ 0xFF47, // sin(223*(π/128)) = -0.72265625
+ 0xFF4B, // sin(224*(π/128)) = -0.70703125
+ 0xFF50, // sin(225*(π/128)) = -0.6875
+ 0xFF55, // sin(226*(π/128)) = -0.66796875
+ 0xFF59, // sin(227*(π/128)) = -0.65234375
+ 0xFF5E, // sin(228*(π/128)) = -0.6328125
+ 0xFF63, // sin(229*(π/128)) = -0.61328125
+ 0xFF68, // sin(230*(π/128)) = -0.59375
+ 0xFF6D, // sin(231*(π/128)) = -0.57421875
+ 0xFF72, // sin(232*(π/128)) = -0.5546875
+ 0xFF78, // sin(233*(π/128)) = -0.53125
+ 0xFF7D, // sin(234*(π/128)) = -0.51171875
+ 0xFF82, // sin(235*(π/128)) = -0.4921875
+ 0xFF88, // sin(236*(π/128)) = -0.46875
+ 0xFF8D, // sin(237*(π/128)) = -0.44921875
+ 0xFF93, // sin(238*(π/128)) = -0.42578125
+ 0xFF99, // sin(239*(π/128)) = -0.40234375
+ 0xFF9F, // sin(240*(π/128)) = -0.37890625
+ 0xFFA4, // sin(241*(π/128)) = -0.359375
+ 0xFFAA, // sin(242*(π/128)) = -0.3359375
+ 0xFFB0, // sin(243*(π/128)) = -0.3125
+ 0xFFB6, // sin(244*(π/128)) = -0.2890625
+ 0xFFBC, // sin(245*(π/128)) = -0.265625
+ 0xFFC2, // sin(246*(π/128)) = -0.2421875
+ 0xFFC8, // sin(247*(π/128)) = -0.21875
+ 0xFFCF, // sin(248*(π/128)) = -0.19140625
+ 0xFFD5, // sin(249*(π/128)) = -0.16796875
+ 0xFFDB, // sin(250*(π/128)) = -0.14453125
+ 0xFFE1, // sin(251*(π/128)) = -0.12109375
+ 0xFFE7, // sin(252*(π/128)) = -0.09765625
+ 0xFFEE, // sin(253*(π/128)) = -0.0703125
+ 0xFFF4, // sin(254*(π/128)) = -0.046875
+ 0xFFFA, // sin(255*(π/128)) = -0.0234375
+ 0x0000, // sin(256*(π/128)) = 0
+ 0x0006, // sin(257*(π/128)) = 0.0234375
+ 0x000C, // sin(258*(π/128)) = 0.046875
+ 0x0012, // sin(259*(π/128)) = 0.0703125
+ 0x0019, // sin(260*(π/128)) = 0.09765625
+ 0x001F, // sin(261*(π/128)) = 0.12109375
+ 0x0025, // sin(262*(π/128)) = 0.14453125
+ 0x002B, // sin(263*(π/128)) = 0.16796875
+ 0x0031, // sin(264*(π/128)) = 0.19140625
+ 0x0038, // sin(265*(π/128)) = 0.21875
+ 0x003E, // sin(266*(π/128)) = 0.2421875
+ 0x0044, // sin(267*(π/128)) = 0.265625
+ 0x004A, // sin(268*(π/128)) = 0.2890625
+ 0x0050, // sin(269*(π/128)) = 0.3125
+ 0x0056, // sin(270*(π/128)) = 0.3359375
+ 0x005C, // sin(271*(π/128)) = 0.359375
+ 0x0061, // sin(272*(π/128)) = 0.37890625
+ 0x0067, // sin(273*(π/128)) = 0.40234375
+ 0x006D, // sin(274*(π/128)) = 0.42578125
+ 0x0073, // sin(275*(π/128)) = 0.44921875
+ 0x0078, // sin(276*(π/128)) = 0.46875
+ 0x007E, // sin(277*(π/128)) = 0.4921875
+ 0x0083, // sin(278*(π/128)) = 0.51171875
+ 0x0088, // sin(279*(π/128)) = 0.53125
+ 0x008E, // sin(280*(π/128)) = 0.5546875
+ 0x0093, // sin(281*(π/128)) = 0.57421875
+ 0x0098, // sin(282*(π/128)) = 0.59375
+ 0x009D, // sin(283*(π/128)) = 0.61328125
+ 0x00A2, // sin(284*(π/128)) = 0.6328125
+ 0x00A7, // sin(285*(π/128)) = 0.65234375
+ 0x00AB, // sin(286*(π/128)) = 0.66796875
+ 0x00B0, // sin(287*(π/128)) = 0.6875
+ 0x00B5, // sin(288*(π/128)) = 0.70703125
+ 0x00B9, // sin(289*(π/128)) = 0.72265625
+ 0x00BD, // sin(290*(π/128)) = 0.73828125
+ 0x00C1, // sin(291*(π/128)) = 0.75390625
+ 0x00C5, // sin(292*(π/128)) = 0.76953125
+ 0x00C9, // sin(293*(π/128)) = 0.78515625
+ 0x00CD, // sin(294*(π/128)) = 0.80078125
+ 0x00D1, // sin(295*(π/128)) = 0.81640625
+ 0x00D4, // sin(296*(π/128)) = 0.828125
+ 0x00D8, // sin(297*(π/128)) = 0.84375
+ 0x00DB, // sin(298*(π/128)) = 0.85546875
+ 0x00DE, // sin(299*(π/128)) = 0.8671875
+ 0x00E1, // sin(300*(π/128)) = 0.87890625
+ 0x00E4, // sin(301*(π/128)) = 0.890625
+ 0x00E7, // sin(302*(π/128)) = 0.90234375
+ 0x00EA, // sin(303*(π/128)) = 0.9140625
+ 0x00EC, // sin(304*(π/128)) = 0.921875
+ 0x00EE, // sin(305*(π/128)) = 0.9296875
+ 0x00F1, // sin(306*(π/128)) = 0.94140625
+ 0x00F3, // sin(307*(π/128)) = 0.94921875
+ 0x00F4, // sin(308*(π/128)) = 0.953125
+ 0x00F6, // sin(309*(π/128)) = 0.9609375
+ 0x00F8, // sin(310*(π/128)) = 0.96875
+ 0x00F9, // sin(311*(π/128)) = 0.97265625
+ 0x00FB, // sin(312*(π/128)) = 0.98046875
+ 0x00FC, // sin(313*(π/128)) = 0.984375
+ 0x00FD, // sin(314*(π/128)) = 0.98828125
+ 0x00FE, // sin(315*(π/128)) = 0.9921875
+ 0x00FE, // sin(316*(π/128)) = 0.9921875
+ 0x00FF, // sin(317*(π/128)) = 0.99609375
+ 0x00FF, // sin(318*(π/128)) = 0.99609375
+ 0x00FF, // sin(319*(π/128)) = 0.99609375
+};
+
+// values of sin(x) as Q4.12 fixed-point numbers from x = 0° to x = 179°
+const s16 gSineDegreeTable[] =
+{
+ 0x0000, // sin(0°) = 0
+ 0x0047, // sin(1°) = 0.017333984375
+ 0x008F, // sin(2°) = 0.034912109375
+ 0x00D6, // sin(3°) = 0.05224609375
+ 0x011E, // sin(4°) = 0.06982421875
+ 0x0165, // sin(5°) = 0.087158203125
+ 0x01AC, // sin(6°) = 0.1044921875
+ 0x01F3, // sin(7°) = 0.121826171875
+ 0x023A, // sin(8°) = 0.13916015625
+ 0x0281, // sin(9°) = 0.156494140625
+ 0x02C7, // sin(10°) = 0.173583984375
+ 0x030E, // sin(11°) = 0.19091796875
+ 0x0354, // sin(12°) = 0.2080078125
+ 0x0399, // sin(13°) = 0.224853515625
+ 0x03DF, // sin(14°) = 0.241943359375
+ 0x0424, // sin(15°) = 0.2587890625
+ 0x0469, // sin(16°) = 0.275634765625
+ 0x04AE, // sin(17°) = 0.29248046875
+ 0x04F2, // sin(18°) = 0.30908203125
+ 0x0536, // sin(19°) = 0.32568359375
+ 0x0579, // sin(20°) = 0.342041015625
+ 0x05BC, // sin(21°) = 0.3583984375
+ 0x05FE, // sin(22°) = 0.37451171875
+ 0x0640, // sin(23°) = 0.390625
+ 0x0682, // sin(24°) = 0.40673828125
+ 0x06C3, // sin(25°) = 0.422607421875
+ 0x0704, // sin(26°) = 0.4384765625
+ 0x0744, // sin(27°) = 0.4541015625
+ 0x0783, // sin(28°) = 0.469482421875
+ 0x07C2, // sin(29°) = 0.48486328125
+ 0x0800, // sin(30°) = 0.5
+ 0x083E, // sin(31°) = 0.51513671875
+ 0x087B, // sin(32°) = 0.530029296875
+ 0x08B7, // sin(33°) = 0.544677734375
+ 0x08F2, // sin(34°) = 0.55908203125
+ 0x092D, // sin(35°) = 0.573486328125
+ 0x0968, // sin(36°) = 0.587890625
+ 0x09A1, // sin(37°) = 0.601806640625
+ 0x09DA, // sin(38°) = 0.61572265625
+ 0x0A12, // sin(39°) = 0.62939453125
+ 0x0A49, // sin(40°) = 0.642822265625
+ 0x0A7F, // sin(41°) = 0.656005859375
+ 0x0AB5, // sin(42°) = 0.669189453125
+ 0x0AE9, // sin(43°) = 0.681884765625
+ 0x0B1D, // sin(44°) = 0.694580078125
+ 0x0B50, // sin(45°) = 0.70703125
+ 0x0B82, // sin(46°) = 0.71923828125
+ 0x0BB4, // sin(47°) = 0.7314453125
+ 0x0BE4, // sin(48°) = 0.7431640625
+ 0x0C13, // sin(49°) = 0.754638671875
+ 0x0C42, // sin(50°) = 0.76611328125
+ 0x0C6F, // sin(51°) = 0.777099609375
+ 0x0C9C, // sin(52°) = 0.7880859375
+ 0x0CC7, // sin(53°) = 0.798583984375
+ 0x0CF2, // sin(54°) = 0.80908203125
+ 0x0D1B, // sin(55°) = 0.819091796875
+ 0x0D44, // sin(56°) = 0.8291015625
+ 0x0D6B, // sin(57°) = 0.838623046875
+ 0x0D92, // sin(58°) = 0.84814453125
+ 0x0DB7, // sin(59°) = 0.857177734375
+ 0x0DDB, // sin(60°) = 0.865966796875
+ 0x0DFE, // sin(61°) = 0.87451171875
+ 0x0E21, // sin(62°) = 0.883056640625
+ 0x0E42, // sin(63°) = 0.89111328125
+ 0x0E61, // sin(64°) = 0.898681640625
+ 0x0E80, // sin(65°) = 0.90625
+ 0x0E9E, // sin(66°) = 0.91357421875
+ 0x0EBA, // sin(67°) = 0.92041015625
+ 0x0ED6, // sin(68°) = 0.92724609375
+ 0x0EF0, // sin(69°) = 0.93359375
+ 0x0F09, // sin(70°) = 0.939697265625
+ 0x0F21, // sin(71°) = 0.945556640625
+ 0x0F38, // sin(72°) = 0.951171875
+ 0x0F4D, // sin(73°) = 0.956298828125
+ 0x0F61, // sin(74°) = 0.961181640625
+ 0x0F74, // sin(75°) = 0.9658203125
+ 0x0F86, // sin(76°) = 0.97021484375
+ 0x0F97, // sin(77°) = 0.974365234375
+ 0x0FA6, // sin(78°) = 0.97802734375
+ 0x0FB5, // sin(79°) = 0.981689453125
+ 0x0FC2, // sin(80°) = 0.98486328125
+ 0x0FCE, // sin(81°) = 0.98779296875
+ 0x0FD8, // sin(82°) = 0.990234375
+ 0x0FE1, // sin(83°) = 0.992431640625
+ 0x0FE9, // sin(84°) = 0.994384765625
+ 0x0FF0, // sin(85°) = 0.99609375
+ 0x0FF6, // sin(86°) = 0.99755859375
+ 0x0FFA, // sin(87°) = 0.99853515625
+ 0x0FFD, // sin(88°) = 0.999267578125
+ 0x0FFF, // sin(89°) = 0.999755859375
+ 0x1000, // sin(90°) = 1
+ 0x0FFF, // sin(91°) = 0.999755859375
+ 0x0FFD, // sin(92°) = 0.999267578125
+ 0x0FFA, // sin(93°) = 0.99853515625
+ 0x0FF6, // sin(94°) = 0.99755859375
+ 0x0FF0, // sin(95°) = 0.99609375
+ 0x0FE9, // sin(96°) = 0.994384765625
+ 0x0FE1, // sin(97°) = 0.992431640625
+ 0x0FD8, // sin(98°) = 0.990234375
+ 0x0FCE, // sin(99°) = 0.98779296875
+ 0x0FC2, // sin(100°) = 0.98486328125
+ 0x0FB5, // sin(101°) = 0.981689453125
+ 0x0FA6, // sin(102°) = 0.97802734375
+ 0x0F97, // sin(103°) = 0.974365234375
+ 0x0F86, // sin(104°) = 0.97021484375
+ 0x0F74, // sin(105°) = 0.9658203125
+ 0x0F61, // sin(106°) = 0.961181640625
+ 0x0F4D, // sin(107°) = 0.956298828125
+ 0x0F38, // sin(108°) = 0.951171875
+ 0x0F21, // sin(109°) = 0.945556640625
+ 0x0F09, // sin(110°) = 0.939697265625
+ 0x0EF0, // sin(111°) = 0.93359375
+ 0x0ED6, // sin(112°) = 0.92724609375
+ 0x0EBA, // sin(113°) = 0.92041015625
+ 0x0E9E, // sin(114°) = 0.91357421875
+ 0x0E80, // sin(115°) = 0.90625
+ 0x0E61, // sin(116°) = 0.898681640625
+ 0x0E42, // sin(117°) = 0.89111328125
+ 0x0E21, // sin(118°) = 0.883056640625
+ 0x0DFE, // sin(119°) = 0.87451171875
+ 0x0DDB, // sin(120°) = 0.865966796875
+ 0x0DB7, // sin(121°) = 0.857177734375
+ 0x0D92, // sin(122°) = 0.84814453125
+ 0x0D6B, // sin(123°) = 0.838623046875
+ 0x0D44, // sin(124°) = 0.8291015625
+ 0x0D1B, // sin(125°) = 0.819091796875
+ 0x0CF2, // sin(126°) = 0.80908203125
+ 0x0CC7, // sin(127°) = 0.798583984375
+ 0x0C9C, // sin(128°) = 0.7880859375
+ 0x0C6F, // sin(129°) = 0.777099609375
+ 0x0C42, // sin(130°) = 0.76611328125
+ 0x0C13, // sin(131°) = 0.754638671875
+ 0x0BE4, // sin(132°) = 0.7431640625
+ 0x0BB4, // sin(133°) = 0.7314453125
+ 0x0B82, // sin(134°) = 0.71923828125
+ 0x0B50, // sin(135°) = 0.70703125
+ 0x0B1D, // sin(136°) = 0.694580078125
+ 0x0AE9, // sin(137°) = 0.681884765625
+ 0x0AB5, // sin(138°) = 0.669189453125
+ 0x0A7F, // sin(139°) = 0.656005859375
+ 0x0A49, // sin(140°) = 0.642822265625
+ 0x0A12, // sin(141°) = 0.62939453125
+ 0x09DA, // sin(142°) = 0.61572265625
+ 0x09A1, // sin(143°) = 0.601806640625
+ 0x0968, // sin(144°) = 0.587890625
+ 0x092D, // sin(145°) = 0.573486328125
+ 0x08F2, // sin(146°) = 0.55908203125
+ 0x08B7, // sin(147°) = 0.544677734375
+ 0x087B, // sin(148°) = 0.530029296875
+ 0x083E, // sin(149°) = 0.51513671875
+ 0x0800, // sin(150°) = 0.5
+ 0x07C2, // sin(151°) = 0.48486328125
+ 0x0783, // sin(152°) = 0.469482421875
+ 0x0744, // sin(153°) = 0.4541015625
+ 0x0704, // sin(154°) = 0.4384765625
+ 0x06C3, // sin(155°) = 0.422607421875
+ 0x0682, // sin(156°) = 0.40673828125
+ 0x0640, // sin(157°) = 0.390625
+ 0x05FE, // sin(158°) = 0.37451171875
+ 0x05BC, // sin(159°) = 0.3583984375
+ 0x0579, // sin(160°) = 0.342041015625
+ 0x0536, // sin(161°) = 0.32568359375
+ 0x04F2, // sin(162°) = 0.30908203125
+ 0x04AE, // sin(163°) = 0.29248046875
+ 0x0469, // sin(164°) = 0.275634765625
+ 0x0424, // sin(165°) = 0.2587890625
+ 0x03DF, // sin(166°) = 0.241943359375
+ 0x0399, // sin(167°) = 0.224853515625
+ 0x0354, // sin(168°) = 0.2080078125
+ 0x030E, // sin(169°) = 0.19091796875
+ 0x02C7, // sin(170°) = 0.173583984375
+ 0x0281, // sin(171°) = 0.156494140625
+ 0x023A, // sin(172°) = 0.13916015625
+ 0x01F3, // sin(173°) = 0.121826171875
+ 0x01AC, // sin(174°) = 0.1044921875
+ 0x0165, // sin(175°) = 0.087158203125
+ 0x011E, // sin(176°) = 0.06982421875
+ 0x00D6, // sin(177°) = 0.05224609375
+ 0x008F, // sin(178°) = 0.034912109375
+ 0x0047, // sin(179°) = 0.017333984375
+};
// amplitude * sin(index*(π/128))
s16 Sin(s16 index, s16 amplitude)