diff options
author | YamaArashi <shadow962@live.com> | 2016-01-06 01:47:28 -0800 |
---|---|---|
committer | YamaArashi <shadow962@live.com> | 2016-01-06 01:47:28 -0800 |
commit | be8b04496302184c6e8f04d6179f9c3afc50aeb6 (patch) | |
tree | 726e2468c0c07add773c0dbd86ab6386844259ae /gcc/config/a29k |
initial commit
Diffstat (limited to 'gcc/config/a29k')
-rwxr-xr-x | gcc/config/a29k/a29k.c | 1538 | ||||
-rwxr-xr-x | gcc/config/a29k/a29k.h | 1673 | ||||
-rwxr-xr-x | gcc/config/a29k/a29k.md | 2874 | ||||
-rwxr-xr-x | gcc/config/a29k/t-a29k | 5 | ||||
-rwxr-xr-x | gcc/config/a29k/t-a29kbare | 19 | ||||
-rwxr-xr-x | gcc/config/a29k/t-vx29k | 17 | ||||
-rwxr-xr-x | gcc/config/a29k/udi.h | 94 | ||||
-rwxr-xr-x | gcc/config/a29k/unix.h | 92 | ||||
-rwxr-xr-x | gcc/config/a29k/vx29k.h | 46 | ||||
-rwxr-xr-x | gcc/config/a29k/x-unix | 2 | ||||
-rwxr-xr-x | gcc/config/a29k/xm-a29k.h | 41 | ||||
-rwxr-xr-x | gcc/config/a29k/xm-unix.h | 43 |
12 files changed, 6444 insertions, 0 deletions
diff --git a/gcc/config/a29k/a29k.c b/gcc/config/a29k/a29k.c new file mode 100755 index 0000000..395a6ff --- /dev/null +++ b/gcc/config/a29k/a29k.c @@ -0,0 +1,1538 @@ +/* Subroutines used for code generation on AMD Am29000. + Copyright (C) 1987, 88, 90-94, 1995, 1997 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include <stdio.h> +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "real.h" +#include "insn-config.h" +#include "conditions.h" +#include "insn-flags.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "recog.h" +#include "expr.h" +#include "obstack.h" +#include "tree.h" +#include "reload.h" + +#define min(A,B) ((A) < (B) ? (A) : (B)) + +/* This gives the size in words of the register stack for the current + procedure. */ + +static int a29k_regstack_size; + +/* True if the current procedure has a call instruction. */ + +static int a29k_makes_calls; + +/* This points to the last insn of the insn prologue. It is set when + an insn without a filled delay slot is found near the start of the + function. */ + +static char *a29k_last_prologue_insn; + +/* This points to the first insn that will be in the epilogue. It is null if + no epilogue is required. */ + +static char *a29k_first_epilogue_insn; + +/* This is nonzero if a a29k_first_epilogue_insn was put in a delay slot. It + indicates that an intermediate label needs to be written. */ + +static int a29k_first_epilogue_insn_used; + +/* Location to hold the name of the current function. We need this prolog to + contain the tag words prior to the declaration. So the name must be stored + away. */ + +char *a29k_function_name; + +/* Mapping of registers to debug register numbers. The only change is + for the frame pointer and the register numbers used for the incoming + arguments. */ + +int a29k_debug_reg_map[FIRST_PSEUDO_REGISTER]; + +/* Save information from a "cmpxx" operation until the branch or scc is + emitted. */ + +rtx a29k_compare_op0, a29k_compare_op1; +int a29k_compare_fp_p; + +/* Gives names for registers. */ +extern char *reg_names[]; + +/* Returns 1 if OP is a 8-bit constant. */ + +int +cint_8_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffffff00) == 0; +} + +/* Returns 1 if OP is a 16-bit constant. */ + +int +cint_16_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff0000) == 0; +} + +/* Returns 1 if OP is a constant that cannot be moved in a single insn. */ + +int +long_const_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (! CONSTANT_P (op)) + return 0; + + if (TARGET_29050 && GET_CODE (op) == CONST_INT + && (INTVAL (op) & 0xffff) == 0) + return 0; + + return (GET_CODE (op) != CONST_INT + || ((INTVAL (op) & 0xffff0000) != 0 + && (INTVAL (op) & 0xffff0000) != 0xffff0000 + && INTVAL (op) != 0x80000000)); +} + +/* The following four functions detect constants of 0, 8, 16, and 24 used as + a position in ZERO_EXTRACT operations. They can either be the appropriate + constant integer or a shift (which will be produced by combine). */ + +static int +shift_constant_operand (op, mode, val) + rtx op; + enum machine_mode mode; + int val; +{ + return ((GET_CODE (op) == CONST_INT && INTVAL (op) == val) + || (GET_CODE (op) == ASHIFT + && GET_CODE (XEXP (op, 0)) == CONST_INT + && INTVAL (XEXP (op, 0)) == val / 8 + && GET_CODE (XEXP (op, 1)) == CONST_INT + && INTVAL (XEXP (op, 1)) == 3)); +} + +int +const_0_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return shift_constant_operand (op, mode, 0); +} + +int +const_8_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return shift_constant_operand (op, mode, 8); +} + +int +const_16_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return shift_constant_operand (op, mode, 16); +} + +int +const_24_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return shift_constant_operand (op, mode, 24); +} + +/* Returns 1 if OP is a floating-point constant of the proper mode. */ + +int +float_const_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == mode; +} + +/* Returns 1 if OP is a floating-point constant of the proper mode or a + general-purpose register. */ + +int +gpc_reg_or_float_constant_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return float_const_operand (op, mode) || gpc_reg_operand (op, mode); +} + +/* Returns 1 if OP is an integer constant of the proper mode or a + general-purpose register. */ + +int +gpc_reg_or_integer_constant_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return ((GET_MODE (op) == VOIDmode + && (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE)) + || gpc_reg_operand (op, mode)); +} + +/* Returns 1 if OP is a special machine register. */ + +int +spec_reg_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) != REG || GET_MODE (op) != mode) + return 0; + + switch (GET_MODE_CLASS (mode)) + { + case MODE_PARTIAL_INT: + return REGNO (op) >= R_BP && REGNO (op) <= R_CR; + case MODE_INT: + return REGNO (op) >= R_Q && REGNO (op) <= R_EXO; + default: + return 0; + } +} + +/* Returns 1 if OP is an accumulator register. */ + +int +accum_reg_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return (GET_CODE (op) == REG + && REGNO (op) >= R_ACU (0) && REGNO (op) <= R_ACU (3)); +} + +/* Returns 1 if OP is a normal data register. */ + +int +gpc_reg_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + int regno; + + if (GET_MODE (op) != mode && mode != VOIDmode) + return 0; + + if (GET_CODE (op) == REG) + regno = REGNO (op); + else if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG) + { + regno = REGNO (SUBREG_REG (op)); + if (regno < FIRST_PSEUDO_REGISTER) + regno += SUBREG_WORD (op); + } + else + return 0; + + return (regno >= FIRST_PSEUDO_REGISTER || regno < R_BP + || (regno >= R_KR (0) && regno <= R_KR (31))); +} + +/* Returns 1 if OP is either an 8-bit constant integer or a general register. + If a register, it must be in the proper mode unless MODE is VOIDmode. */ + +int +srcb_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT + && (mode == QImode + || (INTVAL (op) & 0xffffff00) == 0)) + return 1; + + if (GET_MODE (op) != mode && mode != VOIDmode) + return 0; + + return gpc_reg_operand (op, mode); +} + +int +cmplsrcb_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT + && (mode == QImode + || (INTVAL (op) & 0xffffff00) == 0xffffff00)) + return 1; + + if (GET_MODE (op) != mode && mode != VOIDmode) + return 0; + + return gpc_reg_operand (op, mode); +} + +/* Return 1 if OP is either an immediate or a general register. This is used + for the input operand of mtsr/mtrsim. */ + +int +gpc_reg_or_immediate_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return gpc_reg_operand (op, mode) || immediate_operand (op, mode); +} + +/* Return 1 if OP can be used as the second operand of and AND insn. This + includes srcb_operand and a constant whose complement fits in 8 bits. */ + +int +and_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return (srcb_operand (op, mode) + || (GET_CODE (op) == CONST_INT + && ((unsigned) ((~ INTVAL (op)) & GET_MODE_MASK (mode)) < 256))); +} + +/* Return 1 if OP can be used as the second operand of an ADD insn. + This is the same as above, except we use negative, rather than + complement. */ + +int +add_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return (srcb_operand (op, mode) + || (GET_CODE (op) == CONST_INT + && ((unsigned) ((- INTVAL (op)) & GET_MODE_MASK (mode)) < 256))); +} + +/* Return 1 if OP is a valid address in a CALL_INSN. These are a SYMBOL_REF + to the current function, all SYMBOL_REFs if TARGET_SMALL_MEMORY, or + a sufficiently-small constant. */ + +int +call_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + switch (GET_CODE (op)) + { + case SYMBOL_REF: + return (TARGET_SMALL_MEMORY + || (! TARGET_LARGE_MEMORY + && ((GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_FLAG (op)) + || ! strcmp (XSTR (op, 0), current_function_name)))); + + case CONST_INT: + return (unsigned HOST_WIDE_INT) INTVAL (op) < 0x40000; + + default: + return 0; + } +} + +/* Return 1 if OP can be used as the input operand for a move insn. */ + +int +in_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + rtx orig_op = op; + + if (! general_operand (op, mode)) + return 0; + + while (GET_CODE (op) == SUBREG) + op = SUBREG_REG (op); + + switch (GET_CODE (op)) + { + case REG: + return 1; + + case MEM: + return (GET_MODE_SIZE (mode) >= UNITS_PER_WORD || TARGET_DW_ENABLE); + + case CONST_INT: + if (GET_MODE_CLASS (mode) != MODE_INT + && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) + return 0; + + return 1; + + case CONST: + case SYMBOL_REF: + case LABEL_REF: + return (GET_MODE (op) == mode + || mode == SImode || mode == HImode || mode == QImode); + + case CONST_DOUBLE: + return ((GET_MODE_CLASS (mode) == MODE_FLOAT + && mode == GET_MODE (op)) + || (GET_MODE (op) == VOIDmode + && GET_MODE_CLASS (mode) == MODE_INT)); + + default: + return 0; + } +} + +/* Return 1 if OP can be used as the output operand for a move insn. */ + +int +out_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + rtx orig_op = op; + + if (! general_operand (op, mode)) + return 0; + + while (GET_CODE (op) == SUBREG) + op = SUBREG_REG (op); + + if (GET_CODE (op) == REG) + return (gpc_reg_operand (orig_op, mode) + || spec_reg_operand (orig_op, mode) + || (GET_MODE_CLASS (mode) == MODE_FLOAT + && accum_reg_operand (orig_op, mode))); + + else if (GET_CODE (op) == MEM) + return (GET_MODE_SIZE (mode) >= UNITS_PER_WORD || TARGET_DW_ENABLE); + else + return 0; +} + +/* Return 1 if OP is an item in memory, given that we are in reload. */ + +int +reload_memory_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + int regno = true_regnum (op); + + return (! CONSTANT_P (op) + && (regno == -1 + || (GET_CODE (op) == REG + && REGNO (op) >= FIRST_PSEUDO_REGISTER))); +} + +/* Given an object for which reload_memory_operand is true, return the address + of the operand, taking into account anything that reload may do. */ + +rtx +a29k_get_reloaded_address (op) + rtx op; +{ + if (GET_CODE (op) == SUBREG) + { + if (SUBREG_WORD (op) != 0) + abort (); + + op = SUBREG_REG (op); + } + + if (GET_CODE (op) == REG) + op = reg_equiv_mem[REGNO (op)]; + + return find_replacement (&XEXP (op, 0)); +} + +/* Subfunction of the following function. Update the flags of any MEM + found in part of X. */ + +static void +a29k_set_memflags_1 (x, in_struct_p, scalar_p, volatile_p, unchanging_p) + rtx x; + int in_struct_p, scalar_p, volatile_p, unchanging_p; +{ + int i; + + switch (GET_CODE (x)) + { + case SEQUENCE: + case PARALLEL: + for (i = XVECLEN (x, 0) - 1; i >= 0; i--) + a29k_set_memflags_1 (XVECEXP (x, 0, i), in_struct_p, volatile_p, + unchanging_p); + break; + + case INSN: + a29k_set_memflags_1 (PATTERN (x), in_struct_p, volatile_p, + unchanging_p); + break; + + case SET: + a29k_set_memflags_1 (SET_DEST (x), in_struct_p, volatile_p, + unchanging_p); + a29k_set_memflags_1 (SET_SRC (x), in_struct_p, volatile_p, unchanging_p); + break; + + case MEM: + MEM_IN_STRUCT_P (x) = in_struct_p; + MEM_SCALAR_P (x) = scalar_p; + MEM_VOLATILE_P (x) = volatile_p; + RTX_UNCHANGING_P (x) = unchanging_p; + break; + } +} + +/* Given INSN, which is either an INSN or a SEQUENCE generated to + perform a memory operation, look for any MEMs in either a SET_DEST or + a SET_SRC and copy the in-struct, unchanging, and volatile flags from + REF into each of the MEMs found. If REF is not a MEM, don't do + anything. */ + +void +a29k_set_memflags (insn, ref) + rtx insn; + rtx ref; +{ + /* Note that it is always safe to get these flags, though they won't + be what we think if REF is not a MEM. */ + int in_struct_p = MEM_IN_STRUCT_P (ref); + int scalar_p = MEM_IN_SCALAR_P (ref); + int volatile_p = MEM_VOLATILE_P (ref); + int unchanging_p = RTX_UNCHANGING_P (ref); + + if (GET_CODE (ref) != MEM + || (! in_struct_p && ! volatile_p && ! unchanging_p)) + return; + + a29k_set_memflags_1 (insn, in_struct_p, scalar_p, volatile_p, unchanging_p); +} + +/* Return 1 if OP is a comparison operator that we have in floating-point. */ + +int +fp_comparison_operator (op, mode) + rtx op; + enum machine_mode mode; +{ + return ((mode == VOIDmode || mode == GET_MODE (op)) + && (GET_CODE (op) == EQ || GET_CODE (op) == GT || + GET_CODE (op) == GE)); +} + +/* Return 1 if OP is a valid branch comparison. */ + +int +branch_operator (op, mode) + rtx op; + enum machine_mode mode; +{ + return ((mode == VOIDmode || mode == GET_MODE (op)) + && (GET_CODE (op) == GE || GET_CODE (op) == LT)); +} + +/* Return 1 if OP is a load multiple operation. It is known to be a + PARALLEL and the first three sections will be tested. */ + +int +load_multiple_operation (op, mode) + rtx op; + enum machine_mode mode; +{ + int count = XVECLEN (op, 0) - 2; + int dest_regno; + rtx src_addr; + int i; + + /* Perform a quick check so we don't blow up below. */ + if (count <= 1 + || GET_CODE (XVECEXP (op, 0, 0)) != SET + || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG + || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) + return 0; + + dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); + src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); + + for (i = 1; i < count; i++) + { + rtx elt = XVECEXP (op, 0, i + 2); + + if (GET_CODE (elt) != SET + || GET_CODE (SET_DEST (elt)) != REG + || GET_MODE (SET_DEST (elt)) != SImode + || REGNO (SET_DEST (elt)) != dest_regno + i + || GET_CODE (SET_SRC (elt)) != MEM + || GET_MODE (SET_SRC (elt)) != SImode + || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS + || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) + || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT + || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4) + return 0; + } + + return 1; +} + +/* Similar, but tests for store multiple. */ + +int +store_multiple_operation (op, mode) + rtx op; + enum machine_mode mode; +{ + int num_special = TARGET_NO_STOREM_BUG ? 2 : 1; + int count = XVECLEN (op, 0) - num_special; + int src_regno; + rtx dest_addr; + int i; + + /* Perform a quick check so we don't blow up below. */ + if (count <= 1 + || GET_CODE (XVECEXP (op, 0, 0)) != SET + || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM + || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) + return 0; + + src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); + dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); + + for (i = 1; i < count; i++) + { + rtx elt = XVECEXP (op, 0, i + num_special); + + if (GET_CODE (elt) != SET + || GET_CODE (SET_SRC (elt)) != REG + || GET_MODE (SET_SRC (elt)) != SImode + || REGNO (SET_SRC (elt)) != src_regno + i + || GET_CODE (SET_DEST (elt)) != MEM + || GET_MODE (SET_DEST (elt)) != SImode + || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS + || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr) + || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT + || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4) + return 0; + } + + return 1; +} + +/* Given a special register REG and MASK, a value being masked against a + quantity to which the special register is set, return 1 if the masking + operation is built-in to the setting of that special register. */ + +int +masks_bits_for_special (reg, mask) + rtx reg; + rtx mask; +{ + int needed_mask_value; + + if (GET_CODE (reg) != REG || GET_CODE (mask) != CONST_INT) + abort (); + + switch (REGNO (reg)) + { + case R_BP: + case R_INT: + needed_mask_value = 3; + break; + + case R_FC: + needed_mask_value = 31; + break; + + case R_CR: + case R_LRU: + needed_mask_value = 255; + break; + + case R_FPE: + needed_mask_value = 511; + break; + + case R_MMU: + needed_mask_value = 0x3ff; + break; + + case R_OPS: + case R_CPS: + case R_RBP: + case R_FPS: + needed_mask_value = 0xffff; + break; + + case R_VAB: + needed_mask_value = 0xffff0000; + break; + + case R_Q: + case R_CFG: + case R_CHA: + case R_CHD: + case R_CHC: + case R_TMC: + case R_TMR: + case R_PC0: + case R_PC1: + case R_PC2: + return 0; + + default: + abort (); + } + + return (INTVAL (mask) & ~ needed_mask_value) == 0; +} + +/* Return nonzero if this label is that of the return point, but there is + a non-null epilogue. */ + +int +epilogue_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return next_active_insn (op) == 0 && a29k_first_epilogue_insn != 0; +} + +/* Return the register class of a scratch register needed to copy IN into + or out of a register in CLASS in MODE. If it can be done directly, + NO_REGS is returned. */ + +enum reg_class +secondary_reload_class (class, mode, in) + enum reg_class class; + enum machine_mode mode; + rtx in; +{ + int regno = -1; + enum rtx_code code = GET_CODE (in); + + if (! CONSTANT_P (in)) + { + regno = true_regnum (in); + + /* A pseudo is the same as memory. */ + if (regno == -1 || regno >= FIRST_PSEUDO_REGISTER) + code = MEM; + } + + /* If we are transferring between memory and a multi-word mode, we need + CR. */ + + if (code == MEM && GET_MODE_SIZE (mode) > UNITS_PER_WORD) + return CR_REGS; + + /* If between memory and a mode smaller than a word without DW being + enabled, we need BP. */ + + if (code == MEM && ! TARGET_DW_ENABLE + && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + return BP_REGS; + + /* Otherwise, we can place anything into GENERAL_REGS and can put + GENERAL_REGS into anything. */ + if (class == GENERAL_REGS + || (regno != -1 + && (regno < R_BP + || (regno >= R_KR (0) && regno <= R_KR (31))))) + return NO_REGS; + + /* We can place 16-bit constants into a special register. */ + if (code == CONST_INT + && (GET_MODE_BITSIZE (mode) <= 16 || (unsigned) INTVAL (in) <= 65535) + && (class == BP_REGS || class == Q_REGS || class == SPECIAL_REGS)) + return NO_REGS; + + /* Otherwise, we need GENERAL_REGS. */ + return GENERAL_REGS; +} + +/* START is the zero-based incoming argument register index used (0 is 160, + i.e., the first incoming argument register) and COUNT is the number used. + + Mark the corresponding incoming registers as neither fixed nor call used. + For each register used for incoming arguments, we have one less local + register that can be used. So also mark some high-numbered registers as + fixed. + + Return the first register number to use for the argument. */ + +int +incoming_reg (start, count) + int start; + int count; +{ + int i; + + /* We only use 16 argument registers, so truncate at the end of the + area. */ + if (start + count > 16) + count = 16 - start; + + if (! TARGET_NO_REUSE_ARGS) + /* Mark all the used registers as not fixed and saved over calls. */ + for (i = R_AR (start); i < R_AR (start + count); i++) + { + fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 0; + CLEAR_HARD_REG_BIT (fixed_reg_set, i); + CLEAR_HARD_REG_BIT (call_used_reg_set, i); + CLEAR_HARD_REG_BIT (call_fixed_reg_set, i); + } + + /* Shorten the maximum size of the frame. + Remember that R_AR(-1,-2) are place holders for the caller's lr0,lr1. + Make sure to keep the frame rounded to an even boundary. Rounding up + to an 8 byte boundary will use a slot. Otherwise a frame with 121 local + regs and 5 arguments will overrun the stack (121+1 + 5 + 2 > 128). */ + /* ??? An alternative would be to never allocate one reg. */ + for (i = (R_AR (0) - 2 - start - count) & ~1; i < R_AR (0) - 2 - start; i++) + { + fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1; + SET_HARD_REG_BIT (fixed_reg_set, i); + SET_HARD_REG_BIT (call_used_reg_set, i); + SET_HARD_REG_BIT (call_fixed_reg_set, i); + } + + return R_AR (start); +} + +/* Add CLOBBERs to CALL_INSN_FUNCTION_USAGE chain of INSN indicating + that LR2 up to, but not including, OP are clobbered. If OP is + zero, indicate all parameter registers are clobbered. */ + +void +a29k_clobbers_to (insn, op) + rtx insn; + rtx op; +{ + int i; + int high_regno; + + if (op == 0) + high_regno = R_LR (18); + else if (GET_CODE (op) != REG || REGNO (op) < R_LR (0) + || REGNO (op) > R_LR (18)) + abort (); + else + high_regno = REGNO (op); + + for (i = R_LR (2); i < high_regno; i++) + CALL_INSN_FUNCTION_USAGE (insn) + = gen_rtx (EXPR_LIST, VOIDmode, + gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, i)), + CALL_INSN_FUNCTION_USAGE (insn)); +} + +/* These routines are used in finding insns to fill delay slots in the + epilogue. */ + +/* Return 1 if the current function will adjust the register stack. */ + +int +needs_regstack_p () +{ + int i; + rtx insn; + + if (frame_pointer_needed) + return 1; + + /* If any local register is used, we need to adjust the regstack. */ + for (i = R_LR (127); i >= R_LR (0); i --) + if (regs_ever_live[i]) + return 1; + + /* We need a register stack if we make any calls. */ + for (insn = get_insns (); insn; insn = next_insn (insn)) + if (GET_CODE (insn) == CALL_INSN + || (GET_CODE (insn) == INSN + && GET_CODE (PATTERN (insn)) == SEQUENCE + && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)) + return 1; + + /* Otherwise, we don't. */ + return 0; +} + +/* Return 1 if X uses a local register. */ + +int +uses_local_reg_p (x) + rtx x; +{ + char *fmt; + int i, j; + + switch (GET_CODE (x)) + { + case REG: + return REGNO (x) >= R_LR (0) && REGNO (x) <= R_FP; + + case CONST_INT: + case CONST: + case PC: + case CC0: + case LABEL_REF: + case SYMBOL_REF: + return 0; + } + + fmt = GET_RTX_FORMAT (GET_CODE (x)); + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + if (uses_local_reg_p (XEXP (x, i))) + return 1; + } + else if (fmt[i] == 'E') + { + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + if (uses_local_reg_p (XVECEXP (x, i, j))) + return 1; + } + } + + return 0; +} + +/* Returns 1 if this function is known to have a null epilogue. */ + +int +null_epilogue () +{ + return (reload_completed && ! needs_regstack_p () + && get_frame_size () == 0 + && current_function_pretend_args_size == 0); +} + +/* Write out the assembler form of an operand. Recognize the following + special options: + + %N means write the low-order 8 bits of the negative of the constant + %Q means write a QImode operand (truncate constants to 8 bits) + %M means write the low-order 16 bits of the constant + %m means write the low-order 16 bits shifted left 16 bits + %C means write the low-order 8 bits of the complement of the constant + %b means write `f' is this is a reversed condition, `t' otherwise + %B means write `t' is this is a reversed condition, `f' otherwise + %J means write the 29k opcode part for a comparison operation + %e means write the label with an extra `X' is this is the epilogue + otherwise the normal label name + %E means write nothing if this insn has a delay slot, + a nop unless this is the epilogue label, in which case + write the first epilogue insn + %F means write just the normal operand if the insn has a delay slot; + otherwise, this is a recursive call so output the + symbol + 4 and write the first prologue insn in the + delay slot. + %L means write the register number plus one ("low order" register) + or the low-order part of a multi-word constant + %O means write the register number plus two + %P means write the register number plus three ("low order" of TImode) + %S means write the number of words in the mode of the operand, + minus one (for CR) + %V means write the number of elements in a PARALLEL minus 1 + %# means write nothing if we have a delay slot, "\n\tnop" otherwise + %* means write the register name for TPC. */ + +void +print_operand (file, x, code) + FILE *file; + rtx x; + char code; +{ + char buf[100]; + + /* These macros test for integers and extract the low-order bits. */ +#define INT_P(X) \ +((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \ + && GET_MODE (X) == VOIDmode) + +#define INT_LOWPART(X) \ + (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X)) + + switch (code) + { + case 'Q': + if (GET_CODE (x) == REG) + break; + else if (! INT_P (x)) + output_operand_lossage ("invalid %%Q value"); + fprintf (file, "%d", INT_LOWPART (x) & 0xff); + return; + + case 'C': + if (! INT_P (x)) + output_operand_lossage ("invalid %%C value"); + fprintf (file, "%d", (~ INT_LOWPART (x)) & 0xff); + return; + + case 'N': + if (! INT_P (x)) + output_operand_lossage ("invalid %%N value"); + fprintf (file, "%d", (- INT_LOWPART (x)) & 0xff); + return; + + case 'M': + if (! INT_P (x)) + output_operand_lossage ("invalid %%M value"); + fprintf (file, "%d", INT_LOWPART (x) & 0xffff); + return; + + case 'm': + if (! INT_P (x)) + output_operand_lossage ("invalid %%m value"); + fprintf (file, "%d", (INT_LOWPART (x) & 0xffff) << 16); + return; + + case 'b': + if (GET_CODE (x) == GE) + fprintf (file, "f"); + else + fprintf (file, "t"); + return; + + case 'B': + if (GET_CODE (x) == GE) + fprintf (file, "t"); + else + fprintf (file, "f"); + return; + + case 'J': + /* It so happens that the RTX names for the conditions are the same as + the 29k's insns except for "ne", which requires "neq". */ + fprintf (file, GET_RTX_NAME (GET_CODE (x))); + if (GET_CODE (x) == NE) + fprintf (file, "q"); + return; + + case 'e': + if (optimize && flag_delayed_branch + && a29k_last_prologue_insn == 0 && epilogue_operand (x, VOIDmode) + && dbr_sequence_length () == 0) + { + /* We need to output the label number of the last label in the + function, which is not necessarily X since there might be + a USE insn in between. First go forward to the last insn, then + back up to a label. */ + while (NEXT_INSN (x) != 0) + x = NEXT_INSN (x); + + while (GET_CODE (x) != CODE_LABEL) + x = PREV_INSN (x); + + ASM_GENERATE_INTERNAL_LABEL (buf, "LX", CODE_LABEL_NUMBER (x)); + assemble_name (file, buf); + } + else + output_asm_label (x); + return; + + case 'E': + if (dbr_sequence_length ()) + ; + else if (a29k_last_prologue_insn) + { + fprintf (file, "\n\t%s", a29k_last_prologue_insn); + a29k_last_prologue_insn = 0; + } + else if (optimize && flag_delayed_branch + && epilogue_operand (x, VOIDmode)) + { + fprintf (file, "\n\t%s", a29k_first_epilogue_insn); + a29k_first_epilogue_insn_used = 1; + } + else + fprintf (file, "\n\tnop"); + return; + + case 'F': + output_addr_const (file, x); + if (dbr_sequence_length () == 0) + { + /* If this doesn't have its delay slot filled, see if we need to + put the last insn of the prolog in it. If not, see if this is + a recursive call. If so, we can put the first insn of its + prolog in the delay slot. Otherwise, write a nop. */ + if (a29k_last_prologue_insn) + { + fprintf (file, "\n\t%s", a29k_last_prologue_insn); + a29k_last_prologue_insn = 0; + } + else if (GET_CODE (x) == SYMBOL_REF + && ! strcmp (XSTR (x, 0), current_function_name)) + fprintf (file, "+4\n\t%s,%d", + a29k_regstack_size >= 64 ? "const gr121" : "sub gr1,gr1", + a29k_regstack_size * 4); + else + fprintf (file, "\n\tnop"); + } + return; + + case 'L': + if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) + { + union real_extract u; + + bcopy ((char *) &CONST_DOUBLE_LOW (x), (char *) &u, sizeof u); + fprintf (file, "$double1(%.20e)", u.d); + } + else if (GET_CODE (x) == REG) + fprintf (file, "%s", reg_names[REGNO (x) + 1]); + else + output_operand_lossage ("invalid %%L value"); + return; + + case 'O': + if (GET_CODE (x) != REG) + output_operand_lossage ("invalid %%O value"); + fprintf (file, "%s", reg_names[REGNO (x) + 2]); + return; + + case 'P': + if (GET_CODE (x) != REG) + output_operand_lossage ("invalid %%P value"); + fprintf (file, "%s", reg_names[REGNO (x) + 3]); + return; + + case 'S': + fprintf (file, "%d", (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD)-1); + return; + + case 'V': + if (GET_CODE (x) != PARALLEL) + output_operand_lossage ("invalid %%V value"); + fprintf (file, "%d", XVECLEN (x, 0) - 2); + return; + + case '#': + if (dbr_sequence_length () == 0) + { + if (a29k_last_prologue_insn) + { + fprintf (file, "\n\t%s", a29k_last_prologue_insn); + a29k_last_prologue_insn = 0; + } + else + fprintf (file, "\n\tnop"); + } + return; + + case '*': + fprintf (file, "%s", reg_names [R_TPC]); + return; + } + + if (GET_CODE (x) == REG) + fprintf (file, "%s", reg_names [REGNO (x)]); + + else if (GET_CODE (x) == MEM) + output_address (XEXP (x, 0)); + + else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == SUBREG + && GET_CODE (SUBREG_REG (XEXP (x, 0))) == CONST_DOUBLE) + { + union real_extract u; + + if (GET_MODE (SUBREG_REG (XEXP (x, 0))) == SFmode) + fprintf (file, "$float"); + else + fprintf (file, "$double%d", SUBREG_WORD (XEXP (x, 0))); + bcopy ((char *) &CONST_DOUBLE_LOW (SUBREG_REG (XEXP (x, 0))), + (char *) &u, sizeof u); + fprintf (file, "(%.20e)", u.d); + } + + else if (GET_CODE (x) == CONST_DOUBLE + && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + { + union real_extract u; + + bcopy ((char *) &CONST_DOUBLE_LOW (x), (char *) &u, sizeof u); + fprintf (file, "$%s(%.20e)", + GET_MODE (x) == SFmode ? "float" : "double0", u.d); + } + + else + output_addr_const (file, x); +} + +/* This page contains routines to output function prolog and epilog code. */ + +/* Compute the size of the register stack, and determine if there are any + call instructions. */ + +static void +compute_regstack_size () +{ + int i; + rtx insn; + + /* See if we make any calls. We need to set lr1 if so. */ + a29k_makes_calls = 0; + for (insn = get_insns (); insn; insn = next_insn (insn)) + if (GET_CODE (insn) == CALL_INSN + || (GET_CODE (insn) == INSN + && GET_CODE (PATTERN (insn)) == SEQUENCE + && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)) + { + a29k_makes_calls = 1; + break; + } + + /* Find the highest local register used. */ + for (i = R_LR (127); i >= R_LR (0); i--) + if (regs_ever_live[i]) + break; + + a29k_regstack_size = i - (R_LR (0) - 1); + + /* If calling routines, ensure we count lr0 & lr1. */ + if (a29k_makes_calls && a29k_regstack_size < 2) + a29k_regstack_size = 2; + + /* Count frame pointer and align to 8 byte boundary (even number of + registers). */ + a29k_regstack_size += frame_pointer_needed; + if (a29k_regstack_size & 1) a29k_regstack_size++; +} + +/* Sets register names for incoming arguments and frame pointer. + This can't be computed until after register allocation. */ + +void +a29k_compute_reg_names () +{ + int i; + + compute_regstack_size (); + + /* Set the names and numbers of the frame pointer and incoming argument + registers. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + a29k_debug_reg_map[i] = i; + + reg_names[FRAME_POINTER_REGNUM] = reg_names[R_LR (a29k_regstack_size - 1)]; + a29k_debug_reg_map[FRAME_POINTER_REGNUM] = R_LR (a29k_regstack_size - 1); + + for (i = 0; i < 16; i++) + { + reg_names[R_AR (i)] = reg_names[R_LR (a29k_regstack_size + i + 2)]; + a29k_debug_reg_map[R_AR (i)] = R_LR (a29k_regstack_size + i + 2); + } + + /* If using kernel register map, swap numbers for kernel and user + registers. */ + if (TARGET_KERNEL_REGISTERS) + for (i = 0; i < 32; i++) + { + int tem = a29k_debug_reg_map[i]; + a29k_debug_reg_map[i] = a29k_debug_reg_map[R_KR (i)]; + a29k_debug_reg_map[R_KR (i)] = tem; + } +} + +/* Output function prolog code to file FILE. Memory stack size is SIZE. */ + +void +output_prolog (file, size) + FILE *file; + int size; +{ + int i; + int arg_count = 0; + rtx insn; + unsigned int tag_word; + + /* See how many incoming arguments we have in registers. */ + for (i = R_AR (0); i < R_AR (16); i++) + if (! fixed_regs[i]) + arg_count++; + + /* The argument count includes the caller's lr0 and lr1. */ + arg_count += 2; + + /* Compute memory stack size. Add in number of bytes that the we should + push and pretend the caller did and the size of outgoing arguments. + Then round to a doubleword boundary. */ + size += (current_function_pretend_args_size + + current_function_outgoing_args_size); + size = (size + 7) & ~7; + + /* Write header words. See if one or two word form. */ + tag_word = (frame_pointer_needed ? 0x400000 : 0) + (arg_count << 16); + + if (size / 8 > 0xff) + fprintf (file, "\t.word %d, 0x%0x\n", (size / 8) << 2, + 0x800000 + tag_word); + else + fprintf (file, "\t.word 0x%0x\n", tag_word + ((size / 8) << 3)); + + /* Define the function name. */ + assemble_name (file, a29k_function_name); + fprintf (file, ":\n"); + + /* Push the register stack by the proper amount. There are two possible + ways to do this. */ + if (a29k_regstack_size >= 256/4) + fprintf (file, "\tconst %s,%d\n\tsub gr1,gr1,%s\n", + reg_names[R_TAV], a29k_regstack_size * 4, reg_names[R_TAV]); + else if (a29k_regstack_size) + fprintf (file, "\tsub gr1,gr1,%d\n", a29k_regstack_size * 4); + + /* Test that the registers are available. */ + if (a29k_regstack_size) + fprintf (file, "\tasgeu V_%sSPILL,gr1,%s\n", + TARGET_KERNEL_REGISTERS ? "K" : "", reg_names[R_RAB]); + + /* Set up frame pointer, if one is needed. */ + if (frame_pointer_needed) + fprintf (file, "\tsll %s,%s,0\n", reg_names[FRAME_POINTER_REGNUM], + reg_names[R_MSP]); + + /* Make room for any frame space. There are three ways to do this. */ + if (size >= 256) + { + fprintf (file, "\tconst %s,%d\n", reg_names[R_TAV], size); + if (size >= 65536) + fprintf (file, "\tconsth %s,%d\n", reg_names[R_TAV], size); + if (TARGET_STACK_CHECK) + fprintf (file, "\tcall %s,__msp_check\n", reg_names[R_TPC]); + fprintf (file, "\tsub %s,%s,%s\n", + reg_names[R_MSP], reg_names[R_MSP], reg_names[R_TAV]); + } + else if (size) + { + if (TARGET_STACK_CHECK) + fprintf (file, "\tcall %s,__msp_check\n", reg_names[R_TPC]); + fprintf (file, "\tsub %s,%s,%d\n", + reg_names[R_MSP], reg_names[R_MSP], size); + } + + /* If this routine will make calls, set lr1. If we see an insn that + can use a delay slot before a call or jump, save this insn for that + slot (this condition is equivalent to seeing if we have an insn that + needs delay slots before an insn that has a filled delay slot). */ + a29k_last_prologue_insn = 0; + if (a29k_makes_calls) + { + i = (a29k_regstack_size + arg_count) * 4; + if (i >= 256) + fprintf (file, "\tconst %s,%d\n\tadd lr1,gr1,%s\n", + reg_names[R_TAV], i, reg_names[R_TAV]); + else + { + if (optimize && flag_delayed_branch) + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + { + if (GET_CODE (insn) == CODE_LABEL + || (GET_CODE (insn) == INSN + && GET_CODE (PATTERN (insn)) == SEQUENCE)) + break; + + if (GET_CODE (insn) == NOTE + || (GET_CODE (insn) == INSN + && (GET_CODE (PATTERN (insn)) == USE + || GET_CODE (PATTERN (insn)) == CLOBBER))) + continue; + + if (num_delay_slots (insn) > 0) + { + a29k_last_prologue_insn = (char *) oballoc (100); + sprintf (a29k_last_prologue_insn, "add lr1,gr1,%d", i); + break; + } + } + + if (a29k_last_prologue_insn == 0) + fprintf (file, "\tadd lr1,gr1,%d\n", i); + } + } + + /* Compute the first insn of the epilogue. */ + a29k_first_epilogue_insn_used = 0; + + if (size == 0 && a29k_regstack_size == 0 && ! frame_pointer_needed) + a29k_first_epilogue_insn = 0; + else + a29k_first_epilogue_insn = (char *) oballoc (100); + + if (frame_pointer_needed) + sprintf (a29k_first_epilogue_insn, "sll %s,%s,0", + reg_names[R_MSP], reg_names[FRAME_POINTER_REGNUM]); + else if (a29k_regstack_size) + { + if (a29k_regstack_size >= 256 / 4) + sprintf (a29k_first_epilogue_insn, "const %s,%d", + reg_names[R_TAV], a29k_regstack_size * 4); + else + sprintf (a29k_first_epilogue_insn, "add gr1,gr1,%d", + a29k_regstack_size * 4); + } + else if (size) + { + if (size >= 256) + sprintf (a29k_first_epilogue_insn, "const %s,%d", + reg_names[R_TAV], size); + else + sprintf (a29k_first_epilogue_insn, "add %s,%s,%d", + reg_names[R_MSP], reg_names[R_MSP], size); + } +} + +/* Call this after writing what might be the first instruction of the + epilogue. If that first insn was used in a delay slot, an intermediate + label is written. */ + +static void +check_epilogue_internal_label (file) + FILE *file; +{ + rtx insn; + + if (! a29k_first_epilogue_insn_used) + return; + + for (insn = get_last_insn (); + GET_CODE (insn) != CODE_LABEL; + insn = PREV_INSN (insn)) + ; + + ASM_OUTPUT_INTERNAL_LABEL (file, "LX", CODE_LABEL_NUMBER (insn)); + a29k_first_epilogue_insn_used = 0; +} + +/* Output the epilog of the last procedure to file FILE. SIZE is the memory + stack size. The register stack size is in the variable + A29K_REGSTACK_SIZE. */ + +void +output_epilog (file, size) + FILE *file; + int size; +{ + rtx insn; + int locals_unavailable = 0; /* True until after first insn + after gr1 update. */ + + /* If we hit a BARRIER before a real insn or CODE_LABEL, we don't + need to do anything because we are never jumped to. */ + insn = get_last_insn (); + if (GET_CODE (insn) == NOTE) + insn = prev_nonnote_insn (insn); + + if (insn && GET_CODE (insn) == BARRIER) + return; + + /* If a frame pointer was needed we must restore the memory stack pointer + before adjusting the register stack. */ + if (frame_pointer_needed) + { + fprintf (file, "\tsll %s,%s,0\n", + reg_names[R_MSP], reg_names[FRAME_POINTER_REGNUM]); + check_epilogue_internal_label (file); + } + + /* Restore the register stack. There are two ways to do this. */ + if (a29k_regstack_size) + { + if (a29k_regstack_size >= 256/4) + { + fprintf (file, "\tconst %s,%d\n", + reg_names[R_TAV], a29k_regstack_size * 4); + check_epilogue_internal_label (file); + fprintf (file, "\tadd gr1,gr1,%s\n", reg_names[R_TAV]); + } + else + { + fprintf (file, "\tadd gr1,gr1,%d\n", a29k_regstack_size * 4); + check_epilogue_internal_label (file); + } + locals_unavailable = 1; + } + + /* Restore the memory stack pointer if there is no frame pointer. + Adjust the size to include any pretend arguments and pushed + arguments and round to doubleword boundary. */ + size += (current_function_pretend_args_size + + current_function_outgoing_args_size); + size = (size + 7) & ~7; + + if (size && ! frame_pointer_needed) + { + if (size >= 256) + { + fprintf (file, "\tconst %s,%d\n", reg_names[R_TAV], size); + check_epilogue_internal_label (file); + locals_unavailable = 0; + if (size >= 65536) + fprintf (file, "\tconsth %s,%d\n", reg_names[R_TAV], size); + fprintf (file, "\tadd %s,%s,%s\n", + reg_names[R_MSP], reg_names[R_MSP], reg_names[R_TAV]); + } + else + { + fprintf (file, "\tadd %s,%s,%d\n", + reg_names[R_MSP], reg_names[R_MSP], size); + check_epilogue_internal_label (file); + locals_unavailable = 0; + } + } + + if (locals_unavailable) + { + /* If we have an insn for this delay slot, write it. */ + if (current_function_epilogue_delay_list) + final_scan_insn (XEXP (current_function_epilogue_delay_list, 0), + file, 1, -2, 1); + else + fprintf (file, "\tnop\n"); + } + + fprintf (file, "\tjmpi lr0\n"); + if (a29k_regstack_size) + fprintf (file, "\tasleu V_%sFILL,lr1,%s\n", + TARGET_KERNEL_REGISTERS ? "K" : "", reg_names[R_RFB]); + else if (current_function_epilogue_delay_list) + final_scan_insn (XEXP (current_function_epilogue_delay_list, 0), + file, 1, -2, 1); + else + fprintf (file, "\tnop\n"); +} diff --git a/gcc/config/a29k/a29k.h b/gcc/config/a29k/a29k.h new file mode 100755 index 0000000..acff143 --- /dev/null +++ b/gcc/config/a29k/a29k.h @@ -0,0 +1,1673 @@ +/* Definitions of target machine for GNU compiler, for AMD Am29000 CPU. + Copyright (C) 1988, 90-97, 1998 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +/* Names to predefine in the preprocessor for this target machine. */ + +#define CPP_PREDEFINES "-D_AM29K -D_AM29000 -D_EPI -Acpu(a29k) -Amachine(a29k)" + +/* Print subsidiary information on the compiler version in use. */ +#define TARGET_VERSION + +/* Pass -w to assembler. */ +#define ASM_SPEC "-w" + +/* Run-time compilation parameters selecting different hardware subsets. */ + +extern int target_flags; + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +/* This means that the DW bit will be enabled, to allow direct loads + of bytes. */ + +#define TARGET_DW_ENABLE (target_flags & 1) + +/* This means that the external hardware does supports byte writes. */ + +#define TARGET_BYTE_WRITES (target_flags & 2) + +/* This means that a "small memory model" has been selected where all + function addresses are known to be within 256K. This allows CALL to be + used. */ + +#define TARGET_SMALL_MEMORY (target_flags & 4) + +/* This means that we must always used on indirect call, even when + calling a function in the same file, since the file might be > 256KB. */ + +#define TARGET_LARGE_MEMORY (target_flags & 8) + +/* This means that we are compiling for a 29050. */ + +#define TARGET_29050 (target_flags & 16) + +/* This means that we are compiling for the kernel which means that we use + gr64-gr95 instead of gr96-126. */ + +#define TARGET_KERNEL_REGISTERS (target_flags & 32) + +/* This means that a call to "__msp_check" should be inserted after each stack + adjustment to check for stack overflow. */ + +#define TARGET_STACK_CHECK (target_flags & 64) + +/* This handles 29k processors which cannot handle the separation + of a mtsrim insns and a storem insn (most 29000 chips to date, but + not the 29050. */ + +#define TARGET_NO_STOREM_BUG (target_flags & 128) + +/* This forces the compiler not to use incoming argument registers except + for copying out arguments. It helps detect problems when a function is + called with fewer arguments than it is declared with. */ + +#define TARGET_NO_REUSE_ARGS (target_flags & 256) + +/* This means that neither builtin nor emulated float operations are + available, and that GCC should generate libcalls instead. */ + +#define TARGET_SOFT_FLOAT (target_flags & 512) + +/* This means that we should not emit the multm or mutmu instructions + that some embedded systems' trap handlers don't support. */ + +#define TARGET_MULTM ((target_flags & 1024) == 0) + +#define TARGET_SWITCHES \ + { {"dw", 1}, \ + {"ndw", -1}, \ + {"bw", 2}, \ + {"nbw", - (1|2)}, \ + {"small", 4}, \ + {"normal", - (4|8)}, \ + {"large", 8}, \ + {"29050", 16+128}, \ + {"29000", -16}, \ + {"kernel-registers", 32}, \ + {"user-registers", -32}, \ + {"stack-check", 64}, \ + {"no-stack-check", - 74}, \ + {"storem-bug", -128}, \ + {"no-storem-bug", 128}, \ + {"reuse-arg-regs", -256}, \ + {"no-reuse-arg-regs", 256}, \ + {"soft-float", 512}, \ + {"no-multm", 1024}, \ + {"", TARGET_DEFAULT}} + +/* CYGNUS LOCAL: reuse-arg-regs bug, see PR 8144 */ +#define TARGET_DEFAULT (3 + 256) + +/* Show we can debug even without a frame pointer. */ +#define CAN_DEBUG_WITHOUT_FP + +/* target machine storage layout */ + +/* Define the types for size_t, ptrdiff_t, and wchar_t. These are the + same as those used by EPI. The type for wchar_t does not make much + sense, but is what is used. */ + +#define SIZE_TYPE "unsigned int" +#define PTRDIFF_TYPE "int" +#define WCHAR_TYPE "char" +#define WCHAR_TYPE_SIZE BITS_PER_UNIT + +/* Define this macro if it is advisable to hold scalars in registers + in a wider mode than that declared by the program. In such cases, + the value is constrained to be within the bounds of the declared + type, but kept valid in the wider mode. The signedness of the + extension may differ from that of the type. */ + +#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ + if (GET_MODE_CLASS (MODE) == MODE_INT \ + && GET_MODE_SIZE (MODE) < 4) \ + (MODE) = SImode; + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. + This is arbitrary on the 29k since it has no actual bit-field insns. + It is better to define this as TRUE because BYTES_BIG_ENDIAN is TRUE + and we want to be able to convert BP position to bit position with + just a shift. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. + This is true on 29k. */ +#define BYTES_BIG_ENDIAN 1 + +/* Define this if most significant word of a multiword number is lowest + numbered. + + For 29k we can decide arbitrarily since there are no machine instructions + for them. Might as well be consistent with bytes. */ +#define WORDS_BIG_ENDIAN 1 + +/* number of bits in an addressable storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 64 + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 32 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* Every structure's size must be a multiple of this. */ +#define STRUCTURE_SIZE_BOUNDARY 8 + +/* A bitfield declared as `int' forces `int' alignment for the struct. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 32 + +/* Make strings word-aligned so strcpy from constants will be faster. */ +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ + (TREE_CODE (EXP) == STRING_CST \ + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) + +/* Make arrays of chars word-aligned for the same reasons. */ +#define DATA_ALIGNMENT(TYPE, ALIGN) \ + (TREE_CODE (TYPE) == ARRAY_TYPE \ + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) + +/* Set this non-zero if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT 0 + +/* Set this non-zero if unaligned move instructions are extremely slow. + + On the 29k, they trap. */ +#define SLOW_UNALIGNED_ACCESS 1 + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + + 29k has 256 registers, of which 62 are not defined. gr0 and gr1 are + not produced in generated RTL so we can start at gr96, and call it + register zero. + + So 0-31 are gr96-gr127, lr0-lr127 are 32-159. To represent the input + arguments, whose register numbers we won't know until we are done, + use register 160-175. They cannot be modified. Similarly, 176 is used + for the frame pointer. It is assigned the last local register number + once the number of registers used is known. + + We use 177, 178, 179, and 180 for the special registers BP, FC, CR, and Q, + respectively. Registers 181 through 199 are used for the other special + registers that may be used by the programmer, but are never used by the + compiler. + + Registers 200-203 are the four floating-point accumulator register in + the 29050. + + Registers 204-235 are the 32 global registers for kernel mode when + -mkernel-registers is not specified, and the 32 global user registers + when it is. + + When -mkernel-registers is specified, we still use the same register + map but change the names so 0-31 print as gr64-gr95. */ + +#define FIRST_PSEUDO_REGISTER 236 + +/* Because of the large number of registers on the 29k, we define macros + to refer to each group of registers and then define the number for some + registers used in the calling sequence. */ + +#define R_GR(N) ((N) - 96) /* gr96 is register number 0 */ +#define R_LR(N) ((N) + 32) /* lr0 is register number 32 */ +#define R_FP 176 /* frame pointer is register 176 */ +#define R_AR(N) ((N) + 160) /* first incoming arg reg is 160 */ +#define R_KR(N) ((N) + 204) /* kernel registers (gr64 to gr95) */ + +/* Define the numbers of the special registers. */ +#define R_BP 177 +#define R_FC 178 +#define R_CR 179 +#define R_Q 180 + +/* These special registers are not used by the compiler, but may be referenced + by the programmer via asm declarations. */ + +#define R_VAB 181 +#define R_OPS 182 +#define R_CPS 183 +#define R_CFG 184 +#define R_CHA 185 +#define R_CHD 186 +#define R_CHC 187 +#define R_RBP 188 +#define R_TMC 189 +#define R_TMR 190 +#define R_PC0 191 +#define R_PC1 192 +#define R_PC2 193 +#define R_MMU 194 +#define R_LRU 195 +#define R_FPE 196 +#define R_INT 197 +#define R_FPS 198 +#define R_EXO 199 + +/* Define the number for floating-point accumulator N. */ +#define R_ACU(N) ((N) + 200) + +/* Now define the registers used in the calling sequence. */ +#define R_TAV R_GR (121) +#define R_TPC R_GR (122) +#define R_LRP R_GR (123) +#define R_SLP R_GR (124) +#define R_MSP R_GR (125) +#define R_RAB R_GR (126) +#define R_RFB R_GR (127) + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. */ + +#define FIXED_REGISTERS \ + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, \ + 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ +#define CALL_USED_REGISTERS \ + {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } + +/* List the order in which to allocate registers. Each register must be + listed once, even those in FIXED_REGISTERS. + + We allocate in the following order: + gr116-gr120 (not used for anything but temps) + gr96-gr111 (function return values, reverse order) + argument registers (160-175) + lr0-lr127 (locals, saved) + acc3-0 (acc0 special) + everything else */ + +#define REG_ALLOC_ORDER \ + {R_GR (116), R_GR (117), R_GR (118), R_GR (119), R_GR (120), \ + R_GR (111), R_GR (110), R_GR (109), R_GR (108), R_GR (107), \ + R_GR (106), R_GR (105), R_GR (104), R_GR (103), R_GR (102), \ + R_GR (101), R_GR (100), R_GR (99), R_GR (98), R_GR (97), R_GR (96), \ + R_AR (0), R_AR (1), R_AR (2), R_AR (3), R_AR (4), R_AR (5), \ + R_AR (6), R_AR (7), R_AR (8), R_AR (9), R_AR (10), R_AR (11), \ + R_AR (12), R_AR (13), R_AR (14), R_AR (15), \ + R_LR (0), R_LR (1), R_LR (2), R_LR (3), R_LR (4), R_LR (5), \ + R_LR (6), R_LR (7), R_LR (8), R_LR (9), R_LR (10), R_LR (11), \ + R_LR (12), R_LR (13), R_LR (14), R_LR (15), R_LR (16), R_LR (17), \ + R_LR (18), R_LR (19), R_LR (20), R_LR (21), R_LR (22), R_LR (23), \ + R_LR (24), R_LR (25), R_LR (26), R_LR (27), R_LR (28), R_LR (29), \ + R_LR (30), R_LR (31), R_LR (32), R_LR (33), R_LR (34), R_LR (35), \ + R_LR (36), R_LR (37), R_LR (38), R_LR (39), R_LR (40), R_LR (41), \ + R_LR (42), R_LR (43), R_LR (44), R_LR (45), R_LR (46), R_LR (47), \ + R_LR (48), R_LR (49), R_LR (50), R_LR (51), R_LR (52), R_LR (53), \ + R_LR (54), R_LR (55), R_LR (56), R_LR (57), R_LR (58), R_LR (59), \ + R_LR (60), R_LR (61), R_LR (62), R_LR (63), R_LR (64), R_LR (65), \ + R_LR (66), R_LR (67), R_LR (68), R_LR (69), R_LR (70), R_LR (71), \ + R_LR (72), R_LR (73), R_LR (74), R_LR (75), R_LR (76), R_LR (77), \ + R_LR (78), R_LR (79), R_LR (80), R_LR (81), R_LR (82), R_LR (83), \ + R_LR (84), R_LR (85), R_LR (86), R_LR (87), R_LR (88), R_LR (89), \ + R_LR (90), R_LR (91), R_LR (92), R_LR (93), R_LR (94), R_LR (95), \ + R_LR (96), R_LR (97), R_LR (98), R_LR (99), R_LR (100), R_LR (101), \ + R_LR (102), R_LR (103), R_LR (104), R_LR (105), R_LR (106), \ + R_LR (107), R_LR (108), R_LR (109), R_LR (110), R_LR (111), \ + R_LR (112), R_LR (113), R_LR (114), R_LR (115), R_LR (116), \ + R_LR (117), R_LR (118), R_LR (119), R_LR (120), R_LR (121), \ + R_LR (122), R_LR (123), R_LR (124), R_LR (124), R_LR (126), \ + R_LR (127), \ + R_ACU (3), R_ACU (2), R_ACU (1), R_ACU (0), \ + R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (121), \ + R_GR (122), R_GR (123), R_GR (124), R_GR (125), R_GR (126), \ + R_GR (127), \ + R_FP, R_BP, R_FC, R_CR, R_Q, \ + R_VAB, R_OPS, R_CPS, R_CFG, R_CHA, R_CHD, R_CHC, R_RBP, R_TMC, \ + R_TMR, R_PC0, R_PC1, R_PC2, R_MMU, R_LRU, R_FPE, R_INT, R_FPS, \ + R_EXO, \ + R_KR (0), R_KR (1), R_KR (2), R_KR (3), R_KR (4), R_KR (5), \ + R_KR (6), R_KR (7), R_KR (8), R_KR (9), R_KR (10), R_KR (11), \ + R_KR (12), R_KR (13), R_KR (14), R_KR (15), R_KR (16), R_KR (17), \ + R_KR (18), R_KR (19), R_KR (20), R_KR (21), R_KR (22), R_KR (23), \ + R_KR (24), R_KR (25), R_KR (26), R_KR (27), R_KR (28), R_KR (29), \ + R_KR (30), R_KR (31) } + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. */ + +#define HARD_REGNO_NREGS(REGNO, MODE) \ + ((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3)? 1 \ + : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On 29k, the cpu registers can hold any mode. But a double-precision + floating-point value should start at an even register. The special + registers cannot hold floating-point values, BP, CR, and FC cannot + hold integer or floating-point values, and the accumulators cannot + hold integer values. + + DImode and larger values should start at an even register just like + DFmode values, even though the instruction set doesn't require it, in order + to prevent reload from aborting due to a modes_equiv_for_class_p failure. + + (I'd like to use the "?:" syntax to make this more readable, but Sun's + compiler doesn't seem to accept it.) */ +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ +(((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3) \ + && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)) \ + || ((REGNO) >= R_BP && (REGNO) <= R_CR \ + && GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT) \ + || ((REGNO) >= R_Q && (REGNO) < R_ACU (0) \ + && GET_MODE_CLASS (MODE) != MODE_FLOAT \ + && GET_MODE_CLASS (MODE) != MODE_COMPLEX_FLOAT) \ + || (((REGNO) < R_BP || (REGNO) >= R_KR (0)) \ + && ((((REGNO) & 1) == 0) \ + || GET_MODE_UNIT_SIZE (MODE) <= UNITS_PER_WORD))) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. + + On the 29k, normally we'd just have problems with DFmode because of the + even alignment. However, we also have to be a bit concerned about + the special register's restriction to non-floating and the floating-point + accumulator's restriction to only floating. This probably won't + cause any great inefficiencies in practice. */ + +#define MODES_TIEABLE_P(MODE1, MODE2) \ + ((MODE1) == (MODE2) \ + || (GET_MODE_CLASS (MODE1) == MODE_INT \ + && GET_MODE_CLASS (MODE2) == MODE_INT)) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* 29k pc isn't overloaded on a register that the compiler knows about. */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM R_GR (125) + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM R_FP + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +#define FRAME_POINTER_REQUIRED 0 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM R_FP + +/* Register in which static-chain is passed to a function. */ +#define STATIC_CHAIN_REGNUM R_SLP + +/* Register in which address to store a structure value + is passed to a function. */ +#define STRUCT_VALUE_REGNUM R_LRP + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. + + The 29k has nine registers classes: LR0_REGS, GENERAL_REGS, SPECIAL_REGS, + BP_REGS, FC_REGS, CR_REGS, Q_REGS, ACCUM_REGS, and ACCUM0_REGS. + LR0_REGS, BP_REGS, FC_REGS, CR_REGS, and Q_REGS contain just the single + register. The latter two classes are used to represent the floating-point + accumulator registers in the 29050. We also define the union class + FLOAT_REGS to represent any register that can be used to hold a + floating-point value. The union of SPECIAL_REGS and ACCUM_REGS isn't + useful as the former cannot contain floating-point and the latter can only + contain floating-point. */ + +enum reg_class { NO_REGS, LR0_REGS, GENERAL_REGS, BP_REGS, FC_REGS, CR_REGS, + Q_REGS, SPECIAL_REGS, ACCUM0_REGS, ACCUM_REGS, FLOAT_REGS, + ALL_REGS, LIM_REG_CLASSES }; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ + {"NO_REGS", "LR0_REGS", "GENERAL_REGS", "BP_REGS", "FC_REGS", "CR_REGS", \ + "Q_REGS", "SPECIAL_REGS", "ACCUM0_REGS", "ACCUM_REGS", "FLOAT_REGS", \ + "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ + { {0, 0, 0, 0, 0, 0, 0, 0}, \ + {0, 1, 0, 0, 0, 0, 0, 0}, \ + {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xfff, 0xfff}, \ + {0, 0, 0, 0, 0, 0x20000, 0, 0}, \ + {0, 0, 0, 0, 0, 0x40000, 0, 0}, \ + {0, 0, 0, 0, 0, 0x80000, 0, 0}, \ + {0, 0, 0, 0, 0, 0x100000, 0, 0}, \ + {0, 0, 0, 0, 0, 0xfffe0000, 0xff, 0}, \ + {0, 0, 0, 0, 0, 0, 0x100, 0}, \ + {0, 0, 0, 0, 0, 0, 0xf00, 0}, \ + {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xff, 0xfff}, \ + {~0, ~0, ~0, ~0, ~0, ~0, ~0, 0xfff} } + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +#define REGNO_REG_CLASS(REGNO) \ + ((REGNO) == R_BP ? BP_REGS \ + : (REGNO) == R_FC ? FC_REGS \ + : (REGNO) == R_CR ? CR_REGS \ + : (REGNO) == R_Q ? Q_REGS \ + : (REGNO) > R_BP && (REGNO) <= R_EXO ? SPECIAL_REGS \ + : (REGNO) == R_ACU (0) ? ACCUM0_REGS \ + : (REGNO) >= R_KR (0) ? GENERAL_REGS \ + : (REGNO) > R_ACU (0) ? ACCUM_REGS \ + : (REGNO) == R_LR (0) ? LR0_REGS \ + : GENERAL_REGS) + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS NO_REGS +#define BASE_REG_CLASS GENERAL_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'r' ? GENERAL_REGS \ + : (C) == 'l' ? LR0_REGS \ + : (C) == 'b' ? BP_REGS \ + : (C) == 'f' ? FC_REGS \ + : (C) == 'c' ? CR_REGS \ + : (C) == 'q' ? Q_REGS \ + : (C) == 'h' ? SPECIAL_REGS \ + : (C) == 'a' ? ACCUM_REGS \ + : (C) == 'A' ? ACCUM0_REGS \ + : (C) == 'f' ? FLOAT_REGS \ + : NO_REGS) + +/* Define this macro to change register usage conditional on target flags. + + On the 29k, we use this to change the register names for kernel mapping. */ + +#define CONDITIONAL_REGISTER_USAGE \ + { \ + char *p; \ + int i; \ + \ + if (TARGET_KERNEL_REGISTERS) \ + for (i = 0; i < 32; i++) \ + { \ + p = reg_names[i]; \ + reg_names[i] = reg_names[R_KR (i)]; \ + reg_names[R_KR (i)] = p; \ + } \ + } + +/* The letters I, J, K, L, M, N, O, and P in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + For 29k: + `I' is used for the range of constants most insns can contain. + `J' is for the few 16-bit insns. + `K' is a constant whose high-order 24 bits are all one + `L' is a HImode constant whose high-order 8 bits are all one + `M' is a 32-bit constant whose high-order 16 bits are all one (for CONSTN) + `N' is a 32-bit constant whose negative is 8 bits + `O' is the 32-bit constant 0x80000000, any constant with low-order + 16 bits zero for 29050. + `P' is a HImode constant whose negative is 8 bits */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? (unsigned) (VALUE) < 0x100 \ + : (C) == 'J' ? (unsigned) (VALUE) < 0x10000 \ + : (C) == 'K' ? ((VALUE) & 0xffffff00) == 0xffffff00 \ + : (C) == 'L' ? ((VALUE) & 0xff00) == 0xff00 \ + : (C) == 'M' ? ((VALUE) & 0xffff0000) == 0xffff0000 \ + : (C) == 'N' ? ((VALUE) < 0 && (VALUE) > -256) \ + : (C) == 'O' ? ((VALUE) == 0x80000000 \ + || (TARGET_29050 && ((VALUE) & 0xffff) == 0)) \ + : (C) == 'P' ? (((VALUE) | 0xffff0000) < 0 \ + && ((VALUE) | 0xffff0000) > -256) \ + : 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. + All floating-point constants are valid on 29k. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1 + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS + +/* Return the register class of a scratch register needed to copy IN into + or out of a register in CLASS in MODE. If it can be done directly, + NO_REGS is returned. */ + +#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ + secondary_reload_class (CLASS, MODE, IN) + +/* This function is used to get the address of an object. */ + +extern struct rtx_def *a29k_get_reloaded_address (); + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. + + On 29k, this is the size of MODE in words except that the floating-point + accumulators only require one word for anything they can hold. */ + +#define CLASS_MAX_NREGS(CLASS, MODE) \ + (((CLASS) == ACCUM_REGS || (CLASS) == ACCUM0_REGS) ? 1 \ + : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* Define the cost of moving between registers of various classes. Everything + involving a general register is cheap, but moving between the other types + (even within a class) is two insns. */ + +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + ((CLASS1) == GENERAL_REGS || (CLASS2) == GENERAL_REGS ? 2 : 4) + +/* A C expressions returning the cost of moving data of MODE from a register to + or from memory. + + It takes extra insns on the 29k to form addresses, so we want to make + this higher. In addition, we need to keep it more expensive than the + most expensive register-register copy. */ + +#define MEMORY_MOVE_COST(MODE,CLASS,IN) 6 + +/* A C statement (sans semicolon) to update the integer variable COST + based on the relationship between INSN that is dependent on + DEP_INSN through the dependence LINK. The default is to make no + adjustment to COST. On the a29k, ignore the cost of anti- and + output-dependencies. */ +#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \ + if (REG_NOTE_KIND (LINK) != 0) \ + (COST) = 0; /* Anti or output dependence. */ + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. */ + +#define STARTING_FRAME_OFFSET (- current_function_pretend_args_size) + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On 29k, don't define this because there are no push insns. */ +/* #define PUSH_ROUNDING(BYTES) */ + +/* Define this if the maximum size of all the outgoing args is to be + accumulated and pushed during the prologue. The amount can be + found in the variable current_function_outgoing_args_size. */ +#define ACCUMULATE_OUTGOING_ARGS + +/* Offset of first parameter from the argument pointer register value. */ + +#define FIRST_PARM_OFFSET(FNDECL) (- current_function_pretend_args_size) + +/* Define this if stack space is still allocated for a parameter passed + in a register. */ +/* #define REG_PARM_STACK_SPACE */ + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNDECL is the declaration node of the function (as a tree), + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. */ + +#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. + + On 29k the value is found in gr96. */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, TYPE_MODE (VALTYPE), R_GR (96)) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, R_GR (96)) + +/* 1 if N is a possible register number for a function value + as seen by the caller. + On 29k, gr96-gr111 are used. */ + +#define FUNCTION_VALUE_REGNO_P(N) ((N) == R_GR (96)) + +/* 1 if N is a possible register number for function argument passing. + On 29k, these are lr2-lr17. */ + +#define FUNCTION_ARG_REGNO_P(N) ((N) <= R_LR (17) && (N) >= R_LR (2)) + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On 29k, this is a single integer, which is a number of words + of arguments scanned so far. + Thus 16 or more means all following args should go on the stack. */ + +#define CUMULATIVE_ARGS int + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0 + +/* Same, but called for incoming args. + + On the 29k, we use this to set all argument registers to fixed and + set the last 16 local regs, less two, (lr110-lr125) to available. Some + will later be changed to call-saved by FUNCTION_INCOMING_ARG. + lr126,lr127 are always fixed, they are place holders for the caller's + lr0,lr1. */ + +#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \ +{ int i; \ + for (i = R_AR (0) - 2; i < R_AR (16); i++) \ + { \ + fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1; \ + SET_HARD_REG_BIT (fixed_reg_set, i); \ + SET_HARD_REG_BIT (call_used_reg_set, i); \ + SET_HARD_REG_BIT (call_fixed_reg_set, i); \ + } \ + for (i = R_LR (110); i < R_LR (126); i++) \ + { \ + fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 0; \ + CLEAR_HARD_REG_BIT (fixed_reg_set, i); \ + CLEAR_HARD_REG_BIT (call_used_reg_set, i); \ + CLEAR_HARD_REG_BIT (call_fixed_reg_set, i); \ + } \ + (CUM) = 0; \ + } + +/* Define intermediate macro to compute the size (in registers) of an argument + for the 29k. */ + +#define A29K_ARG_SIZE(MODE, TYPE, NAMED) \ +(! (NAMED) ? 0 \ + : (MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ + : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + if (MUST_PASS_IN_STACK (MODE, TYPE)) \ + (CUM) = 16; \ + else \ + (CUM) += A29K_ARG_SIZE (MODE, TYPE, NAMED) + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On 29k the first 16 words of args are normally in registers + and the rest are pushed. */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ +((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \ + ? gen_rtx(REG, (MODE), R_LR (2) + (CUM)) : 0) + +/* Define where a function finds its arguments. + This is different from FUNCTION_ARG because of register windows. + + On the 29k, we hack this to call a function that sets the used registers + as non-fixed and not used by calls. */ + +#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ +((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \ + ? gen_rtx (REG, MODE, \ + incoming_reg (CUM, A29K_ARG_SIZE (MODE, TYPE, NAMED))) \ + : 0) + +/* This indicates that an argument is to be passed with an invisible reference + (i.e., a pointer to the object is passed). + + On the 29k, we do this if it must be passed on the stack. */ + +#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ + (MUST_PASS_IN_STACK (MODE, TYPE)) + +/* Specify the padding direction of arguments. + + On the 29k, we must pad upwards in order to be able to pass args in + registers. */ + +#define FUNCTION_ARG_PADDING(MODE, TYPE) upward + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ +((CUM) < 16 && 16 < (CUM) + A29K_ARG_SIZE (MODE, TYPE, NAMED) && (NAMED) \ + ? 16 - (CUM) : 0) + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. + + CUM is as above. + + MODE and TYPE are the mode and type of the current parameter. + + PRETEND_SIZE is a variable that should be set to the amount of stack + that must be pushed by the prolog to pretend that our caller pushed + it. + + Normally, this macro will push all remaining incoming registers on the + stack and set PRETEND_SIZE to the length of the registers pushed. */ + +#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ +{ if ((CUM) < 16) \ + { \ + int first_reg_offset = (CUM); \ + \ + if (MUST_PASS_IN_STACK (MODE, TYPE)) \ + first_reg_offset += A29K_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \ + \ + if (first_reg_offset > 16) \ + first_reg_offset = 16; \ + \ + if (! (NO_RTL) && first_reg_offset != 16) \ + move_block_from_reg \ + (R_AR (0) + first_reg_offset, \ + gen_rtx (MEM, BLKmode, virtual_incoming_args_rtx), \ + 16 - first_reg_offset, (16 - first_reg_offset) * UNITS_PER_WORD); \ + PRETEND_SIZE = (16 - first_reg_offset) * UNITS_PER_WORD; \ + } \ +} + +/* Define the information needed to generate branch and scc insns. This is + stored from the compare operation. Note that we can't use "rtx" here + since it hasn't been defined! */ + +extern struct rtx_def *a29k_compare_op0, *a29k_compare_op1; +extern int a29k_compare_fp_p; + +/* This macro produces the initial definition of a function name. + + For the 29k, we need the prolog to contain one or two words prior to + the declaration of the function name. So just store away the name and + write it as part of the prolog. This also computes the register names, + which can't be done until after register allocation, but must be done + before final_start_function is called. */ + +extern char *a29k_function_name; + +#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ + a29k_function_name = NAME; \ + a29k_compute_reg_names (); + +/* This macro generates the assembly code for function entry. + FILE is a stdio stream to output the code to. + SIZE is an int: how many units of temporary storage to allocate. + Refer to the array `regs_ever_live' to determine which registers + to save; `regs_ever_live[I]' is nonzero if register number I + is ever used in the function. This macro is responsible for + knowing which registers should not be saved even if used. */ + +#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ + +#define EXIT_IGNORE_STACK 1 + +/* This macro generates the assembly code for function exit, + on machines that need it. If FUNCTION_EPILOGUE is not defined + then individual return instructions are generated for each + return statement. Args are same as for FUNCTION_PROLOGUE. + + The function epilogue should not depend on the current stack pointer! + It should use the frame pointer only. This is mandatory because + of alloca; we also take advantage of it to omit stack adjustments + before returning. */ + +#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE) + +/* Define the number of delay slots needed for the function epilogue. + + On the 29k, we need a slot except when we have a register stack adjustment, + have a memory stack adjustment, and have no frame pointer. */ + +#define DELAY_SLOTS_FOR_EPILOGUE \ + (! (needs_regstack_p () \ + && (get_frame_size () + current_function_pretend_args_size \ + + current_function_outgoing_args_size) != 0 \ + && ! frame_pointer_needed)) + +/* Define whether INSN can be placed in delay slot N for the epilogue. + + On the 29k, we must be able to place it in a delay slot, it must + not use sp if the frame pointer cannot be eliminated, and it cannot + use local regs if we need to push the register stack. + If this is a SET with a memory as source, it might load from + a stack slot, unless the address is constant. */ + +#define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \ + (get_attr_in_delay_slot (INSN) == IN_DELAY_SLOT_YES \ + && ! (frame_pointer_needed \ + && reg_mentioned_p (stack_pointer_rtx, PATTERN (INSN))) \ + && ! (needs_regstack_p () && uses_local_reg_p (PATTERN (INSN))) \ + && (GET_CODE (PATTERN (INSN)) != SET \ + || GET_CODE (SET_SRC (PATTERN (INSN))) != MEM \ + || ! rtx_varies_p (XEXP (SET_SRC (PATTERN (INSN)), 0)))) + +/* Output assembler code for a block containing the constant parts + of a trampoline, leaving space for the variable parts. + + The trampoline should set the static chain pointer to value placed + into the trampoline and should branch to the specified routine. We + use gr121 (tav) as a temporary. */ + +#define TRAMPOLINE_TEMPLATE(FILE) \ +{ \ + fprintf (FILE, "\tconst %s,0\n", reg_names[R_TAV]); \ + fprintf (FILE, "\tconsth %s,0\n", reg_names[R_TAV]); \ + fprintf (FILE, "\tconst %s,0\n", reg_names[R_SLP]); \ + fprintf (FILE, "\tjmpi %s\n", reg_names[R_TAV]); \ + fprintf (FILE, "\tconsth %s,0\n", reg_names[R_SLP]); \ +} + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE 20 + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. + + We do this on the 29k by writing the bytes of the addresses into the + trampoline one byte at a time. */ + +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ +{ \ + INITIALIZE_TRAMPOLINE_VALUE (TRAMP, FNADDR, 0, 4); \ + INITIALIZE_TRAMPOLINE_VALUE (TRAMP, CXT, 8, 16); \ +} + +/* Define a sub-macro to initialize one value into the trampoline. + We specify the offsets of the CONST and CONSTH instructions, respectively + and copy the value a byte at a time into these instructions. */ + +#define INITIALIZE_TRAMPOLINE_VALUE(TRAMP, VALUE, CONST, CONSTH) \ +{ \ + rtx _addr, _temp; \ + rtx _val = force_reg (SImode, VALUE); \ + \ + _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 3)); \ + emit_move_insn (gen_rtx (MEM, QImode, _addr), \ + gen_lowpart (QImode, _val)); \ + \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \ + build_int_2 (8, 0), 0, 1); \ + _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 1)); \ + emit_move_insn (gen_rtx (MEM, QImode, _addr), \ + gen_lowpart (QImode, _temp)); \ + \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \ + build_int_2 (8, 0), _temp, 1); \ + _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 3)); \ + emit_move_insn (gen_rtx (MEM, QImode, _addr), \ + gen_lowpart (QImode, _temp)); \ + \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \ + build_int_2 (8, 0), _temp, 1); \ + _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 1)); \ + emit_move_insn (gen_rtx (MEM, QImode, _addr), \ + gen_lowpart (QImode, _temp)); \ +} + +/* Addressing modes, and classification of registers for them. */ + +/* #define HAVE_POST_INCREMENT 0 */ +/* #define HAVE_POST_DECREMENT 0 */ + +/* #define HAVE_PRE_DECREMENT 0 */ +/* #define HAVE_PRE_INCREMENT 0 */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) 0 +#define REGNO_OK_FOR_BASE_P(REGNO) 1 + +/* Given the value returned from get_frame_size, compute the actual size + of the frame we will allocate. We include the pretend and outgoing + arg sizes and round to a doubleword. */ + +#define ACTUAL_FRAME_SIZE(SIZE) \ + (((SIZE) + current_function_pretend_args_size \ + + current_function_outgoing_args_size + 7) & ~7) + +/* Define the initial offset between the frame and stack pointer. */ + +#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ + (DEPTH) = ACTUAL_FRAME_SIZE (get_frame_size ()) + +/* Maximum number of registers that can appear in a valid memory address. */ +#define MAX_REGS_PER_ADDRESS 1 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) \ +(GET_CODE (X) == CONST_INT && (unsigned) INTVAL (X) < 0x100) + +/* Include all constant integers and constant doubles */ +#define LEGITIMATE_CONSTANT_P(X) 1 + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) 0 +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) 1 + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + On the 29k, a legitimate address is a register and so is a + constant of less than 256. */ + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \ + goto ADDR; \ + if (GET_CODE (X) == CONST_INT \ + && (unsigned) INTVAL (X) < 0x100) \ + goto ADDR; \ +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the 29k, we need not do anything. However, if we don't, + `memory_address' will try lots of things to get a valid address, most of + which will result in dead code and extra pseudos. So we make the address + valid here. + + This is easy: The only valid addresses are an offset from a register + and we know the address isn't valid. So just call either `force_operand' + or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */ + +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \ + X = XEXP (x, 0); \ + if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \ + X = force_operand (X, 0); \ + else \ + X = force_reg (Pmode, X); \ + goto WIN; \ +} + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + On the 29k this is never true. */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) + +/* Compute the cost of an address. For the 29k, all valid addresses are + the same cost. */ + +#define ADDRESS_COST(X) 0 + +/* Define this if some processing needs to be done immediately before + emitting code for an insn. */ + +/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */ + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE SImode + +/* Define as C expression which evaluates to nonzero if the tablejump + instruction expects the table to contain offsets from the address of the + table. + Do not define this if the table should contain absolute addresses. */ +/* #define CASE_VECTOR_PC_RELATIVE 1 */ + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 0 + +/* This flag, if defined, says the same insns that convert to a signed fixnum + also convert validly to an unsigned one. + + We actually lie a bit here as overflow conditions are different. But + they aren't being checked anyway. */ + +#define FIXUNS_TRUNC_LIKE_FIX_TRUNC + +/* Max number of bytes we can move to of from memory + in one reasonably fast instruction. + + For the 29k, we will define movti, so put this at 4 words. */ +#define MOVE_MAX 16 + +/* Largest number of bytes of an object that can be placed in a register. + On the 29k we have plenty of registers, so use TImode. */ +#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode) + +/* Nonzero if access to memory by bytes is no faster than for words. + Also non-zero if doing byte operations (specifically shifts) in registers + is undesirable. + + On the 29k, large masks are expensive, so we want to use bytes to + manipulate fields. */ +#define SLOW_BYTE_ACCESS 0 + +/* Define if operations between registers always perform the operation + on the full register even if a narrower mode is specified. */ +#define WORD_REGISTER_OPERATIONS + +/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD + will either zero-extend or sign-extend. The value of this macro should + be the code that says which one of the two operations is implicitly + done, NIL if none. */ +#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND + +/* Define if the object format being used is COFF or a superset. */ +#define OBJECT_FORMAT_COFF + +/* This uses COFF, so it wants SDB format. */ +#define SDB_DEBUGGING_INFO + +/* Define this to be the delimiter between SDB sub-sections. The default + is ";". */ +#define SDB_DELIM "\n" + +/* Do not break .stabs pseudos into continuations. */ +#define DBX_CONTIN_LENGTH 0 + +/* Don't try to use the `x' type-cross-reference character in DBX data. + Also has the consequence of putting each struct, union or enum + into a separate .stabs, containing only cross-refs to the others. */ +#define DBX_NO_XREFS + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* We assume that the store-condition-codes instructions store 0 for false + and some other value for true. This is the value stored for true, which + is just the sign bit. */ + +#define STORE_FLAG_VALUE (-2147483647 - 1) + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* Mode of a function address in a call instruction (for indexing purposes). + + Doesn't matter on 29k. */ +#define FUNCTION_MODE SImode + +/* Define this if addresses of constant functions + shouldn't be put through pseudo regs where they can be cse'd. + Desirable on machines where ordinary constants are expensive + but a CALL with constant address is cheap. */ +#define NO_FUNCTION_CSE + +/* Define this to be nonzero if shift instructions ignore all but the low-order + few bits. */ +#define SHIFT_COUNT_TRUNCATED 1 + +/* Compute the cost of computing a constant rtl expression RTX + whose rtx-code is CODE. The body of this macro is a portion + of a switch statement. If the code is computed here, + return it with a return statement. Otherwise, break from the switch. + + We only care about the cost if it is valid in an insn. The only + constants that cause an insn to generate more than one machine + instruction are those involving floating-point or address. So + only these need be expensive. */ + +#define CONST_COSTS(RTX,CODE,OUTER_CODE) \ + case CONST_INT: \ + return 0; \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + return 6; \ + case CONST_DOUBLE: \ + return GET_MODE (RTX) == SFmode ? 6 : 8; + +/* Provide the costs of a rtl expression. This is in the body of a + switch on CODE. + + All MEMs cost the same if they are valid. This is used to ensure + that (mem (symbol_ref ...)) is placed into a CALL when valid. + + The multiply cost depends on whether this is a 29050 or not. */ + +#define RTX_COSTS(X,CODE,OUTER_CODE) \ + case MULT: \ + return TARGET_29050 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (40); \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + return COSTS_N_INSNS (50); \ + case MEM: \ + return COSTS_N_INSNS (2); + +/* Control the assembler format that we output. */ + +/* Output at beginning of assembler file. */ + +#define ASM_FILE_START(FILE) \ +{ char *p, *after_dir = main_input_filename; \ + if (TARGET_29050) \ + fprintf (FILE, "\t.cputype 29050\n"); \ + for (p = main_input_filename; *p; p++) \ + if (*p == '/') \ + after_dir = p + 1; \ + fprintf (FILE, "\t.file "); \ + output_quoted_string (FILE, after_dir); \ + fprintf (FILE, "\n"); \ + fprintf (FILE, "\t.sect .lit,lit\n"); } + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "" + +/* The next few macros don't have tabs on most machines, but + at least one 29K assembler wants them. */ + +/* Output before instructions. */ + +#define TEXT_SECTION_ASM_OP "\t.text" + +/* Output before read-only data. */ + +#define READONLY_DATA_SECTION_ASM_OP "\t.use .lit" + +/* Output before writable data. */ + +#define DATA_SECTION_ASM_OP "\t.data" + +/* Define an extra section for read-only data, a routine to enter it, and + indicate that it is for read-only data. */ + +#define EXTRA_SECTIONS readonly_data + +#define EXTRA_SECTION_FUNCTIONS \ +void \ +literal_section () \ +{ \ + if (in_section != readonly_data) \ + { \ + fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \ + in_section = readonly_data; \ + } \ +} \ + +#define READONLY_DATA_SECTION literal_section + +/* If we are referencing a function that is static or is known to be + in this file, make the SYMBOL_REF special. We can use this to indicate + that we can branch to this function without emitting a no-op after the + call. */ + +#define ENCODE_SECTION_INFO(DECL) \ + if (TREE_CODE (DECL) == FUNCTION_DECL \ + && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \ + SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +#define REGISTER_NAMES \ +{"gr96", "gr97", "gr98", "gr99", "gr100", "gr101", "gr102", "gr103", "gr104", \ + "gr105", "gr106", "gr107", "gr108", "gr109", "gr110", "gr111", "gr112", \ + "gr113", "gr114", "gr115", "gr116", "gr117", "gr118", "gr119", "gr120", \ + "gr121", "gr122", "gr123", "gr124", "gr125", "gr126", "gr127", \ + "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", "lr8", "lr9", \ + "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", "lr16", "lr17", "lr18", \ + "lr19", "lr20", "lr21", "lr22", "lr23", "lr24", "lr25", "lr26", "lr27", \ + "lr28", "lr29", "lr30", "lr31", "lr32", "lr33", "lr34", "lr35", "lr36", \ + "lr37", "lr38", "lr39", "lr40", "lr41", "lr42", "lr43", "lr44", "lr45", \ + "lr46", "lr47", "lr48", "lr49", "lr50", "lr51", "lr52", "lr53", "lr54", \ + "lr55", "lr56", "lr57", "lr58", "lr59", "lr60", "lr61", "lr62", "lr63", \ + "lr64", "lr65", "lr66", "lr67", "lr68", "lr69", "lr70", "lr71", "lr72", \ + "lr73", "lr74", "lr75", "lr76", "lr77", "lr78", "lr79", "lr80", "lr81", \ + "lr82", "lr83", "lr84", "lr85", "lr86", "lr87", "lr88", "lr89", "lr90", \ + "lr91", "lr92", "lr93", "lr94", "lr95", "lr96", "lr97", "lr98", "lr99", \ + "lr100", "lr101", "lr102", "lr103", "lr104", "lr105", "lr106", "lr107", \ + "lr108", "lr109", "lr110", "lr111", "lr112", "lr113", "lr114", "lr115", \ + "lr116", "lr117", "lr118", "lr119", "lr120", "lr121", "lr122", "lr123", \ + "lr124", "lr125", "lr126", "lr127", \ + "AI0", "AI1", "AI2", "AI3", "AI4", "AI5", "AI6", "AI7", "AI8", "AI9", \ + "AI10", "AI11", "AI12", "AI13", "AI14", "AI15", "FP", \ + "bp", "fc", "cr", "q", \ + "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr", \ + "pc0", "pc1", "pc2", "mmu", "lru", "fpe", "int", "fps", "exo", \ + "0", "1", "2", "3", \ + "gr64", "gr65", "gr66", "gr67", "gr68", "gr69", "gr70", "gr71", \ + "gr72", "gr73", "gr74", "gr75", "gr76", "gr77", "gr78", "gr79", \ + "gr80", "gr81", "gr82", "gr83", "gr84", "gr85", "gr86", "gr87", \ + "gr88", "gr89", "gr90", "gr91", "gr92", "gr93", "gr94", "gr95" } + +/* How to renumber registers for dbx and gdb. */ + +extern int a29k_debug_reg_map[]; +#define DBX_REGISTER_NUMBER(REGNO) a29k_debug_reg_map[REGNO] + +/* This how to write an assembler directive to FILE to switch to + section NAME for DECL. */ + +#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \ + fprintf (FILE, "\t.sect %s, bss\n\t.use %s\n", NAME, NAME) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) + +/* This is how to output a command to make the user-level label named NAME + defined for reference from other files. */ + +#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ + do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) + +/* The prefix to add to user-visible assembler symbols. */ + +#undef USER_LABEL_PREFIX +#define USER_LABEL_PREFIX "_" + +/* This is how to output an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. */ + +#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ + fprintf (FILE, "%s%d:\n", PREFIX, NUM) + +/* This is how to output a label for a jump table. Arguments are the same as + for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is + passed. */ + +#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ +{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } + +/* This is how to store into the string LABEL + the symbol_ref name of an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. + This is suitable for output with `assemble_name'. */ + +#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ + sprintf (LABEL, "*%s%d", PREFIX, NUM) + +/* This is how to output an assembler line defining a `double' constant. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ + fprintf (FILE, "\t.double %.20e\n", (VALUE)) + +/* This is how to output an assembler line defining a `float' constant. */ + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ + fprintf (FILE, "\t.float %.20e\n", (VALUE)) + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE,VALUE) \ +( fprintf (FILE, "\t.word "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* Likewise for `char' and `short' constants. */ + +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "\t.hword "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_CHAR(FILE,VALUE) \ +( fprintf (FILE, "\t.byte "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* This is how to output an insn to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ + fprintf (FILE, "\tsub %s,%s,4\n\tstore 0,0,%s,%s\n", \ + reg_names[R_MSP], reg_names[R_MSP], reg_names[REGNO], \ + reg_names[R_MSP]); + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ + fprintf (FILE, "\tload 0,0,%s,%s\n\tadd %s,%s,4\n", \ + reg_names[REGNO], reg_names[R_MSP], reg_names[R_MSP], \ + reg_names[R_MSP]); + +/* This is how to output an assembler line for a numeric constant byte. */ + +#define ASM_OUTPUT_BYTE(FILE,VALUE) \ + fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) + +/* This is how to output an element of a case-vector that is absolute. */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + fprintf (FILE, "\t.word L%d\n", VALUE) + +/* This is how to output an element of a case-vector that is relative. + Don't define this if it is not supported. */ + +/* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */ + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) != 0) \ + fprintf (FILE, "\t.align %d\n", 1 << (LOG)) + +#define ASM_OUTPUT_SKIP(FILE,SIZE) \ + fprintf (FILE, "\t.block %d\n", (SIZE)) + +/* This says how to output an assembler line + to define a global common symbol. */ + +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ +( fputs ("\t.comm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* This says how to output an assembler line + to define a local common symbol. */ + +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ +( fputs ("\t.lcomm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) + +/* Determine which codes are valid without a following integer. These must + not be alphabetic. + + We support `#' which is null if a delay slot exists, otherwise + "\n\tnop" and `*' which prints the register name for TPC (gr122). */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#' || (CODE) == '*') + +/* Print a memory address as an operand to reference that memory location. */ + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ +{ register rtx addr = ADDR; \ + if (!REG_P (addr) \ + && ! (GET_CODE (addr) == CONST_INT \ + && INTVAL (addr) >= 0 && INTVAL (addr) < 256)) \ + abort (); \ + output_operand (addr, 0); \ +} +/* Define the codes that are matched by predicates in a29k.c. */ + +#define PREDICATE_CODES \ + {"cint_8_operand", {CONST_INT}}, \ + {"cint_16_operand", {CONST_INT}}, \ + {"long_const_operand", {CONST_INT, CONST, CONST_DOUBLE, \ + LABEL_REF, SYMBOL_REF}}, \ + {"shift_constant_operand", {CONST_INT, ASHIFT}}, \ + {"const_0_operand", {CONST_INT, ASHIFT}}, \ + {"const_8_operand", {CONST_INT, ASHIFT}}, \ + {"const_16_operand", {CONST_INT, ASHIFT}}, \ + {"const_24_operand", {CONST_INT, ASHIFT}}, \ + {"float_const_operand", {CONST_DOUBLE}}, \ + {"gpc_reg_operand", {SUBREG, REG}}, \ + {"gpc_reg_or_float_constant_operand", {SUBREG, REG, CONST_DOUBLE}}, \ + {"gpc_reg_or_integer_constant_operand", {SUBREG, REG, \ + CONST_INT, CONST_DOUBLE}}, \ + {"gpc_reg_or_immediate_operand", {SUBREG, REG, CONST_INT, \ + CONST_DOUBLE, CONST, \ + SYMBOL_REF, LABEL_REF}}, \ + {"spec_reg_operand", {REG}}, \ + {"accum_reg_operand", {REG}}, \ + {"srcb_operand", {SUBREG, REG, CONST_INT}}, \ + {"cmplsrcb_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_immediate_operand", {SUBREG, REG, CONST_INT, CONST, \ + CONST_DOUBLE, CONST, SYMBOL_REF, LABEL_REF}}, \ + {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \ + {"and_operand", {SUBREG, REG, CONST_INT}}, \ + {"add_operand", {SUBREG, REG, CONST_INT}}, \ + {"call_operand", {SYMBOL_REF, CONST_INT}}, \ + {"in_operand", {SUBREG, MEM, REG, CONST_INT, CONST, SYMBOL_REF, \ + LABEL_REF, CONST_DOUBLE}}, \ + {"out_operand", {SUBREG, REG, MEM}}, \ + {"reload_memory_operand", {SUBREG, REG, MEM}}, \ + {"fp_comparison_operator", {EQ, GT, GE}}, \ + {"branch_operator", {GE, LT}}, \ + {"load_multiple_operation", {PARALLEL}}, \ + {"store_multiple_operation", {PARALLEL}}, \ + {"epilogue_operand", {CODE_LABEL}}, diff --git a/gcc/config/a29k/a29k.md b/gcc/config/a29k/a29k.md new file mode 100755 index 0000000..cc4f422 --- /dev/null +++ b/gcc/config/a29k/a29k.md @@ -0,0 +1,2874 @@ +;;- Machine description for AMD Am29000 for GNU C compiler +;; Copyright (C) 1991, 1992, 1994 Free Software Foundation, Inc. +;; Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) + +;; This file is part of GNU CC. + +;; GNU CC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 2, or (at your option) +;; any later version. + +;; GNU CC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GNU CC; see the file COPYING. If not, write to +;; the Free Software Foundation, 59 Temple Place - Suite 330, +;; Boston, MA 02111-1307, USA. + +;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. + +;; The insns in this file are presented in the same order as the AMD 29000 +;; User's Manual (i.e., alphabetical by machine op-code). +;; +;; DEFINE_EXPAND's are located near the first occurrence of the major insn +;; that they generate. + +;; The only attribute we have is the type. We only care about calls, branches, +;; loads, stores, floating-point operations, and multi-word insns. +;; Everything else is miscellaneous. + +(define_attr "type" + "call,branch,load,store,fadd,fmul,fam,fdiv,fsqrt,dmul,dam,ddiv,dsqrt,multi,misc" + (const_string "misc")) + +;; ASM insns cannot go into a delay slot, so call them "multi". +(define_asm_attributes [(set_attr "type" "multi")]) + +(define_attr "in_delay_slot" "yes,no" + (if_then_else (eq_attr "type" "call,branch,multi") (const_string "no") + (const_string "yes"))) + +;; Branch and call insns require a single delay slot. Annulling is not +;; supported. +(define_delay (eq_attr "type" "call,branch") + [(eq_attr "in_delay_slot" "yes") (nil) (nil)]) + +;; Define the function unit usages. We first define memory as a unit. +(define_function_unit "memory" 1 0 (eq_attr "type" "load") 6 5 + [(eq_attr "type" "load")]) +(define_function_unit "memory" 1 0 (eq_attr "type" "load") 6 6 + [(eq_attr "type" "store")]) +(define_function_unit "memory" 1 0 (eq_attr "type" "store") 1 0) + +;; Now define the function units for the floating-point support. Most +;; units are pipelined and can accept an input every cycle. +;; +;; Note that we have an inaccuracy here. If a fmac insn is issued, followed +;; 2 cycles later by a fadd, there will be a conflict for the floating +;; adder that we can't represent. Also, all insns will conflict for the +;; floating-point rounder. It isn't clear how to represent this. + +(define_function_unit "multiplier" 1 0 (eq_attr "type" "fmul") 3 0) +(define_function_unit "multiplier" 1 0 (eq_attr "type" "dmul") 6 4) +(define_function_unit "multiplier" 1 0 (eq_attr "type" "fam") 6 0) +(define_function_unit "multiplier" 1 0 (eq_attr "type" "dam") 9 4) + +(define_function_unit "adder" 1 0 (eq_attr "type" "fadd,fam,dam") 3 0) + +(define_function_unit "divider" 1 0 (eq_attr "type" "fdiv") 11 10) +(define_function_unit "divider" 1 0 (eq_attr "type" "fsqrt") 28 27) +(define_function_unit "divider" 1 0 (eq_attr "type" "ddiv") 18 17) +(define_function_unit "divider" 1 0 (eq_attr "type" "dsqrt") 57 56) + +;; ADD +(define_insn "addsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") + (match_operand:SI 2 "add_operand" "rI,N")))] + "" + "@ + add %0,%1,%2 + sub %0,%1,%n2") + +(define_insn "adddi3" + [(set (match_operand:DI 0 "gpc_reg_operand" "=r") + (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r") + (match_operand:DI 2 "gpc_reg_operand" "r")))] + "" + "add %L0,%L1,%L2\;addc %0,%1,%2" + [(set_attr "type" "multi")]) + +;; AND/ANDN +(define_insn "andsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") + (match_operand:SI 2 "and_operand" "rI,K")))] + "" + "@ + and %0,%1,%2 + andn %0,%1,%C2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")) + (match_operand:SI 2 "cmplsrcb_operand" "r,K")))] + "" + "@ + andn %0,%2,%1 + nor %0,%1,%C2") + +;; CALLI +;; +;; Each call pattern is duplicated so that we can add CLOBBERs to the +;; resulting insn. +;; +;; We indicate that LR0 is clobbered in the CALL_INSN itself. Otherwise, +;; reorg will think it is just clobbered by the called function. + +(define_expand "call" + [(use (match_operand:SI 0 "" "")) + (use (match_operand 1 "" "")) + (use (match_operand 2 "" ""))] + "" + " +{ rtx insn = emit_call_insn (gen_call_internal (operands[0], operands[1])); + a29k_clobbers_to (insn, operands[2]); + + DONE; +}") + +(define_expand "call_internal" + [(parallel [(call (match_operand:SI 0 "" "") + (match_operand 1 "" "")) + (clobber (scratch:SI))])] + "" + " +{ + if (GET_CODE (operands[0]) != MEM) + abort (); + + /* We tell here whether this is a recursive call, since this insn may + later be inlined into another function. */ + if (! TARGET_SMALL_MEMORY + && GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF) + operands[0] = gen_rtx (MEM, SImode, + force_reg (Pmode, XEXP (operands[0], 0))); +}") + +(define_expand "call_value" + [(use (match_operand:SI 0 "gpc_reg_operand" "")) + (use (match_operand:SI 1 "" "")) + (use (match_operand 2 "" "")) + (use (match_operand 3 "" ""))] + "" + " +{ rtx insn = emit_call_insn (gen_call_value_internal (operands[0], operands[1], + operands[2])); + + a29k_clobbers_to (insn, operands[3]); + DONE; +}") + +(define_expand "call_value_internal" + [(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") + (call (match_operand:SI 1 "" "") + (match_operand 2 "" ""))) + (clobber (scratch:SI))])] + "" + " +{ + if (GET_CODE (operands[1]) != MEM) + abort (); + + /* We tell here whether this is a recursive call, since this insn may + later be inlined into another function. */ + if (! TARGET_SMALL_MEMORY + && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF) + operands[1] = gen_rtx (MEM, SImode, + force_reg (Pmode, XEXP (operands[1], 0))); + +}") + +(define_insn "" + [(call (match_operand:SI 0 "memory_operand" "m") + (match_operand 1 "" "")) + (clobber (match_scratch:SI 2 "=&l"))] + "GET_CODE (XEXP (operands[0], 0)) != CONST_INT" + "calli lr0,%0%#" + [(set_attr "type" "call")]) + +(define_insn "" + [(call (mem:SI (match_operand:SI 0 "call_operand" "i")) + (match_operand:SI 1 "general_operand" "g")) + (clobber (match_scratch:SI 2 "=&l"))] + "" + "call lr0,%F0" + [(set_attr "type" "call")]) + +(define_insn "" + [(set (match_operand 0 "gpc_reg_operand" "=r") + (call (match_operand:SI 1 "memory_operand" "m") + (match_operand 2 "" ""))) + (clobber (match_scratch:SI 3 "=&l"))] + "GET_CODE (XEXP (operands[1], 0)) != CONST_INT" + "calli lr0,%1%#" + [(set_attr "type" "call")]) + +(define_insn "" + [(set (match_operand 0 "gpc_reg_operand" "=r") + (call (mem:SI (match_operand:SI 1 "call_operand" "i")) + (match_operand:SI 2 "general_operand" "g"))) + (clobber (match_scratch:SI 3 "=&l"))] + "" + "call lr0,%F1" + [(set_attr "type" "call")]) + +(define_expand "probe" + [(call (mem:SI (symbol_ref:SI "_msp_check")) + (const_int 1))] + "TARGET_STACK_CHECK" + "") + +;; This is used for internal routine calls via TPC. Currently used only +;; in probe, above. +(define_insn "" + [(call (mem:SI (match_operand:SI 0 "immediate_operand" "s")) + (const_int 1))] + "" + "call %*,%0" + [(set_attr "type" "call")]) + +;; CONST, CONSTH, CONSTN +;; +;; Many of these are generated from move insns. +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (and:SI (match_operand:SI 1 "immediate_operand" "i") + (const_int 65535)))] + "" + "const %0,%1") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") + (const_int 16) + (match_operand:SI 1 "const_0_operand" "")) + (ashiftrt:SI (match_operand:SI 2 "immediate_operand" "i") + (const_int 16)))] + "" + "consth %0,%2") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") + (const_int 16) + (match_operand:SI 1 "const_0_operand" "")) + (match_operand:SI 2 "cint_16_operand" "J"))] + "" + "consth %0,%m2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "0")) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 0xffff) == 0" + "consth %0,%2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "0")) + (and:SI (match_operand:SI 2 "immediate_operand" "i") + (const_int -65536))))] + "" + "consth %0,%2") + +;; CONVERT +(define_insn "fix_truncsfsi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (fix:SI (match_operand:SF 1 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,0,3,0,1") + +(define_insn "fix_truncdfsi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (fix:SI (match_operand:DF 1 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,0,3,0,2") + +(define_insn "fixuns_truncsfsi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,1,3,0,1") + +(define_insn "fixuns_truncdfsi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (unsigned_fix:SI (match_operand:DF 1 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,1,3,0,2") + +(define_insn "truncdfsf2" + [(set (match_operand:SF 0 "register_operand" "=r") + (float_truncate:SF (match_operand:DF 1 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,0,4,1,2") + +(define_insn "extendsfdf2" + [(set (match_operand:DF 0 "register_operand" "=r") + (float_extend:DF (match_operand:SF 1 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,0,4,2,1") + +(define_insn "floatsisf2" + [(set (match_operand:SF 0 "register_operand" "=r") + (float:SF (match_operand:SI 1 "gpc_reg_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,0,4,1,0") + +(define_insn "floatsidf2" + [(set (match_operand:DF 0 "register_operand" "=r") + (float:DF (match_operand:SI 1 "gpc_reg_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,0,4,2,0") + +(define_insn "floatunssisf2" + [(set (match_operand:SF 0 "register_operand" "=r") + (unsigned_float:SF (match_operand:SI 1 "gpc_reg_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,1,4,1,0") + +(define_insn "floatunssidf2" + [(set (match_operand:DF 0 "register_operand" "=r") + (unsigned_float:DF (match_operand:SI 1 "gpc_reg_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "convert %0,%1,1,4,2,0") + +;; CPxxx, DEQ, DGT, DGE, FEQ, FGT, FGE +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (match_operator 3 "comparison_operator" + [(match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:SI 2 "srcb_operand" "rI")]))] + "" + "cp%J3 %0,%1,%2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (match_operator 3 "fp_comparison_operator" + [(match_operand:SF 1 "register_operand" "r") + (match_operand:SF 2 "register_operand" "r")]))] + "! TARGET_SOFT_FLOAT" + "f%J3 %0,%1,%2" + [(set_attr "type" "fadd")]) + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (match_operator 3 "fp_comparison_operator" + [(match_operand:DF 1 "register_operand" "r") + (match_operand:DF 2 "register_operand" "r")]))] + "! TARGET_SOFT_FLOAT" + "d%J3 %0,%1,%2" + [(set_attr "type" "fadd")]) + +;; DADD +(define_expand "adddf3" + [(set (match_operand:DF 0 "register_operand" "") + (plus:DF (match_operand:DF 1 "register_operand" "") + (match_operand:DF 2 "register_operand" "")))] + "! TARGET_SOFT_FLOAT" + "") + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r") + (plus:DF (match_operand:DF 1 "register_operand" "%r") + (match_operand:DF 2 "register_operand" "r")))] + "! TARGET_29050 " + "dadd %0,%1,%2" + [(set_attr "type" "fadd")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r,a") + (plus:DF (match_operand:DF 1 "register_operand" "%r,r") + (match_operand:DF 2 "register_operand" "r,0")))] + "TARGET_29050" + "@ + dadd %0,%1,%2 + dmac 8,%0,%1,%1" + [(set_attr "type" "fadd,dam")]) + +;; DDIV +(define_insn "divdf3" + [(set (match_operand:DF 0 "register_operand" "=r") + (div:DF (match_operand:DF 1 "register_operand" "=r") + (match_operand:DF 2 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "ddiv %0,%1,%2" + [(set_attr "type" "ddiv")]) + +;; DIVIDE +;; +;; We must set Q to the sign extension of the dividend first. For MOD, we +;; must get the remainder from Q. +;; +;; For divmod: operand 1 is divided by operand 2; quotient goes to operand +;; 0 and remainder to operand 3. +(define_expand "divmodsi4" + [(set (match_dup 4) + (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "") + (const_int 31))) + (parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") + (div:SI (match_dup 1) + (match_operand:SI 2 "gpc_reg_operand" ""))) + (set (match_operand:SI 3 "gpc_reg_operand" "") + (mod:SI (match_dup 1) + (match_dup 2))) + (use (match_dup 4))])] + "" + " +{ + operands[4] = gen_reg_rtx (SImode); +}") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:SI 2 "gpc_reg_operand" "r"))) + (set (match_operand:SI 3 "register_operand" "=q") + (mod:SI (match_dup 1) + (match_dup 2))) + (use (match_operand:SI 4 "register_operand" "3"))] + "" + "divide %0,%1,%2") + +;; DIVIDU +;; +;; Similar to DIVIDE. +(define_expand "udivmodsi4" + [(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") + (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "") + (match_operand:SI 2 "gpc_reg_operand" ""))) + (set (match_operand:SI 3 "gpc_reg_operand" "") + (umod:SI (match_dup 1) + (match_dup 2))) + (use (const_int 0))])] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:SI 2 "gpc_reg_operand" "r"))) + (set (match_operand:SI 3 "register_operand" "=q") + (umod:SI (match_dup 1) + (match_dup 2))) + (use (match_operand:SI 4 "const_int_operand" "3"))] + "" + "dividu %0,%1,%2") + +;; DMAC/DMSM +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a,*r") + (plus:DF (mult:DF (match_operand:DF 1 "register_operand" "%r,A") + (match_operand:DF 2 "register_operand" "r,r")) + (match_operand:DF 3 "register_operand" "0,*r")))] + "TARGET_29050" + "@ + dmac 0,%0,%1,%2 + dmsm %0,%2,%3" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a") + (plus:DF (mult:DF (neg:DF (match_operand:DF 1 "register_operand" "r")) + (match_operand:DF 2 "register_operand" "r")) + (match_operand:DF 3 "register_operand" "0")))] + "TARGET_29050" + "dmac 1,%0,%2,%1" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a") + (minus:DF (mult:DF (match_operand:DF 1 "register_operand" "%r") + (match_operand:DF 2 "register_operand" "r")) + (match_operand:DF 3 "register_operand" "0")))] + "TARGET_29050" + "dmac 2,%0,%1,%2" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a") + (minus:DF (mult:DF (match_operand:DF 1 "register_operand" "r") + (neg:DF (match_operand:DF 2 "register_operand" "r"))) + (match_operand:DF 3 "register_operand" "0")))] + "TARGET_29050" + "dmac 3,%0,%1,%2" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a") + (mult:DF (neg:DF (match_operand:DF 1 "register_operand" "r")) + (match_operand:DF 2 "register_operand" "r")))] + "TARGET_29050" + "dmac 5,%0,%2,%1" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a") + (minus:DF (neg:DF (match_operand:DF 1 "register_operand" "r")) + (match_operand:DF 2 "register_operand" "0")))] + "TARGET_29050" + "dmac 11,%0,%1,%1" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=a") + (neg:DF (plus:DF (match_operand:DF 1 "register_operand" "%r") + (match_operand:DF 2 "register_operand" "0"))))] + "TARGET_29050" + "dmac 11,%0,%1,%1" + [(set_attr "type" "dam")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r,r,a") + (neg:DF (match_operand:DF 1 "register_operand" "0,r,r"))) + (clobber (match_scratch:SI 2 "=&r,&r,X"))] + "TARGET_29050" + "@ + cpeq %2,gr1,gr1\;xor %0,%1,%2 + cpeq %2,gr1,gr1\;xor %0,%1,%2\;sll %L0,%L1,0 + dmac 13,%0,%1,%1" + [(set_attr "type" "multi,multi,dam")]) + +;; DMUL +(define_expand "muldf3" + [(set (match_operand:DF 0 "register_operand" "") + (mult:DF (match_operand:DF 1 "register_operand" "") + (match_operand:DF 2 "register_operand" "")))] + "! TARGET_SOFT_FLOAT" + "") + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r") + (mult:DF (match_operand:DF 1 "register_operand" "%r") + (match_operand:DF 2 "register_operand" "r")))] + "! TARGET_29050" + "dmul %0,%1,%2" + [(set_attr "type" "dmul")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r,a") + (mult:DF (match_operand:DF 1 "register_operand" "%r,r") + (match_operand:DF 2 "register_operand" "r,r")))] + "TARGET_29050" + "@ + dmul %0,%1,%2 + dmac 4,%0,%1,%2" + [(set_attr "type" "dmul,dam")]) + +;; DSUB +(define_expand "subdf3" + [(set (match_operand:DF 0 "register_operand" "=r") + (minus:DF (match_operand:DF 1 "register_operand" "r") + (match_operand:DF 2 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "") + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r") + (minus:DF (match_operand:DF 1 "register_operand" "r") + (match_operand:DF 2 "register_operand" "r")))] + "! TARGET_29050" + "dsub %0,%1,%2" + [(set_attr "type" "fadd")]) + +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r,a,a") + (minus:DF (match_operand:DF 1 "register_operand" "r,0,r") + (match_operand:DF 2 "register_operand" "r,r,0")))] + "TARGET_29050" + "@ + dsub %0,%1,%2 + dmac 9,%0,%2,%2 + dmac 10,%0,%1,%1" + [(set_attr "type" "fadd,dam,dam")]) + +;; EXBYTE +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (and:SI (match_operand:SI 1 "srcb_operand" "rI") + (const_int -256)) + (zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r") + (const_int 8) + (ashift:PSI + (match_operand:PSI 3 "register_operand" "b") + (const_int 3)))))] + "" + "exbyte %0,%2,%1") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 8) + (ashift:PSI + (match_operand:PSI 2 "register_operand" "b") + (const_int 3))))] + "" + "exbyte %0,%1,0") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") + (const_int 8) + (match_operand:PSI 1 "const_24_operand" "")) + (zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r") + (const_int 8) + (ashift:PSI + (match_operand:PSI 3 "register_operand" "b") + (const_int 3))))] + "" + "exbyte %0,%2,%0") + +(define_expand "extzv" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "") + (match_operand:SI 2 "general_operand" "") + (match_operand:SI 3 "general_operand" "")))] + "" + " +{ + int size, pos; + + if (GET_CODE (operands[2]) != CONST_INT + || GET_CODE (operands[3]) != CONST_INT) + FAIL; + + size = INTVAL (operands[2]); + pos = INTVAL (operands[3]); + + /* Can't do this unless a byte extraction. If extracting the high + or low byte, don't do this because a shift or AND is shorter. + Don't do 16-bit extracts, since the only two are the high and low + ends, and it is faster to do them with CONSTH and SRL. */ + + if (size != 8 || (pos != 8 && pos != 16)) + FAIL; + + operands[3] = gen_rtx (ASHIFT, PSImode, + force_reg (PSImode, GEN_INT (pos / 8)), + GEN_INT (3)); + +}") + +;; EXHW +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (and:SI (match_operand:SI 1 "srcb_operand" "rI") + (const_int -65536)) + (zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r") + (const_int 16) + (ashift:PSI + (match_operand:PSI 3 "register_operand" "b") + (const_int 3)))))] + "" + "exhw %0,%2,%1") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 16) + (ashift:PSI + (match_operand:PSI 2 "register_operand" "b") + (const_int 3))))] + "" + "exhw %0,%1,0") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") + (const_int 16) + (match_operand:PSI 1 "const_16_operand" "")) + (zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r") + (const_int 16) + (ashift:PSI + (match_operand:PSI 3 "register_operand" "b") + (const_int 3))))] + "" + "exhw %0,%2,%0") + +;; EXHWS +;; +;; This is probably unused. The high-order 16-bits are obtained with an SRA +;; insn. The low-order 16 bits are a sign-extend, which is a pair of +;; shifts. Setting BP followed by the insn is equivalent, so we don't +;; bother going to any trouble to generate this insn. + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (sign_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 16) + (ashift:PSI + (match_operand:PSI 2 "register_operand" "b") + (const_int 3))))] + "" + "exhws %0,%1") + +;; EXTRACT +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:PSI 2 "register_operand" "f")))] + "" + "extract %0,%1,%1") + +(define_expand "rotlsi3" + [(set (match_dup 3) + (match_operand:SI 2 "gpc_reg_or_immediate_operand" "")) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "") + (match_dup 3)))] + "" + " +{ operands[2] = gen_lowpart (PSImode, operands[2]); + operands[3] = gen_reg_rtx (PSImode); +}") + +;; It would be nice to be able to have a define_split corresponding to the +;; above, but there is no way to tell combine we need a PSImode temporary. +;; If we put a (clobber (scratch:PSI)) there, combine would merge the above +;; two insns. This is bad because it then thinks only one insn is needed. + +;; FADD +(define_expand "addsf3" + [(set (match_operand:SF 0 "register_operand" "") + (plus:SF (match_operand:SF 1 "register_operand" "") + (match_operand:SF 2 "register_operand" "")))] + "! TARGET_SOFT_FLOAT" + "") + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r") + (plus:SF (match_operand:SF 1 "register_operand" "%r") + (match_operand:SF 2 "register_operand" "r")))] + "! TARGET_29050" + "fadd %0,%1,%2" + [(set_attr "type" "fadd")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r,a") + (plus:SF (match_operand:SF 1 "register_operand" "%r,r") + (match_operand:SF 2 "register_operand" "r,0")))] + "TARGET_29050" + "@ + fadd %0,%1,%2 + fmac 8,%0,%1,%1" + [(set_attr "type" "fadd,fam")]) + +;; FDIV +(define_insn "divsf3" + [(set (match_operand:SF 0 "register_operand" "=r") + (div:SF (match_operand:SF 1 "register_operand" "=r") + (match_operand:SF 2 "register_operand" "r")))] + "! TARGET_SOFT_FLOAT" + "fdiv %0,%1,%2" + [(set_attr "type" "fdiv")]) + +;; FDMUL +(define_insn "" + [(set (match_operand:DF 0 "register_operand" "=r") + (mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "%r")) + (float_extend:DF (match_operand:SF 2 "register_operand" "r"))))] + "! TARGET_SOFT_FLOAT" + "fdmul %0,%1,%2") + +;; FMAC/FMSM +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a,*r") + (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "%r,A") + (match_operand:SF 2 "register_operand" "r,r")) + (match_operand:SF 3 "register_operand" "0,*r")))] + "TARGET_29050" + "@ + fmac 0,%0,%1,%2 + fmsm %0,%2,%3" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a") + (plus:SF (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) + (match_operand:SF 2 "register_operand" "r")) + (match_operand:SF 3 "register_operand" "0")))] + "TARGET_29050" + "fmac 1,%0,%2,%1" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a") + (minus:SF (mult:SF (match_operand:SF 1 "register_operand" "%r") + (match_operand:SF 2 "register_operand" "r")) + (match_operand:SF 3 "register_operand" "0")))] + "TARGET_29050" + "fmac 2,%0,%1,%2" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a") + (minus:SF (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) + (match_operand:SF 2 "register_operand" "r")) + (match_operand:SF 3 "register_operand" "0")))] + "TARGET_29050" + "fmac 3,%0,%2,%1" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a") + (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) + (match_operand:SF 2 "register_operand" "r")))] + "TARGET_29050" + "fmac 5,%0,%2,%1" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a") + (minus:SF (neg:SF (match_operand:SF 1 "register_operand" "%r")) + (match_operand:SF 2 "register_operand" "0")))] + "TARGET_29050" + "fmac 11,%0,%1,%1" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=a") + (neg:SF (plus:SF (match_operand:SF 1 "register_operand" "%r") + (match_operand:SF 2 "register_operand" "0"))))] + "TARGET_29050" + "fmac 11,%0,%1,%1" + [(set_attr "type" "fam")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r,a") + (neg:SF (match_operand:SF 1 "register_operand" "r,r"))) + (clobber (match_scratch:SI 2 "=&r,X"))] + "TARGET_29050" + "@ + cpeq %2,gr1,gr1\;xor %0,%1,%2 + fmac 13,%0,%1,%1" + [(set_attr "type" "multi,fam")]) + +;; FMUL +(define_expand "mulsf3" + [(set (match_operand:SF 0 "register_operand" "") + (mult:SF (match_operand:SF 1 "register_operand" "") + (match_operand:SF 2 "register_operand" "")))] + "! TARGET_SOFT_FLOAT" + "") + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r") + (mult:SF (match_operand:SF 1 "register_operand" "%r") + (match_operand:SF 2 "register_operand" "r")))] + "! TARGET_29050" + "fmul %0,%1,%2" + [(set_attr "type" "fmul")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r,a") + (mult:SF (match_operand:SF 1 "register_operand" "%r,r") + (match_operand:SF 2 "register_operand" "r,r")))] + "TARGET_29050" + "@ + fmul %0,%1,%2 + fmac 4,%0,%1,%2" + [(set_attr "type" "fmul,fam")]) + +;; FSUB +(define_expand "subsf3" + [(set (match_operand:SF 0 "register_operand" "") + (minus:SF (match_operand:SF 1 "register_operand" "") + (match_operand:SF 2 "register_operand" "")))] + "! TARGET_SOFT_FLOAT" + "") + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r") + (minus:SF (match_operand:SF 1 "register_operand" "r") + (match_operand:SF 2 "register_operand" "r")))] + "! TARGET_29050" + "fsub %0,%1,%2" + [(set_attr "type" "fadd")]) + +(define_insn "" + [(set (match_operand:SF 0 "register_operand" "=r,a,a") + (minus:SF (match_operand:SF 1 "register_operand" "r,0,r") + (match_operand:SF 2 "register_operand" "r,r,0")))] + "TARGET_29050" + "@ + fsub %0,%1,%2 + fmac 9,%0,%2,%2 + fmac 10,%0,%1,%1" + [(set_attr "type" "fadd,fam,fam")]) + +;; INBYTE +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") + (const_int 8) + (ashift:PSI + (match_operand:PSI 2 "register_operand" "b") + (const_int 3))) + (match_operand:SI 1 "srcb_operand" "rI"))] + "" + "inbyte %0,%0,%1") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (and:SI + (not:SI + (ashift:SI (const_int 255) + (ashift:PSI + (match_operand:PSI 3 "register_operand" "b") + (const_int 3)))) + (match_operand:SI 1 "gpc_reg_operand" "r")) + (ashift:SI (zero_extend:SI + (match_operand:QI 2 "srcb_operand" "rI")) + (ashift:PSI (match_dup 3) (const_int 3)))))] + "" + "inbyte %0,%1,%2") + +;; INHW +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") + (const_int 16) + (ashift:PSI + (match_operand:PSI 2 "register_operand" "b") + (const_int 3))) + (match_operand:SI 1 "srcb_operand" "rI"))] + "" + "inhw %0,%0,%1") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (and:SI + (not:SI + (ashift:SI (const_int 65535) + (ashift:PSI + (match_operand:PSI 3 "register_operand" "b") + (const_int 3)))) + (match_operand:SI 1 "gpc_reg_operand" "r")) + (ashift:SI (zero_extend:SI + (match_operand:HI 2 "srcb_operand" "rI")) + (ashift:PSI (match_dup 3) (const_int 3)))))] + "" + "inhw %0,%1,%2") + +(define_expand "insv" + [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "") + (match_operand:SI 1 "general_operand" "") + (match_operand:SI 2 "general_operand" "")) + (match_operand:SI 3 "srcb_operand" ""))] + "" + " +{ + int size, pos; + + if (GET_CODE (operands[1]) != CONST_INT + || GET_CODE (operands[2]) != CONST_INT) + FAIL; + + size = INTVAL (operands[1]); + pos = INTVAL (operands[2]); + if ((size != 8 && size != 16) || pos % size != 0) + FAIL; + + operands[2] = gen_rtx (ASHIFT, PSImode, + force_reg (PSImode, GEN_INT (pos / 8)), + GEN_INT (3)); +}") + +;; LOAD (also used by move insn). +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (mem:SI (and:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (const_int -4)))) + (set (match_operand:PSI 2 "register_operand" "=b") + (truncate:PSI (match_dup 1)))] + "! TARGET_DW_ENABLE" + "load 0,16,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (zero_extend:SI (match_operand:QI 1 "memory_operand" "m")))] + "TARGET_DW_ENABLE" + "load 0,1,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:HI 0 "gpc_reg_operand" "=r") + (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))] + "TARGET_DW_ENABLE" + "load 0,1,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))] + "TARGET_DW_ENABLE" + "load 0,2,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (sign_extend:SI (match_operand:QI 1 "memory_operand" "m"))) + (clobber (match_scratch:PSI 2 "=&b"))] + "TARGET_DW_ENABLE" + "load 0,17,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:HI 0 "gpc_reg_operand" "=r") + (sign_extend:HI (match_operand:QI 1 "memory_operand" "m"))) + (clobber (match_scratch:PSI 2 "=&b"))] + "TARGET_DW_ENABLE" + "load 0,17,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (sign_extend:SI (match_operand:HI 1 "memory_operand" "m"))) + (clobber (match_scratch:PSI 2 "=&b"))] + "TARGET_DW_ENABLE" + "load 0,18,%0,%1" + [(set_attr "type" "load")]) + +;; LOADM +(define_expand "load_multiple" + [(set (match_dup 4) + (match_operand:PSI 2 "const_int_operand" "")) + (match_par_dup 3 [(set (match_operand:SI 0 "" "") + (match_operand:SI 1 "" ""))])] + "" + " +{ + int regno; + int count; + rtx from; + int i; + + /* Support only loading a constant number of hard registers from memory. */ + if (GET_CODE (operands[2]) != CONST_INT + || operands[2] == const1_rtx + || GET_CODE (operands[1]) != MEM + || GET_CODE (operands[0]) != REG + || REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) + FAIL; + + count = INTVAL (operands[2]); + regno = REGNO (operands[0]); + + /* CR gets set to the number of registers minus one. */ + operands[2] = GEN_INT(count - 1); + + operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 2)); + from = memory_address (SImode, XEXP (operands[1], 0)); + XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode, + gen_rtx (REG, SImode, regno), + gen_rtx (MEM, SImode, from)); + operands[4] = gen_reg_rtx (PSImode); + + XVECEXP (operands[3], 0, 1) = gen_rtx (USE, VOIDmode, operands[4]); + XVECEXP (operands[3], 0, 2) = gen_rtx (CLOBBER, VOIDmode, operands[4]); + + for (i = 1; i < count; i++) + XVECEXP (operands[3], 0, i + 2) + = gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, regno + i), + gen_rtx (MEM, SImode, plus_constant (from, i * 4))); +}") + +;; Indicate that CR is used and is then clobbered. +(define_insn "" + [(set (match_operand 0 "gpc_reg_operand" "=r") + (match_operand 1 "memory_operand" "m")) + (use (match_operand:PSI 2 "register_operand" "+c")) + (clobber (match_dup 2))] + "GET_MODE (operands[0]) == GET_MODE (operands[1]) + && GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD" + "loadm 0,0,%0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(match_parallel 0 "load_multiple_operation" + [(set (match_operand:SI 1 "gpc_reg_operand" "=r") + (match_operand:SI 2 "memory_operand" "m")) + (use (match_operand:PSI 3 "register_operand" "+c")) + (clobber (match_dup 3))])] + "" + "loadm 0,0,%1,%2" + [(set_attr "type" "load")]) + +;; MTSR (used also by move insn) +(define_insn "" + [(set (match_operand:SI 0 "spec_reg_operand" "=*h,*h") + (and:SI (match_operand:SI 1 "gpc_reg_or_immediate_operand" "r,i") + (match_operand:SI 2 "const_int_operand" "n,n")))] + "masks_bits_for_special (operands[0], operands[2])" + "@ + mtsr %0,%1 + mtsrim %0,%1") + +(define_insn "" + [(set (match_operand:PSI 0 "register_operand" "=h,h") + (truncate:PSI + (match_operand:SI 1 "gpc_reg_or_immediate_operand" "r,i")))] + "" + "@ + mtsr %0,%1 + mtsrim %0,%1") + +;; MULTIPLY, MULTM, MULTMU +(define_insn "mulsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") + (match_operand:SI 2 "gpc_reg_operand" "r"))) + (clobber (match_scratch:SI 3 "=&q"))] + "" + "multiply %0,%1,%2") + +(define_insn "mulsidi3" + [(set (match_operand:DI 0 "gpc_reg_operand" "=r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) + (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r")))) + (clobber (match_scratch:SI 3 "=&q"))] + "TARGET_MULTM" + "multiply %L0,%1,%2\;multm %0,%1,%2" + [(set_attr "type" "multi")]) + +(define_split + [(set (match_operand:DI 0 "gpc_reg_operand" "") + (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")) + (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "")))) + (clobber (reg:SI 180))] + "reload_completed" + [(parallel [(set (match_dup 3) + (mult:SI (match_dup 1) (match_dup 2))) + (clobber (reg:SI 180))]) + (parallel [(set (match_dup 4) + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_dup 1)) + (sign_extend:DI (match_dup 2))) + (const_int 32)))) + (clobber (reg:SI 180))])] + " +{ operands[3] = operand_subword (operands[0], 1, 1, DImode); + operands[4] = operand_subword (operands[0], 0, 1, DImode); } ") + +(define_insn "umulsidi3" + [(set (match_operand:DI 0 "gpc_reg_operand" "=r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) + (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r")))) + (clobber (match_scratch:SI 3 "=&q"))] + "TARGET_MULTM" + "multiplu %L0,%1,%2\;multmu %0,%1,%2" + [(set_attr "type" "multi")]) + +(define_split + [(set (match_operand:DI 0 "gpc_reg_operand" "") + (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")) + (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "")))) + (clobber (reg:SI 180))] + "reload_completed" + [(parallel [(set (match_dup 3) + (mult:SI (match_dup 1) (match_dup 2))) + (clobber (reg:SI 180))]) + (parallel [(set (match_dup 4) + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_dup 1)) + (zero_extend:DI (match_dup 2))) + (const_int 32)))) + (clobber (reg:SI 180))])] + " +{ operands[3] = operand_subword (operands[0], 1, 1, DImode); + operands[4] = operand_subword (operands[0], 0, 1, DImode); } ") + +(define_insn "smulsi3_highpart" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) + (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) + (const_int 32)))) + (clobber (match_scratch:SI 3 "=&q"))] + "TARGET_MULTM" + "multm %0,%1,%2") + +(define_insn "umulsi3_highpart" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) + (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) + (const_int 32)))) + (clobber (match_scratch:SI 3 "=&q"))] + "TARGET_MULTM" + "multmu %0,%1,%2") + +;; NAND +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) + (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))] + "" + "nand %0,%1,%2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) + (match_operand:SI 2 "const_int_operand" "K")))] + ; Match TARGET_29050 in "orn" pattern for slightly better reload. + "! TARGET_29050 && ((unsigned) ~ INTVAL (operands[2])) < 256" + "nand %0,%1,%C2") + +;; NOR +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) + (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))] + "" + "nor %0,%1,%2") + +(define_insn "one_cmplsi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] + "" + "nor %0,%1,0") + +;; OR/ORN +(define_expand "iorsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (ior:SI (match_operand:SI 1 "gpc_reg_operand" "") + (match_operand:SI 2 "srcb_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r") + (match_operand:SI 2 "srcb_operand" "rI")))] + "! TARGET_29050" + "or %0,%1,%2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") + (match_operand:SI 2 "and_operand" "rI,K")))] + "TARGET_29050" + "@ + or %0,%1,%2 + orn %0,%1,%C2") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r,r")) + (match_operand:SI 2 "cmplsrcb_operand" "r,K")))] + "TARGET_29050" + "@ + orn %0,%2,%1 + nand %0,%1,%C2") + + +;; SLL (also used by move insn) +(define_insn "nop" + [(const_int 0)] + "" + "aseq 0x40,gr1,gr1") + +(define_insn "ashlsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:QI 2 "srcb_operand" "rn")))] + "" + "sll %0,%1,%Q2") + +;; SQRT +(define_insn "sqrtsf2" + [(set (match_operand:SF 0 "gpc_reg_operand" "=r") + (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "r")))] + "TARGET_29050" + "sqrt %0,%1,1" + [(set_attr "type" "fsqrt")]) + +(define_insn "sqrtdf2" + [(set (match_operand:DF 0 "gpc_reg_operand" "=r") + (sqrt:DF (match_operand:DF 1 "gpc_reg_operand" "r")))] + "TARGET_29050" + "sqrt %0,%1,2" + [(set_attr "type" "dsqrt")]) + +;; SRA +(define_insn "ashrsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:QI 2 "srcb_operand" "rn")))] + "" + "sra %0,%1,%Q2") + +;; SRL +(define_insn "lshrsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") + (match_operand:QI 2 "srcb_operand" "rn")))] + "" + "srl %0,%1,%Q2") + +;; STORE +;; +;; These somewhat bogus patterns exist to set OPT = 001/010 for partial-word +;; stores on systems with DW not set. +(define_insn "" + [(set (mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "r") + (const_int -4))) + (match_operand:SI 1 "gpc_reg_operand" "r"))] + "! TARGET_DW_ENABLE" + "store 0,1,%1,%0" + [(set_attr "type" "store")]) + +(define_insn "" + [(set (mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "r") + (const_int -3))) + (match_operand:SI 1 "gpc_reg_operand" "r"))] + "! TARGET_DW_ENABLE" + "store 0,2,%1,%0" + [(set_attr "type" "store")]) + +;; STOREM +(define_expand "store_multiple" + [(use (match_operand 0 "" "")) + (use (match_operand 1 "" "")) + (use (match_operand 2 "" ""))] + "" + " +{ rtx pat; + + if (TARGET_NO_STOREM_BUG) + pat = gen_store_multiple_no_bug (operands[0], operands[1], operands[2]); + else + pat = gen_store_multiple_bug (operands[0], operands[1], operands[2]); + + if (pat) + emit_insn (pat); + else + FAIL; + + DONE; +}") + +(define_expand "store_multiple_no_bug" + [(set (match_dup 4) + (match_operand:PSI 2 "const_int_operand" "")) + (match_par_dup 3 [(set (match_operand:SI 0 "" "") + (match_operand:SI 1 "" ""))])] + "" + " +{ + int regno; + int count; + rtx from; + int i; + + /* Support only storing a constant number of hard registers to memory. */ + if (GET_CODE (operands[2]) != CONST_INT + || operands[2] == const1_rtx + || GET_CODE (operands[0]) != MEM + || GET_CODE (operands[1]) != REG + || REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) + FAIL; + + count = INTVAL (operands[2]); + regno = REGNO (operands[1]); + + /* CR gets set to the number of registers minus one. */ + operands[2] = GEN_INT(count - 1); + + operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 2)); + from = memory_address (SImode, XEXP (operands[0], 0)); + XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode, + gen_rtx (MEM, SImode, from), + gen_rtx (REG, SImode, regno)); + operands[4] = gen_reg_rtx (PSImode); + XVECEXP (operands[3], 0, 1) = gen_rtx (USE, VOIDmode, operands[4]); + XVECEXP (operands[3], 0, 2) = gen_rtx (CLOBBER, VOIDmode, operands[4]); + + for (i = 1; i < count; i++) + XVECEXP (operands[3], 0, i + 2) + = gen_rtx (SET, VOIDmode, + gen_rtx (MEM, SImode, plus_constant (from, i * 4)), + gen_rtx (REG, SImode, regno + i)); +}") + +(define_expand "store_multiple_bug" + [(match_par_dup 3 [(set (match_operand:SI 0 "" "") + (match_operand:SI 1 "" "")) + (use (match_operand:SI 2 "" ""))])] + "" + " +{ + int regno; + int count; + rtx from; + int i; + + /* Support only storing a constant number of hard registers to memory. */ + if (GET_CODE (operands[2]) != CONST_INT + || operands[2] == const1_rtx + || GET_CODE (operands[0]) != MEM + || GET_CODE (operands[1]) != REG + || REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) + FAIL; + + count = INTVAL (operands[2]); + regno = REGNO (operands[1]); + + operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 1)); + from = memory_address (SImode, XEXP (operands[0], 0)); + XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode, + gen_rtx (MEM, SImode, from), + gen_rtx (REG, SImode, regno)); + XVECEXP (operands[3], 0, 1) + = gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, PSImode)); + + for (i = 1; i < count; i++) + XVECEXP (operands[3], 0, i + 1) + = gen_rtx (SET, VOIDmode, + gen_rtx (MEM, SImode, plus_constant (from, i * 4)), + gen_rtx (REG, SImode, regno + i)); +}") + +(define_insn "" + [(set (match_operand 0 "memory_operand" "=m") + (match_operand 1 "gpc_reg_operand" "r")) + (clobber (match_scratch:PSI 2 "=&c"))] + "!TARGET_NO_STOREM_BUG + && GET_MODE (operands[0]) == GET_MODE (operands[1]) + && GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD" + "mtsrim cr,%S1\;storem 0,0,%1,%0" + [(set_attr "type" "multi")]) + +(define_insn "" + [(match_parallel 0 "store_multiple_operation" + [(set (match_operand:SI 1 "memory_operand" "=m") + (match_operand:SI 2 "gpc_reg_operand" "r")) + (clobber (match_scratch:PSI 3 "=&c"))])] + "!TARGET_NO_STOREM_BUG" + "mtsrim cr,%V0\;storem 0,0,%2,%1" + [(set_attr "type" "multi")]) + +(define_insn "" + [(set (match_operand 0 "memory_operand" "=m") + (match_operand 1 "gpc_reg_operand" "r")) + (use (match_operand:PSI 2 "register_operand" "+c")) + (clobber (match_dup 2))] + "TARGET_NO_STOREM_BUG + && GET_MODE (operands[0]) == GET_MODE (operands[1]) + && GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD" + "storem 0,0,%1,%0" + [(set_attr "type" "store")]) + +(define_insn "" + [(match_parallel 0 "store_multiple_operation" + [(set (match_operand:SI 1 "memory_operand" "=m") + (match_operand:SI 2 "gpc_reg_operand" "r")) + (use (match_operand:PSI 3 "register_operand" "+c")) + (clobber (match_dup 3))])] + "TARGET_NO_STOREM_BUG" + "storem 0,0,%2,%1" + [(set_attr "type" "store")]) + +;; SUB +;; +;; Either operand can be a register or an 8-bit constant, but both cannot be +;; constants (can't usually occur anyway). +(define_expand "subsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (minus:SI (match_operand:SI 1 "srcb_operand" "") + (match_operand:SI 2 "srcb_operand" "")))] + "" + " +{ + if (GET_CODE (operands[0]) == CONST_INT + && GET_CODE (operands[1]) == CONST_INT) + operands[1] = force_reg (SImode, operands[1]); +}") + +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (minus:SI (match_operand:SI 1 "srcb_operand" "r,I") + (match_operand:SI 2 "srcb_operand" "rI,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + sub %0,%1,%2 + subr %0,%2,%1") + +(define_insn "subdi3" + [(set (match_operand:DI 0 "gpc_reg_operand" "=r") + (minus:DI (match_operand:DI 1 "gpc_reg_operand" "r") + (match_operand:DI 2 "gpc_reg_operand" "r")))] + "" + "sub %L0,%L1,%L2\;subc %0,%1,%2" + [(set_attr "type" "multi")]) + +;; SUBR (also used above in SUB) +(define_insn "negdi2" + [(set (match_operand:DI 0 "gpc_reg_operand" "=r") + (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")))] + "" + "subr %L0,%L1,0\;subrc %0,%1,0" + [(set_attr "type" "multi")]) + +(define_insn "negsi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] + "" + "subr %0,%1,0") + +;; XNOR +(define_insn "" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") + (match_operand:SI 2 "gpc_reg_operand" "r"))))] + "" + "xnor %0,%1,%2") + +;; XOR + +(define_insn "xorsi3" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") + (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") + (match_operand:SI 2 "and_operand" "rI,K")))] + "" + "@ + xor %0,%1,%2 + xnor %0,%1,%C2") + +;; Can use XOR to negate floating-point values, but we are better off not doing +;; it that way on the 29050 so it can combine with the fmac insns. +(define_expand "negsf2" + [(parallel [(set (match_operand:SF 0 "register_operand" "") + (neg:SF (match_operand:SF 1 "register_operand" ""))) + (clobber (match_scratch:SI 2 ""))])] + "! TARGET_SOFT_FLOAT" + " +{ + rtx result; + rtx target; + + if (! TARGET_29050) + { + target = operand_subword_force (operands[0], 0, SFmode); + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, SFmode), + GEN_INT(0x80000000), target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + /* Make a place for REG_EQUAL. */ + emit_move_insn (operands[0], operands[0]); + DONE; + } +}") + +(define_expand "negdf2" + [(parallel [(set (match_operand:DF 0 "register_operand" "") + (neg:DF (match_operand:DF 1 "register_operand" ""))) + (clobber (match_scratch:SI 2 ""))])] + "! TARGET_SOFT_FLOAT" + " +{ + rtx result; + rtx target; + rtx insns; + + if (! TARGET_29050) + { + start_sequence (); + target = operand_subword (operands[0], 0, 1, DFmode); + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, DFmode), + GEN_INT(0x80000000), target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + emit_move_insn (operand_subword (operands[0], 1, 1, DFmode), + operand_subword_force (operands[1], 1, DFmode)); + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, operands[0], operands[1], 0, 0); + DONE; + } +}") + +;; Sign extend and truncation operations. +(define_insn "zero_extendqihi2" + [(set (match_operand:HI 0 "gpc_reg_operand" "=r") + (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")))] + "" + "and %0,%1,255") + +(define_insn "zero_extendqisi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")))] + "" + "and %0,%1,255") + +(define_insn "zero_extendhisi2" + [(set (match_operand:SI 0 "gpc_reg_operand" "=r") + (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "0")))] + "" + "consth %0,0") + +(define_expand "extendqihi2" + [(set (match_dup 2) + (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") + (const_int 24))) + (set (match_operand:HI 0 "gpc_reg_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 24)))] + "" + " +{ operands[0] = gen_lowpart (SImode, operands[0]); + operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +(define_expand "extendqisi2" + [(set (match_dup 2) + (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") + (const_int 24))) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 24)))] + "" + " +{ operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +(define_expand "extendhisi2" + [(set (match_dup 2) + (ashift:SI (match_operand:HI 1 "gpc_reg_operand" "") + (const_int 16))) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 16)))] + "" + " +{ operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +;; Define the methods used to move data around. +;; +;; movsi: +;; +;; If storing into memory, force source into register. +(define_expand "movsi" + [(set (match_operand:SI 0 "general_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" + " +{ + if (GET_CODE (operands[0]) == MEM && ! gpc_reg_operand (operands[1], SImode)) + operands[1] = copy_to_mode_reg (SImode, operands[1]); + else if (spec_reg_operand (operands[0], SImode) + && ! (register_operand (operands[1], SImode) + || cint_16_operand (operands[1], SImode))) + operands[1] = force_reg (SImode, operands[1]); +}") + +(define_expand "movpsi" + [(set (match_operand:PSI 0 "general_operand" "") + (match_operand:PSI 1 "general_operand" ""))] + "" + " +{ + if (GET_CODE (operands[0]) == MEM + && ! gpc_reg_operand (operands[1], PSImode)) + operands[1] = copy_to_mode_reg (PSImode, operands[1]); + else if (spec_reg_operand (operands[0], PSImode) + && ! (register_operand (operands[1], PSImode) + || cint_16_operand (operands[1], PSImode))) + operands[1] = force_reg (PSImode, operands[1]); +}") + +(define_split + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (match_operand:SI 1 "long_const_operand" ""))] + "" + [(set (match_dup 0) + (and:SI (match_dup 1) + (const_int 65535))) + (set (match_dup 0) + (ior:SI (zero_extend:SI (match_dup 2)) + (and:SI (match_dup 1) + (const_int -65536))))] + " operands[2] = gen_lowpart (HImode, operands[0]); ") + +;; Subroutines to load/store halfwords. Operands 0 and 1 are the output and +;; input, respectively, except that the address is passed for a MEM instead +;; of the MEM itself and the short item is passed in QImode. +;; +;; Operand 2 is a scratch general register and operand 3 is a scratch register +;; used for BP. When called before reload, pseudos are passed for both +;; operands. During reload, R_TAV is used for the general register, and +;; a reload register of class BR_REGS (R_VP) for BP. +;; +;; We have two versions of the store operations, for when halfword writes are +;; supported and when they are not. +(define_expand "loadhi" + [(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "") + (mem:SI (and:SI (match_operand:SI 1 "gpc_reg_operand" "") + (const_int -4)))) + (set (match_operand:PSI 3 "register_operand" "") + (truncate:PSI (match_dup 1)))]) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (zero_extract:SI (match_dup 2) + (const_int 16) + (ashift:PSI (match_dup 3) (const_int 3))))] + "" + "") + +(define_expand "storehinhww" + [(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "") + (mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "") + (const_int -4)))) + (set (match_operand:PSI 3 "register_operand" "") + (truncate:PSI (match_dup 0)))]) + (set (zero_extract:SI (match_dup 2) + (const_int 16) + (ashift:PSI (match_dup 3) (const_int 3))) + (match_operand:SI 1 "gpc_reg_operand" "")) + (set (mem:SI (match_dup 0)) + (match_dup 2))] + "" + "") + +(define_expand "storehihww" + [(set (match_operand:PSI 3 "register_operand" "") + (truncate:PSI (match_operand:SI 0 "gpc_reg_operand" ""))) + (set (match_operand:SI 2 "gpc_reg_operand" "") + (ior:SI (and:SI (not:SI (ashift:SI (const_int 65535) + (ashift:PSI (match_dup 3) + (const_int 3)))) + (match_operand:SI 1 "gpc_reg_operand" "")) + (ashift:SI (zero_extend:SI (match_dup 4)) + (ashift:PSI (match_dup 3) (const_int 3))))) + (set (mem:SI (and:SI (match_dup 0) + (const_int -3))) + (match_dup 2))] + "" + " +{ operands[4] = gen_lowpart (HImode, operands[1]); }") + +(define_expand "movhi" + [(set (match_operand:HI 0 "general_operand" "") + (match_operand:HI 1 "general_operand" ""))] + "" + " +{ if (GET_CODE (operands[0]) == MEM) + { + if (! gpc_reg_operand (operands[1], HImode)) + operands[1] = copy_to_mode_reg (HImode, operands[1]); + if (! TARGET_DW_ENABLE) + { + rtx general = gen_reg_rtx (SImode); + rtx bp = gen_reg_rtx (PSImode); + rtx (*fcn) () + = TARGET_BYTE_WRITES ? gen_storehihww : gen_storehinhww; + rtx seq = (*fcn) (XEXP (operands[0], 0), + gen_lowpart (SImode, operands[1]), + general, bp); + + a29k_set_memflags (seq, operands[0]); + emit_insn (seq); + DONE; + } + } + else if (GET_CODE (operands[1]) == MEM) + { + if (! TARGET_DW_ENABLE) + { + rtx general = gen_reg_rtx (SImode); + rtx bp = gen_reg_rtx (PSImode); + rtx seq = gen_loadhi (gen_lowpart (SImode, operands[0]), + XEXP (operands[1], 0), general, bp); + + a29k_set_memflags (seq, operands[1]); + emit_insn (seq); + DONE; + } + } +}") + +(define_expand "reload_inhi" + [(parallel [(match_operand:SI 0 "register_operand" "=r") + (match_operand:SI 1 "reload_memory_operand" "m") + (match_operand:PSI 2 "register_operand" "=b")])] + "! TARGET_DW_ENABLE" + " +{ rtx seq = gen_loadhi (gen_lowpart (SImode, operands[0]), + a29k_get_reloaded_address (operands[1]), + gen_rtx (REG, SImode, R_TAV), + operands[2]); + + a29k_set_memflags (seq, operands[1]); + emit_insn (seq); + DONE; +}") + +(define_expand "reload_outhi" + [(parallel [(match_operand:SI 0 "reload_memory_operand" "=m") + (match_operand:SI 1 "register_operand" "m") + (match_operand:PSI 2 "register_operand" "=b")])] + "! TARGET_DW_ENABLE" + " +{ rtx (*fcn) () = TARGET_BYTE_WRITES ? gen_storehihww : gen_storehinhww; + rtx seq = (*fcn) (a29k_get_reloaded_address (operands[0]), + gen_lowpart (SImode, operands[1]), + gen_rtx (REG, SImode, R_TAV), operands[2]); + + a29k_set_memflags (seq, operands[0]); + emit_insn (seq); + DONE; +}") + +;; Subroutines to load/store bytes. Operands 0 and 1 are the output and +;; input, respectively, except that the address is passed for a MEM instead +;; of the MEM itself and the short item is passed in QImode. +;; +;; Operand 2 is a scratch general register and operand 3 is a scratch register +;; used for BP. When called before reload, pseudos are passed for both +;; operands. During reload, R_TAV is used for the general register, and +;; a reload register of class BR_REGS (R_VP) for BP. +;; +;; We have two versions of the store operations, for when byte writes are +;; supported and when they are not. +(define_expand "loadqi" + [(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "") + (mem:SI (and:SI (match_operand:SI 1 "gpc_reg_operand" "") + (const_int -4)))) + (set (match_operand:PSI 3 "register_operand" "") + (truncate:PSI (match_dup 1)))]) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (zero_extract:SI (match_dup 2) + (const_int 8) + (ashift:PSI (match_dup 3) (const_int 3))))] + "" + "") + +(define_expand "storeqinhww" + [(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "") + (mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "") + (const_int -4)))) + (set (match_operand:PSI 3 "register_operand" "") + (truncate:PSI (match_dup 0)))]) + (set (zero_extract:SI (match_dup 2) + (const_int 8) + (ashift:PSI (match_dup 3) + (const_int 3))) + (match_operand:SI 1 "gpc_reg_operand" "")) + (set (mem:SI (match_dup 0)) + (match_dup 2))] + "" + "") + +(define_expand "storeqihww" + [(set (match_operand:PSI 3 "register_operand" "") + (truncate:PSI (match_operand:SI 0 "gpc_reg_operand" ""))) + (set (match_operand:SI 2 "gpc_reg_operand" "") + (ior:SI (and:SI (not:SI (ashift:SI (const_int 255) + (ashift:PSI (match_dup 3) + (const_int 3)))) + (match_operand:SI 1 "gpc_reg_operand" "")) + (ashift:SI (zero_extend:SI (match_dup 4)) + (ashift:PSI (match_dup 3) + (const_int 3))))) + (set (mem:SI (and:SI (match_dup 0) + (const_int -4))) + (match_dup 2))] + "" + " +{ operands[4] = gen_lowpart (QImode, operands[1]); }") + +(define_expand "movqi" + [(set (match_operand:QI 0 "general_operand" "") + (match_operand:QI 1 "general_operand" ""))] + "" + " +{ if (GET_CODE (operands[0]) == MEM) + { + if (! gpc_reg_operand (operands[1], QImode)) + operands[1] = copy_to_mode_reg (QImode, operands[1]); + if (! TARGET_DW_ENABLE) + { + rtx general = gen_reg_rtx (SImode); + rtx bp = gen_reg_rtx (PSImode); + rtx (*fcn) () + = TARGET_BYTE_WRITES ? gen_storeqihww : gen_storeqinhww; + rtx seq = (*fcn) (XEXP (operands[0], 0), + gen_lowpart (SImode, operands[1]), + general, bp); + + a29k_set_memflags (seq, operands[0]); + emit_insn (seq); + DONE; + } + } + else if (GET_CODE (operands[1]) == MEM) + { + if (! TARGET_DW_ENABLE) + { + rtx general = gen_reg_rtx (SImode); + rtx bp = gen_reg_rtx (PSImode); + rtx seq = gen_loadqi (gen_lowpart (SImode, operands[0]), + XEXP (operands[1], 0), general, bp); + + a29k_set_memflags (seq, operands[1]); + emit_insn (seq); + DONE; + } + } +}") + +(define_expand "reload_inqi" + [(parallel [(match_operand:SI 0 "register_operand" "=r") + (match_operand:SI 1 "reload_memory_operand" "m") + (match_operand:PSI 2 "register_operand" "=b")])] + "! TARGET_DW_ENABLE" + " +{ rtx seq = gen_loadqi (gen_lowpart (SImode, operands[0]), + a29k_get_reloaded_address (operands[1]), + gen_rtx (REG, SImode, R_TAV), + operands[2]); + + a29k_set_memflags (seq, operands[1]); + emit_insn (seq); + DONE; +}") + +(define_expand "reload_outqi" + [(parallel [(match_operand:SI 0 "reload_memory_operand" "=m") + (match_operand:SI 1 "register_operand" "m") + (match_operand:PSI 2 "register_operand" "=b")])] + "! TARGET_DW_ENABLE" + " +{ rtx (*fcn) () = TARGET_BYTE_WRITES ? gen_storeqihww : gen_storeqinhww; + rtx seq = (*fcn) (a29k_get_reloaded_address (operands[0]), + gen_lowpart (SImode, operands[1]), + gen_rtx (REG, SImode, R_TAV), operands[2]); + + a29k_set_memflags (seq, operands[0]); + emit_insn (seq); + DONE; +}") + +;; Now the actual insns used to move data around. We include here the +;; DEFINE_SPLITs that may be needed. In some cases these will be +;; split again. For floating-point, if we can look inside the constant, +;; always split it. This can eliminate unnecessary insns. +(define_insn "" + [(set (match_operand:SF 0 "out_operand" "=r,r,r,r,m") + (match_operand:SF 1 "in_operand" "r,E,F,m,r"))] + "(gpc_reg_operand (operands[0], SFmode) + || gpc_reg_operand (operands[1], SFmode)) + && ! TARGET_29050" + "@ + sll %0,%1,0 + # + const %0,%1\;consth %0,%1 + load 0,0,%0,%1 + store 0,0,%1,%0" + [(set_attr "type" "misc,multi,multi,load,store")]) + +(define_insn "" + [(set (match_operand:SF 0 "out_operand" "=r,r,r,r,m,*a,r") + (match_operand:SF 1 "in_operand" "r,E,F,m,r,r,*a"))] + "(gpc_reg_operand (operands[0], SFmode) + || gpc_reg_operand (operands[1], SFmode)) + && TARGET_29050" + "@ + sll %0,%1,0 + # + const %0,%1\;consth %0,%1 + load 0,0,%0,%1 + store 0,0,%1,%0 + mtacc %1,1,%0 + mfacc %0,1,%1" + [(set_attr "type" "misc,multi,multi,load,store,fadd,fadd")]) + +;; Turn this into SImode. It will then be split up that way. +(define_split + [(set (match_operand:SF 0 "register_operand" "") + (match_operand:SF 1 "float_const_operand" ""))] + "HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT" + [(set (match_dup 0) + (match_dup 1))] + " +{ operands[0] = operand_subword (operands[0], 0, 0, SFmode); + operands[1] = operand_subword (operands[1], 0, 0, SFmode); + + if (operands[0] == 0 || operands[1] == 0) + FAIL; +}") + +(define_insn "" + [(set (match_operand:DF 0 "out_operand" "=?r,?r,r,m") + (match_operand:DF 1 "in_operand" "rE,F,m,r")) + (clobber (match_scratch:PSI 2 "=X,X,&c,&c"))] + "(gpc_reg_operand (operands[0], DFmode) + || gpc_reg_operand (operands[1], DFmode)) + && ! TARGET_29050" + "@ + # + const %0,%1\;consth %0,%1\;const %L0,%L1\;consth %L0,%L1 + mtsrim cr,1\;loadm 0,0,%0,%1 + mtsrim cr,1\;storem 0,0,%1,%0" + [(set_attr "type" "multi")]) + +(define_insn "" + [(set (match_operand:DF 0 "out_operand" "=?r,?r,r,m,?*a,?r") + (match_operand:DF 1 "in_operand" "rE,F,m,r,r,*a")) + (clobber (match_scratch:PSI 2 "=X,X,&c,&c,X,X"))] + "(gpc_reg_operand (operands[0], DFmode) + || gpc_reg_operand (operands[1], DFmode)) + && TARGET_29050" + "@ + # + const %0,%1\;consth %0,%1\;const %L0,%L1\;consth %L0,%L1 + mtsrim cr,1\;loadm 0,0,%0,%1 + mtsrim cr,1\;storem 0,0,%1,%0 + mtacc %1,2,%0 + mfacc %0,2,%1" + [(set_attr "type" "multi,multi,multi,multi,fadd,fadd")]) + +;; Split register-register copies and constant loads into two SImode loads, +;; one for each word. In the constant case, they will get further split. +;; Don't so this until register allocation, though, since it will +;; interfere with register allocation. Normally copy the lowest-addressed +;; word first; the exception is if we are copying register to register and +;; the lowest register of the first operand is the highest register of the +;; second operand. +(define_split + [(set (match_operand:DF 0 "gpc_reg_operand" "") + (match_operand:DF 1 "gpc_reg_or_float_constant_operand" "")) + (clobber (match_scratch:PSI 2 ""))] + "reload_completed" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6))] + " +{ if (GET_CODE (operands[1]) == REG + && REGNO (operands[0]) == REGNO (operands[1]) + 1) + { + operands[3] = operand_subword (operands[0], 1, 1, DFmode); + operands[4] = operand_subword (operands[1], 1, 1, DFmode); + operands[5] = operand_subword (operands[0], 0, 1, DFmode); + operands[6] = operand_subword (operands[1], 0, 1, DFmode); + } + else + { + operands[3] = operand_subword (operands[0], 0, 1, DFmode); + operands[4] = operand_subword (operands[1], 0, 1, DFmode); + operands[5] = operand_subword (operands[0], 1, 1, DFmode); + operands[6] = operand_subword (operands[1], 1, 1, DFmode); + } + + if (operands[3] == 0 || operands[4] == 0 + || operands[5] == 0 || operands[6] == 0) + FAIL; +}") + +;; Split memory loads and stores into the MTSR and LOADM/STOREM. +(define_split + [(set (match_operand:DF 0 "out_operand" "") + (match_operand:DF 1 "in_operand" "")) + (clobber (reg:PSI 179))] + "TARGET_NO_STOREM_BUG + && (memory_operand (operands[0], DFmode) + || memory_operand (operands[1], DFmode))" + [(set (reg:PSI 179) (const_int 1)) + (parallel [(set (match_dup 0) (match_dup 1)) + (use (reg:PSI 179)) + (clobber (reg:PSI 179))])] + "") + +;; DI move is similar to DF move. +(define_insn "" + [(set (match_operand:DI 0 "out_operand" "=?r,r,m") + (match_operand:DI 1 "in_operand" "rn,m,r")) + (clobber (match_scratch:PSI 2 "=X,&c,&c"))] + "(gpc_reg_operand (operands[0], DImode) + || gpc_reg_operand (operands[1], DImode))" + "@ + # + mtsrim cr,1\;loadm 0,0,%0,%1 + mtsrim cr,1\;storem 0,0,%1,%0" + [(set_attr "type" "multi")]) + +(define_split + [(set (match_operand:DI 0 "gpc_reg_operand" "") + (match_operand:DI 1 "gpc_reg_or_integer_constant_operand" "")) + (clobber (match_scratch:PSI 2 ""))] + "reload_completed" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6))] + " +{ if (GET_CODE (operands[1]) == REG + && REGNO (operands[0]) == REGNO (operands[1]) + 1) + { + operands[3] = operand_subword (operands[0], 1, 1, DImode); + operands[4] = operand_subword (operands[1], 1, 1, DImode); + operands[5] = operand_subword (operands[0], 0, 1, DImode); + operands[6] = operand_subword (operands[1], 0, 1, DImode); + } + else + { + operands[3] = operand_subword (operands[0], 0, 1, DImode); + operands[4] = operand_subword (operands[1], 0, 1, DImode); + operands[5] = operand_subword (operands[0], 1, 1, DImode); + operands[6] = operand_subword (operands[1], 1, 1, DImode); + } +}") + +(define_split + [(set (match_operand:DI 0 "out_operand" "") + (match_operand:DI 1 "in_operand" "")) + (clobber (reg:PSI 179))] + "TARGET_NO_STOREM_BUG + && (memory_operand (operands[0], DImode) + || memory_operand (operands[1], DImode))" + [(set (reg:PSI 179) (const_int 1)) + (parallel [(set (match_dup 0) (match_dup 1)) + (use (reg:PSI 179)) + (clobber (reg:PSI 179))])] + "") + +;; TImode moves are very similar to DImode moves, except that we can't +;; have constants. +(define_insn "" + [(set (match_operand:TI 0 "out_operand" "=?r,r,m") + (match_operand:TI 1 "in_operand" "r,m,r")) + (clobber (match_scratch:PSI 2 "=X,&c,&c"))] + "(gpc_reg_operand (operands[0], TImode) + || gpc_reg_operand (operands[1], TImode))" + "@ + # + mtsrim cr,3\;loadm 0,0,%0,%1 + mtsrim cr,3\;storem 0,0,%1,%0" + [(set_attr "type" "multi,multi,multi")]) + +(define_split + [(set (match_operand:TI 0 "gpc_reg_operand" "") + (match_operand:TI 1 "gpc_reg_operand" "")) + (clobber (match_scratch:PSI 2 ""))] + "reload_completed" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6)) + (set (match_dup 7) (match_dup 8)) + (set (match_dup 9) (match_dup 10))] + " +{ + if (REGNO (operands[0]) >= REGNO (operands[1]) + 1 + && REGNO (operands[0]) <= REGNO (operands[1]) + 3) + { + operands[3] = gen_rtx (REG, SImode, REGNO (operands[0]) + 3); + operands[4] = gen_rtx (REG, SImode, REGNO (operands[1]) + 3); + operands[5] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2); + operands[6] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2); + operands[7] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); + operands[8] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); + operands[9] = gen_rtx (REG, SImode, REGNO (operands[0])); + operands[10] = gen_rtx (REG, SImode, REGNO (operands[1])); + } + else + { + operands[3] = gen_rtx (REG, SImode, REGNO (operands[0])); + operands[4] = gen_rtx (REG, SImode, REGNO (operands[1])); + operands[5] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); + operands[6] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); + operands[7] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2); + operands[8] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2); + operands[9] = gen_rtx (REG, SImode, REGNO (operands[0]) + 3); + operands[10] = gen_rtx (REG, SImode, REGNO (operands[1]) + 3); + } +}") + +(define_split + [(set (match_operand:TI 0 "out_operand" "") + (match_operand:TI 1 "in_operand" "")) + (clobber (reg:PSI 179))] + "TARGET_NO_STOREM_BUG + && (memory_operand (operands[0], TImode) + || memory_operand (operands[1], TImode))" + [(set (reg:PSI 179) (const_int 3)) + (parallel [(set (match_dup 0) (match_dup 1)) + (use (reg:PSI 179)) + (clobber (reg:PSI 179))])] + "") + +(define_insn "" + [(set (match_operand:SI 0 "out_operand" "=r,r,r,r,r,r,r,m,*h,*h") + (match_operand:SI 1 "in_operand" "r,J,M,O,i,m,*h,r,r,J"))] + "(gpc_reg_operand (operands[0], SImode) + || gpc_reg_operand (operands[1], SImode) + || (spec_reg_operand (operands[0], SImode) + && cint_16_operand (operands[1], SImode))) + && ! TARGET_29050" + "@ + sll %0,%1,0 + const %0,%1 + constn %0,%M1 + cpeq %0,gr1,gr1 + # + load 0,0,%0,%1 + mfsr %0,%1 + store 0,0,%1,%0 + mtsr %0,%1 + mtsrim %0,%1" + [(set_attr "type" "misc,misc,misc,misc,multi,load,misc,store,misc,misc")]) + +(define_insn "" + [(set (match_operand:SI 0 "out_operand" "=r,r,r,r,r,r,r,m,*h,*h") + (match_operand:SI 1 "in_operand" "r,J,M,O,i,m,*h,r,r,J"))] + "(gpc_reg_operand (operands[0], SImode) + || gpc_reg_operand (operands[1], SImode) + || (spec_reg_operand (operands[0], SImode) + && cint_16_operand (operands[1], SImode))) + && TARGET_29050" + "@ + sll %0,%1,0 + const %0,%1 + constn %0,%M1 + consthz %0,%1 + # + load 0,0,%0,%1 + mfsr %0,%1 + store 0,0,%1,%0 + mtsr %0,%1 + mtsrim %0,%1" + [(set_attr "type" "misc,misc,misc,misc,multi,load,misc,store,misc,misc")]) + +(define_insn "" + [(set (match_operand:PSI 0 "out_operand" "=*r,*r,*r,*r,m,h,h") + (match_operand:PSI 1 "in_operand" "r,i,m,h,r,r,J"))] + "(gpc_reg_operand (operands[0], PSImode) + || gpc_reg_operand (operands[1], PSImode) + || (spec_reg_operand (operands[0], PSImode) + && cint_16_operand (operands[1], PSImode)))" + "@ + sll %0,%1,0 + const %0,%1 + load 0,0,%0,%1 + mfsr %0,%1 + store 0,0,%1,%0 + mtsr %0,%1 + mtsrim %0,%1" + [(set_attr "type" "misc,multi,load,misc,store,misc,misc")]) + +(define_insn "" + [(set (match_operand:HI 0 "out_operand" "=r,r,r,m,r,*h,*h") + (match_operand:HI 1 "in_operand" "r,i,m,r,*h,r,i"))] + "gpc_reg_operand (operands[0], HImode) + || gpc_reg_operand (operands[1], HImode) + || (spec_reg_operand (operands[0], HImode) + && cint_16_operand (operands[1], HImode))" + "@ + sll %0,%1,0 + const %0,%1 + load 0,2,%0,%1 + store 0,2,%1,%0 + mfsr %0,%1 + mtsr %0,%1 + mtsrim %0,%1" + [(set_attr "type" "misc,misc,load,store,misc,misc,misc")]) + +(define_insn "" + [(set (match_operand:QI 0 "out_operand" "=r,r,r,m,r,*h,*h") + (match_operand:QI 1 "in_operand" "r,i,m,r,*h,r,i"))] + "gpc_reg_operand (operands[0], QImode) + || gpc_reg_operand (operands[1], QImode) + || (spec_reg_operand (operands[0], HImode) + && cint_16_operand (operands[1], HImode))" + "@ + sll %0,%1,0 + const %0,%1 + load 0,1,%0,%1 + store 0,1,%1,%0 + mfsr %0,%1 + mtsr %0,%1 + mtsrim %0,%1" + [(set_attr "type" "misc,misc,load,store,misc,misc,misc")]) + +;; Define move insns for DI, TI, SF, and DF. +;; +;; In no case do we support mem->mem directly. +;; +;; For DI move of constant to register, split apart at this time since these +;; can require anywhere from 2 to 4 insns and determining which is complex. +;; +;; In other cases, handle similarly to SImode moves. +;; +;; However, indicate that DI, TI, and DF moves may clobber CR (reg 179). +(define_expand "movdi" + [(parallel [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" "")) + (clobber (scratch:PSI))])] + "" + " +{ + if (GET_CODE (operands[0]) == MEM) + operands[1] = force_reg (DImode, operands[1]); +}") + +(define_expand "movsf" + [(set (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" ""))] + "" + " +{ if (GET_CODE (operands[0]) == MEM) + operands[1] = force_reg (SFmode, operands[1]); +}") + +(define_expand "movdf" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (match_operand:DF 1 "general_operand" "")) + (clobber (scratch:PSI))])] + "" + " +{ if (GET_CODE (operands[0]) == MEM) + operands[1] = force_reg (DFmode, operands[1]); +}") + +(define_expand "movti" + [(parallel [(set (match_operand:TI 0 "general_operand" "") + (match_operand:TI 1 "general_operand" "")) + (clobber (scratch:PSI))])] + "" + " +{ + if (GET_CODE (operands[0]) == MEM) + operands[1] = force_reg (TImode, operands[1]); + + /* We can't handle constants in general because there is no rtl to represent + 128 bit constants. Splitting happens to work for CONST_INTs so we split + them for good code. Other constants will get forced to memory. */ + + if (GET_CODE (operands[1]) == CONST_INT) + { + rtx part0, part1, part2, part3; + + part0 = operand_subword (operands[0], 0, 1, TImode); + part1 = operand_subword (operands[0], 1, 1, TImode); + part2 = operand_subword (operands[0], 2, 1, TImode); + part3 = operand_subword (operands[0], 3, 1, TImode); + + emit_move_insn (part0, const0_rtx); + emit_move_insn (part1, const0_rtx); + emit_move_insn (part2, const0_rtx); + emit_move_insn (part3, const0_rtx); + + DONE; + } + else if (CONSTANT_P (operands[1])) + { + operands[1] = force_const_mem (TImode, operands[1]); + if (! memory_address_p (TImode, XEXP (operands[1], 0)) + && ! reload_in_progress) + operands[1] = change_address (operands[1], TImode, + XEXP (operands[1], 0)); + } +}") + +;; Here are the variants of the above for use during reload. + +(define_expand "reload_indf" + [(parallel [(set (match_operand:DF 0 "register_operand" "=r") + (match_operand:DF 1 "reload_memory_operand" "m")) + (clobber (match_operand:PSI 2 "register_operand" "=&c"))])] + "" + "") + +(define_expand "reload_outdf" + [(parallel [(set (match_operand:DF 0 "reload_memory_operand" "=m") + (match_operand:DF 1 "register_operand" "r")) + (clobber (match_operand:PSI 2 "register_operand" "=&c"))])] + "" + "") + +(define_expand "reload_indi" + [(parallel [(set (match_operand:DI 0 "register_operand" "=r") + (match_operand:DI 1 "reload_memory_operand" "m")) + (clobber (match_operand:PSI 2 "register_operand" "=&c"))])] + "" + "") + +(define_expand "reload_outdi" + [(parallel [(set (match_operand:DI 0 "reload_memory_operand" "=m") + (match_operand:DI 1 "register_operand" "r")) + (clobber (match_operand:PSI 2 "register_operand" "=&c"))])] + "" + "") + +(define_expand "reload_inti" + [(parallel [(set (match_operand:TI 0 "register_operand" "=r") + (match_operand:TI 1 "reload_memory_operand" "m")) + (clobber (match_operand:PSI 2 "register_operand" "=&c"))])] + "" + "") + +(define_expand "reload_outti" + [(parallel [(set (match_operand:TI 0 "reload_memory_operand" "=m") + (match_operand:TI 1 "register_operand" "r")) + (clobber (match_operand:PSI 2 "register_operand" "=&c"))])] + "" + "") + +;; For compare operations, we simply store the comparison operands and +;; do nothing else. The following branch or scc insn will output whatever +;; is needed. +(define_expand "cmpsi" + [(set (cc0) + (compare (match_operand:SI 0 "gpc_reg_operand" "") + (match_operand:SI 1 "srcb_operand" "")))] + "" + " +{ + a29k_compare_op0 = operands[0]; + a29k_compare_op1 = operands[1]; + a29k_compare_fp_p = 0; + DONE; +}") + +(define_expand "cmpsf" + [(set (cc0) + (compare (match_operand:SF 0 "gpc_reg_operand" "") + (match_operand:SF 1 "gpc_reg_operand" "")))] + "! TARGET_SOFT_FLOAT" + " +{ + a29k_compare_op0 = operands[0]; + a29k_compare_op1 = operands[1]; + a29k_compare_fp_p = 1; + DONE; +}") + +(define_expand "cmpdf" + [(set (cc0) + (compare (match_operand:DF 0 "gpc_reg_operand" "") + (match_operand:DF 1 "gpc_reg_operand" "")))] + "! TARGET_SOFT_FLOAT" + " +{ + a29k_compare_op0 = operands[0]; + a29k_compare_op1 = operands[1]; + a29k_compare_fp_p = 1; + DONE; +}") + +;; We can generate bit-tests better if we use NE instead of EQ, but we +;; don't have an NE for floating-point. So we have to have two patterns +;; for EQ and two for NE. + +(define_expand "beq" + [(set (match_dup 1) (ne:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (ge (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + if (GET_MODE_CLASS (GET_MODE (a29k_compare_op0)) == MODE_FLOAT) + { + emit_insn (gen_beq_fp (operands[0])); + DONE; + } + + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "beq_fp" + [(set (match_dup 1) (eq:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bne" + [(set (match_dup 1) (ne:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + if (GET_MODE_CLASS (GET_MODE (a29k_compare_op0)) == MODE_FLOAT) + { + emit_insn (gen_bne_fp (operands[0])); + DONE; + } + + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bne_fp" + [(set (match_dup 1) (eq:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (ge (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +;; We don't have a floating-point "lt" insn, so we have to use "gt" in that +;; case with the operands swapped. The operands must both be registers in +;; the floating-point case, so we know that swapping them is OK. +(define_expand "blt" + [(set (match_dup 1) (match_dup 2)) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + if (a29k_compare_fp_p) + operands[2] = gen_rtx (GT, SImode, a29k_compare_op1, a29k_compare_op0); + else + operands[2] = gen_rtx (LT, SImode, a29k_compare_op0, a29k_compare_op1); +}") + +;; Similarly for "le". +(define_expand "ble" + [(set (match_dup 1) (match_dup 2)) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + if (a29k_compare_fp_p) + operands[2] = gen_rtx (GE, SImode, a29k_compare_op1, a29k_compare_op0); + else + operands[2] = gen_rtx (LE, SImode, a29k_compare_op0, a29k_compare_op1); +}") + +(define_expand "bltu" + [(set (match_dup 1) (ltu:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bleu" + [(set (match_dup 1) (leu:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bgt" + [(set (match_dup 1) (gt:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bge" + [(set (match_dup 1) (ge:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bgtu" + [(set (match_dup 1) (gtu:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "bgeu" + [(set (match_dup 1) (geu:SI (match_dup 2) (match_dup 3))) + (set (pc) + (if_then_else (lt (match_dup 1) (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + " +{ + operands[1] = gen_reg_rtx (SImode); + operands[2] = a29k_compare_op0; + operands[3] = a29k_compare_op1; +}") + +(define_expand "seq" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (eq:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +;; This is the most complicated case, because we don't have a floating-point +;; "ne" insn. If integer, handle normally. If floating-point, write the +;; compare and then write an insn to reverse the test. +(define_expand "sne_fp" + [(set (match_dup 3) + (eq:SI (match_operand 1 "gpc_reg_operand" "") + (match_operand 2 "gpc_reg_operand" ""))) + (set (match_operand:SI 0 "gpc_reg_operand" "") + (ge:SI (match_dup 3) (const_int 0)))] + "! TARGET_SOFT_FLOAT" + " +{ operands[3] = gen_reg_rtx (SImode); +}"); + +(define_expand "sne" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (ne:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; + + if (a29k_compare_fp_p) + { + emit_insn (gen_sne_fp (operands[0], operands[1], operands[2])); + DONE; + } +}") + +;; We don't have a floating-point "lt" insn, so use "gt" and swap the +;; operands, the same as we do "blt". +(define_expand "slt" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (match_dup 1))] + "" + " +{ + if (a29k_compare_fp_p) + operands[1] = gen_rtx (GT, SImode, a29k_compare_op1, a29k_compare_op0); + else + operands[1] = gen_rtx (LT, SImode, a29k_compare_op0, a29k_compare_op1); +}") + +;; Similarly for "le" +(define_expand "sle" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (match_dup 1))] + "" + " +{ + if (a29k_compare_fp_p) + operands[1] = gen_rtx (GE, SImode, a29k_compare_op1, a29k_compare_op0); + else + operands[1] = gen_rtx (LE, SImode, a29k_compare_op0, a29k_compare_op1); +}") + +(define_expand "sltu" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (ltu:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +(define_expand "sleu" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (leu:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +(define_expand "sgt" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (gt:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +(define_expand "sge" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (ge:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +(define_expand "sgtu" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (gtu:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +(define_expand "sgeu" + [(set (match_operand:SI 0 "gpc_reg_operand" "") + (geu:SI (match_dup 1) (match_dup 2)))] + "" + " +{ + operands[1] = a29k_compare_op0; + operands[2] = a29k_compare_op1; +}") + +;; Now define the actual jump insns. +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "branch_operator" + [(match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 0)]) + (label_ref (match_operand 2 "" "")) + (pc)))] + "" + "jmp%b0 %1,%l2%#" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "branch_operator" + [(match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 0)]) + (return) + (pc)))] + "null_epilogue ()" + "jmp%b0i %1,lr0%#" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "branch_operator" + [(match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 0)]) + (pc) + (label_ref (match_operand 2 "" ""))))] + "" + "jmp%B0 %1,%l2%#" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "branch_operator" + [(match_operand:SI 1 "gpc_reg_operand" "r") + (const_int 0)]) + (pc) + (return)))] + "null_epilogue ()" + "jmp%B0i %1,lr0%#" + [(set_attr "type" "branch")]) + +(define_insn "jump" + [(set (pc) + (label_ref (match_operand 0 "" "")))] + "" + "jmp %e0%E0" + [(set_attr "type" "branch")]) + +(define_insn "return" + [(return)] + "null_epilogue ()" + "jmpi lr0%#" + [(set_attr "type" "branch")]) + +(define_insn "indirect_jump" + [(set (pc) + (match_operand:SI 0 "gpc_reg_operand" "r"))] + "" + "jmpi %0%#" + [(set_attr "type" "branch")]) + +(define_insn "tablejump" + [(set (pc) + (match_operand:SI 0 "gpc_reg_operand" "r")) + (use (label_ref (match_operand 1 "" "")))] + "" + "jmpi %0%#" + [(set_attr "type" "branch")]) + +;; JMPFDEC +(define_insn "" + [(set (pc) + (if_then_else (ge (match_operand:SI 0 "gpc_reg_operand" "r") + (const_int 0)) + (label_ref (match_operand 1 "" "")) + (pc))) + (set (match_dup 0) + (plus:SI (match_dup 0) + (const_int -1)))] + "" + "jmpfdec %0,%l1%#" + [(set_attr "type" "branch")]) diff --git a/gcc/config/a29k/t-a29k b/gcc/config/a29k/t-a29k new file mode 100755 index 0000000..7468422 --- /dev/null +++ b/gcc/config/a29k/t-a29k @@ -0,0 +1,5 @@ +LIBGCC1 = +CROSS_LIBGCC1 = + +# We need crt0.o. +LIBGCC1_TEST = diff --git a/gcc/config/a29k/t-a29kbare b/gcc/config/a29k/t-a29kbare new file mode 100755 index 0000000..21ba24f --- /dev/null +++ b/gcc/config/a29k/t-a29kbare @@ -0,0 +1,19 @@ +LIBGCC1 = +CROSS_LIBGCC1 = + +# We need crt0.o. +LIBGCC1_TEST = + +# These are really part of libgcc1, but this will cause them to be +# built correctly, so... + +LIB2FUNCS_EXTRA = fp-bit.c dp-bit.c + +dp-bit.c: $(srcdir)/config/fp-bit.c + cat $(srcdir)/config/fp-bit.c > dp-bit.c + +fp-bit.c: $(srcdir)/config/fp-bit.c + echo '#define FLOAT' > fp-bit.c + cat $(srcdir)/config/fp-bit.c >> fp-bit.c + + diff --git a/gcc/config/a29k/t-vx29k b/gcc/config/a29k/t-vx29k new file mode 100755 index 0000000..293674e --- /dev/null +++ b/gcc/config/a29k/t-vx29k @@ -0,0 +1,17 @@ +LIBGCC1 = +CROSS_LIBGCC1 = + +# We need crt0.o. +LIBGCC1_TEST = + +# We don't want to put exit in libgcc.a for VxWorks, because VxWorks +# does not have _exit. +TARGET_LIBGCC2_CFLAGS = -Dexit=unused_exit +LIB2FUNCS_EXTRA = fp-bit.c dp-bit.c + +dp-bit.c: $(srcdir)/config/fp-bit.c + cat $(srcdir)/config/fp-bit.c > dp-bit.c + +fp-bit.c: $(srcdir)/config/fp-bit.c + echo '#define FLOAT' > fp-bit.c + cat $(srcdir)/config/fp-bit.c >> fp-bit.c diff --git a/gcc/config/a29k/udi.h b/gcc/config/a29k/udi.h new file mode 100755 index 0000000..400ffbb --- /dev/null +++ b/gcc/config/a29k/udi.h @@ -0,0 +1,94 @@ +/* Definitions of target machine for GNU compiler, for AMD Am29000 CPU + running over UDI using COFF. + Copyright (C) 1994, 1996 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* Support the ctors and dtors sections for g++. */ + +#define CTORS_SECTION_ASM_OP "\t.use .ctors" +#define DTORS_SECTION_ASM_OP "\t.use .dtors" + +/* A list of other sections which the compiler might be "in" at any + given time. */ + +#undef EXTRA_SECTIONS +#define EXTRA_SECTIONS readonly_data, in_ctors, in_dtors + +/* A list of extra section function definitions. */ + +#undef EXTRA_SECTION_FUNCTIONS +#define EXTRA_SECTION_FUNCTIONS \ + READONLY_DATA_FUNCTION \ + CTORS_SECTION_FUNCTION \ + DTORS_SECTION_FUNCTION + +#define READONLY_DATA_FUNCTION \ +void \ +literal_section () \ +{ \ + if (in_section != readonly_data) \ + { \ + fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \ + in_section = readonly_data; \ + } \ +} \ + +#define CTORS_SECTION_FUNCTION \ +void \ +ctors_section () \ +{ \ + if (in_section != in_ctors) \ + { \ + fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \ + in_section = in_ctors; \ + } \ +} + +#define DTORS_SECTION_FUNCTION \ +void \ +dtors_section () \ +{ \ + if (in_section != in_dtors) \ + { \ + fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \ + in_section = in_dtors; \ + } \ +} + +#define INT_ASM_OP ".word" + +/* A C statement (sans semicolon) to output an element in the table of + global constructors. */ +#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \ + do { \ + ctors_section (); \ + fprintf (FILE, "\t%s\t ", INT_ASM_OP); \ + assemble_name (FILE, NAME); \ + fprintf (FILE, "\n"); \ + } while (0) + +/* A C statement (sans semicolon) to output an element in the table of + global destructors. */ +#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \ + do { \ + dtors_section (); \ + fprintf (FILE, "\t%s\t ", INT_ASM_OP); \ + assemble_name (FILE, NAME); \ + fprintf (FILE, "\n"); \ + } while (0) diff --git a/gcc/config/a29k/unix.h b/gcc/config/a29k/unix.h new file mode 100755 index 0000000..f05f258 --- /dev/null +++ b/gcc/config/a29k/unix.h @@ -0,0 +1,92 @@ +/* Definitions of target machine for GNU compiler, for AMD Am29000 CPU, Unix. + Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +/* We define unix instead of EPI and define unix-style machine names. */ + +/* Set our default target to be the 29050; that is the more interesting chip + for Unix systems. */ + +#undef TARGET_DEFAULT +#define TARGET_DEFAULT (1+2+16+128) + +#undef CPP_PREDEFINES +#define CPP_PREDEFINES "-Dam29k -Da29k -Dam29000 -Asystem(unix) -Acpu(a29k) -Amachine(a29k)" + +#undef CPP_SPEC +#define CPP_SPEC "%{!m29000:-Dam29050 -D__am29050__}" + +/* Use a default linker configuration file. */ +#undef LINK_SPEC +#define LINK_SPEC "-T default.gld%s" + +/* Define the magic numbers that we recognize as COFF. */ + +#define MY_ISCOFF(magic) ((magic) == SIPFBOMAGIC || (magic) == SIPRBOMAGIC) + +/* For some systems, it is best if double-word objects are aligned on a + doubleword boundary. We want to maintain compatibility with MetaWare in + a29k.h, but do not feel constrained to do so here. */ + +#undef BIGGEST_ALIGNMENT +#define BIGGEST_ALIGNMENT 64 + +/* Add shared data as a kludge for now. */ + +#undef ASM_FILE_START +#define ASM_FILE_START(FILE) \ +{ char *p, *after_dir = main_input_filename; \ + if (TARGET_29050) \ + fprintf (FILE, "\t.cputype 29050\n"); \ + for (p = main_input_filename; *p; p++) \ + if (*p == '/') \ + after_dir = p + 1; \ + fprintf (FILE, "\t.file "); \ + output_quoted_string (FILE, after_dir); \ + fprintf (FILE, "\n"); \ + if (flag_shared_data) \ + fprintf (FILE, "\t.sect .shdata,data\n"); \ + fprintf (FILE, "\t.sect .lit,lit\n"); } + +/* Output before shared data. */ + +#define SHARED_SECTION_ASM_OP "\t.use .shdata" + +/* If we want shared data, we have to turn off commons. */ + +#define OVERRIDE_OPTIONS if (flag_shared_data) flag_no_common = 1; + +/* Default to -fno-pcc-struct-return, since we don't have to worry about + compatibility. */ +#define DEFAULT_PCC_STRUCT_RETURN 0 + +#if 0 /* This would be needed except that the 29k doesn't have strict + alignment requirements. */ + +#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ + (((TYPE) != 0) \ + ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \ + ? PARM_BOUNDARY \ + : TYPE_ALIGN(TYPE)) \ + : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \ + ? PARM_BOUNDARY \ + : GET_MODE_ALIGNMENT(MODE))) +#endif diff --git a/gcc/config/a29k/vx29k.h b/gcc/config/a29k/vx29k.h new file mode 100755 index 0000000..8739b1b --- /dev/null +++ b/gcc/config/a29k/vx29k.h @@ -0,0 +1,46 @@ +/* Definitions of target machine for GNU compiler. Vxworks 29k version. + Copyright (C) 1994, 1995, 1996 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* This file just exists to give specs for the 29k running on VxWorks. */ + +/* Names to predefine in the preprocessor for this target machine. */ + +#undef CPP_PREDEFINES +#define CPP_PREDEFINES "-D_AM29K -D_AM29000 -Acpu(a29k) -Amachine(a29k) -D__vxworks -D__vxworks_5" + +/* Vxworks header files require that the macro CPU be set. + We could define it in CPP_PREDEFINES, but the value is (or will be) + dependent upon GCC options. */ + +#undef CPP_SPEC +#define CPP_SPEC "-DCPU=AM29200" + +/* VxWorks does all the library stuff itself. */ + +#undef LIB_SPEC +#define LIB_SPEC "" + +/* VxWorks provides the functionality of crt0.o and friends itself. */ + +#undef STARTFILE_SPEC +#define STARTFILE_SPEC "crtbegin.o%s" + +#undef ENDFILE_SPEC +#define ENDFILE_SPEC "crtend.o%s" diff --git a/gcc/config/a29k/x-unix b/gcc/config/a29k/x-unix new file mode 100755 index 0000000..ed85ea3 --- /dev/null +++ b/gcc/config/a29k/x-unix @@ -0,0 +1,2 @@ +# Needed for missing functions in Sym1. +CLIB=-liberty -lld diff --git a/gcc/config/a29k/xm-a29k.h b/gcc/config/a29k/xm-a29k.h new file mode 100755 index 0000000..774e34b --- /dev/null +++ b/gcc/config/a29k/xm-a29k.h @@ -0,0 +1,41 @@ +/* Configuration for GNU C-compiler for AMD Am29000 processor. + Copyright (C) 1987, 1988, 1993 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +/* #defines that need visibility everywhere. */ +#define FALSE 0 +#define TRUE 1 + +/* This describes the machine the compiler is hosted on. */ +#define HOST_BITS_PER_CHAR 8 +#define HOST_BITS_PER_SHORT 16 +#define HOST_BITS_PER_INT 32 +#define HOST_BITS_PER_LONG 32 +#define HOST_BITS_PER_LONGLONG 64 + +#define HOST_WORDS_BIG_ENDIAN + +/* target machine dependencies. + tm.h is a symbolic link to the actual target specific file. */ +#include "tm.h" + +/* Arguments to use with `exit'. */ +#define SUCCESS_EXIT_CODE 0 +#define FATAL_EXIT_CODE 33 diff --git a/gcc/config/a29k/xm-unix.h b/gcc/config/a29k/xm-unix.h new file mode 100755 index 0000000..206d8fd --- /dev/null +++ b/gcc/config/a29k/xm-unix.h @@ -0,0 +1,43 @@ +/* Configuration for GNU C-compiler for AMD Am29000 processor. + Copyright (C) 1987, 1988, 1993 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* #defines that need visibility everywhere. */ +#define FALSE 0 +#define TRUE 1 + +/* This describes the machine the compiler is hosted on. */ +#define HOST_BITS_PER_CHAR 8 +#define HOST_BITS_PER_SHORT 16 +#define HOST_BITS_PER_INT 32 +#define HOST_BITS_PER_LONG 32 +#define HOST_BITS_PER_LONGLONG 64 + +#define HOST_WORDS_BIG_ENDIAN + +/* target machine dependencies. + tm.h is a symbolic link to the actual target specific file. */ +#include "tm.h" + +/* Arguments to use with `exit'. */ +#define SUCCESS_EXIT_CODE 0 +#define FATAL_EXIT_CODE 33 + +/* Ultra is V7, which is closest to USG. */ +#define USG |