summaryrefslogtreecommitdiff
path: root/gcc/invoke.texi
diff options
context:
space:
mode:
authorYamaArashi <shadow962@live.com>2016-04-25 02:51:34 -0700
committerYamaArashi <shadow962@live.com>2016-04-25 02:51:34 -0700
commit346ed7678fc0a02c1c93c066140f819789f039d9 (patch)
treefdd46f22c809c5c44fdd7fb10070fd5320078b85 /gcc/invoke.texi
parentfa618cd10b1985bae42882f82346b646783892c6 (diff)
remove driver and cpp
Diffstat (limited to 'gcc/invoke.texi')
-rwxr-xr-xgcc/invoke.texi7000
1 files changed, 0 insertions, 7000 deletions
diff --git a/gcc/invoke.texi b/gcc/invoke.texi
deleted file mode 100755
index 4e614f4..0000000
--- a/gcc/invoke.texi
+++ /dev/null
@@ -1,7000 +0,0 @@
-@c Copyright (C) 1988,89,92,93,94,95,96,97,98,1999 Free Software Foundation, Inc.
-@c This is part of the GCC manual.
-@c For copying conditions, see the file gcc.texi.
-
-@node Invoking GCC
-@chapter GNU CC Command Options
-@cindex GNU CC command options
-@cindex command options
-@cindex options, GNU CC command
-
-When you invoke GNU CC, it normally does preprocessing, compilation,
-assembly and linking. The ``overall options'' allow you to stop this
-process at an intermediate stage. For example, the @samp{-c} option
-says not to run the linker. Then the output consists of object files
-output by the assembler.
-
-Other options are passed on to one stage of processing. Some options
-control the preprocessor and others the compiler itself. Yet other
-options control the assembler and linker; most of these are not
-documented here, since you rarely need to use any of them.
-
-@cindex C compilation options
-Most of the command line options that you can use with GNU CC are useful
-for C programs; when an option is only useful with another language
-(usually C++), the explanation says so explicitly. If the description
-for a particular option does not mention a source language, you can use
-that option with all supported languages.
-
-@cindex C++ compilation options
-@xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
-options for compiling C++ programs.
-
-@cindex grouping options
-@cindex options, grouping
-The @code{gcc} program accepts options and file names as operands. Many
-options have multiletter names; therefore multiple single-letter options
-may @emph{not} be grouped: @samp{-dr} is very different from @w{@samp{-d
--r}}.
-
-@cindex order of options
-@cindex options, order
-You can mix options and other arguments. For the most part, the order
-you use doesn't matter. Order does matter when you use several options
-of the same kind; for example, if you specify @samp{-L} more than once,
-the directories are searched in the order specified.
-
-Many options have long names starting with @samp{-f} or with
-@samp{-W}---for example, @samp{-fforce-mem},
-@samp{-fstrength-reduce}, @samp{-Wformat} and so on. Most of
-these have both positive and negative forms; the negative form of
-@samp{-ffoo} would be @samp{-fno-foo}. This manual documents
-only one of these two forms, whichever one is not the default.
-
-@c CYGNUS LOCAL v850 Offset Info
-@c The entry "Offset info" in the following menu is needed for
-@c Cygnus-only sections of the doc. Unfortunately makeinfo gets confused if
-@c comments to this effect are inside the menu.
-@menu
-* Option Summary:: Brief list of all options, without explanations.
-* Overall Options:: Controlling the kind of output:
- an executable, object files, assembler files,
- or preprocessed source.
-* Invoking G++:: Compiling C++ programs.
-* C Dialect Options:: Controlling the variant of C language compiled.
-* C++ Dialect Options:: Variations on C++.
-* Warning Options:: How picky should the compiler be?
-* Debugging Options:: Symbol tables, measurements, and debugging dumps.
-* Optimize Options:: How much optimization?
-* Preprocessor Options:: Controlling header files and macro definitions.
- Also, getting dependency information for Make.
-* Assembler Options:: Passing options to the assembler.
-* Link Options:: Specifying libraries and so on.
-* Directory Options:: Where to find header files and libraries.
- Where to find the compiler executable files.
-* Target Options:: Running a cross-compiler, or an old version of GNU CC.
-* Submodel Options:: Specifying minor hardware or convention variations,
- such as 68010 vs 68020.
-* Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
-* Offset info Option:: Producing assembler symbols for structure members.
-* Environment Variables:: Env vars that affect GNU CC.
-* Running Protoize:: Automatically adding or removing function prototypes.
-@end menu
-
-@node Option Summary
-@section Option Summary
-
-Here is a summary of all the options, grouped by type. Explanations are
-in the following sections.
-
-@table @emph
-@item Overall Options
-@xref{Overall Options,,Options Controlling the Kind of Output}.
-@smallexample
--c -S -E -o @var{file} -pipe -v --help -x @var{language}
-@end smallexample
-
-@item C Language Options
-@xref{C Dialect Options,,Options Controlling C Dialect}.
-@smallexample
--ansi -flang-isoc9x -fallow-single-precision -fcond-mismatch -fno-asm
--fno-builtin -ffreestanding -fhosted -fsigned-bitfields -fsigned-char
--funsigned-bitfields -funsigned-char -fwritable-strings
--traditional -traditional-cpp -trigraphs
-@end smallexample
-
-@item C++ Language Options
-@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
-@smallexample
--fno-access-control -fcheck-new -fconserve-space -fdollars-in-identifiers
--fno-elide-constructors -fexternal-templates -ffor-scope
--fno-for-scope -fno-gnu-keywords -fguiding-decls -fhandle-signatures
--fhonor-std -fhuge-objects -fno-implicit-templates -finit-priority
--fno-implement-inlines -fname-mangling-version-@var{n} -fno-default-inline
--foperator-names -fno-optional-diags -frepo -fstrict-prototype
--fsquangle -ftemplate-depth-@var{n} -fthis-is-variable -fvtable-thunks
--nostdinc++ -Wctor-dtor-privacy -Weffc++ -Wno-non-template-friend
--Wnon-virtual-dtor -Wold-style-cast -Woverloaded-virtual
--Wno-pmf-conversions -Wreorder -Wsign-promo -Wsynth
-@end smallexample
-
-@item Warning Options
-@xref{Warning Options,,Options to Request or Suppress Warnings}.
-@smallexample
--fsyntax-only -pedantic -pedantic-errors
--w -W -Wall -Waggregate-return -Wbad-function-cast
--Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
--Wconversion -Werror -Wformat
--Wid-clash-@var{len} -Wimplicit -Wimplicit-int
--Wimplicit-function-declaration -Wimport
--Werror-implicit-function-declaration -Winline
--Wlarger-than-@var{len} -Wlong-long
--Wmain -Wmissing-declarations -Wmissing-noreturn
--Wmissing-prototypes -Wmultichar -Wnested-externs -Wno-import
--Wparentheses -Wpointer-arith -Wredundant-decls
--Wreturn-type -Wshadow -Wsign-compare -Wstrict-prototypes
--Wswitch -Wtraditional
--Wtrigraphs -Wundef -Wuninitialized -Wunused -Wwrite-strings
--Wunknown-pragmas
-@end smallexample
-
-@item Debugging Options
-@xref{Debugging Options,,Options for Debugging Your Program or GCC}.
-@smallexample
--a -ax -d@var{letters} -fdump-unnumbered -fpretend-float
--fprofile-arcs -ftest-coverage
--g -g@var{level} -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2
--ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
--p -pg -print-file-name=@var{library} -print-libgcc-file-name
--print-prog-name=@var{program} -print-search-dirs -save-temps
-@end smallexample
-
-@item Optimization Options
-@xref{Optimize Options,,Options that Control Optimization}.
-@smallexample
--fbranch-probabilities -foptimize-register-moves
--fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
--fdelayed-branch -fexpensive-optimizations
--ffast-math -ffloat-store -fforce-addr -fforce-mem
--fdata-sections -ffunction-sections -fgcse
-@c CYGNUS LOCAL LRS
--flive-range
-@c END CYGNUS LOCAL
--finline-functions -fkeep-inline-functions
--fno-default-inline -fno-defer-pop -fno-function-cse
--fno-inline -fno-peephole -fomit-frame-pointer -fregmove
--frerun-cse-after-loop -frerun-loop-opt -fschedule-insns
--fschedule-insns2 -fstrength-reduce -fthread-jumps
--funroll-all-loops -funroll-loops
--fmove-all-movables -freduce-all-givs -fstrict-aliasing
--O -O0 -O1 -O2 -O3 -Os
-@end smallexample
-
-@item Preprocessor Options
-@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
-@smallexample
--A@var{question}(@var{answer}) -C -dD -dM -dN
--D@var{macro}@r{[}=@var{defn}@r{]} -E -H
--idirafter @var{dir}
--include @var{file} -imacros @var{file}
--iprefix @var{file} -iwithprefix @var{dir}
--iwithprefixbefore @var{dir} -isystem @var{dir} -isystem-c++ @var{dir}
--M -MD -MM -MMD -MG -nostdinc -P -trigraphs
--undef -U@var{macro} -Wp,@var{option}
-@end smallexample
-
-@item Assembler Option
-@xref{Assembler Options,,Passing Options to the Assembler}.
-@smallexample
--Wa,@var{option}
-@end smallexample
-
-@item Linker Options
-@xref{Link Options,,Options for Linking}.
-@smallexample
-@var{object-file-name} -l@var{library}
--nostartfiles -nodefaultlibs -nostdlib
--s -static -shared -symbolic
--Wl,@var{option} -Xlinker @var{option}
--u @var{symbol}
-@end smallexample
-
-@item Directory Options
-@xref{Directory Options,,Options for Directory Search}.
-@smallexample
--B@var{prefix} -I@var{dir} -I- -L@var{dir} -specs=@var{file}
-@end smallexample
-
-@item Target Options
-@c I wrote this xref this way to avoid overfull hbox. -- rms
-@xref{Target Options}.
-@smallexample
--b @var{machine} -V @var{version}
-@end smallexample
-
-@item Machine Dependent Options
-@xref{Submodel Options,,Hardware Models and Configurations}.
-@smallexample
-@emph{M680x0 Options}
--m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
--m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020
--mfpa -mnobitfield -mrtd -mshort -msoft-float
--malign-int
-
-@emph{VAX Options}
--mg -mgnu -munix
-
-@emph{SPARC Options}
--mcpu=@var{cpu type}
--mtune=@var{cpu type}
--mcmodel=@var{code model}
--malign-jumps=@var{num} -malign-loops=@var{num}
--malign-functions=@var{num}
--m32 -m64
--mapp-regs -mbroken-saverestore -mcypress -mepilogue
--mflat -mfpu -mhard-float -mhard-quad-float
--mimpure-text -mlive-g0 -mno-app-regs -mno-epilogue
--mno-flat -mno-fpu -mno-impure-text
--mno-stack-bias -mno-unaligned-doubles
--msoft-float -msoft-quad-float -msparclite -mstack-bias
--msupersparc -munaligned-doubles -mv8
-
-@emph{Convex Options}
--mc1 -mc2 -mc32 -mc34 -mc38
--margcount -mnoargcount
--mlong32 -mlong64
--mvolatile-cache -mvolatile-nocache
-
-@emph{AMD29K Options}
--m29000 -m29050 -mbw -mnbw -mdw -mndw
--mlarge -mnormal -msmall
--mkernel-registers -mno-reuse-arg-regs
--mno-stack-check -mno-storem-bug
--mreuse-arg-regs -msoft-float -mstack-check
--mstorem-bug -muser-registers
-
-@emph{ARM Options}
--mapcs-frame -mno-apcs-frame
--mapcs-26 -mapcs-32
--mapcs-stack-check -mno-apcs-stack-check
--mapcs-float -mno-apcs-float
--mapcs-reentrant -mno-apcs-reentrant
--msched-prolog -mno-sched-prolog
--mlittle-endian -mbig-endian -mwords-little-endian
--mshort-load-bytes -mno-short-load-bytes -mshort-load-words -mno-short-load-words
--msoft-float -mhard-float -mfpe
--mthumb-interwork -mno-thumb-interwork
--mcpu= -march= -mfpe=
--mstructure-size-boundary=
--mbsd -mxopen -mno-symrename
--mabort-on-noreturn
-@c CYGNUS LOCAL nickc/thumb-pe
--mnop-fun-dllimport -mno-nop-fun-dllimport
-@c END CYGNUS LOCAL
-
-@emph{Thumb Options}
--mtpcs-frame -mno-tpcs-frame
--mtpcs-leaf-frame -mno-tpcs-leaf-frame
--mlittle-endian -mbig-endian
--mthumb-interwork -mno-thumb-interwork
--mstructure-size-boundary=
-@c CYGNUS LOCAL nickc/thumb-pe
--mnop-fun-dllimport -mno-nop-fun-dllimport
--mcallee-super-interworking -mno-callee-super-interworking
--mcaller-super-interworking -mno-caller-super-interworking
-@c END CYGNUS LOCAL
-
-@emph{MN10200 Options}
--mrelax
-
-@emph{MN10300 Options}
--mmult-bug
--mno-mult-bug
--mrelax
-
-@emph{M32R/D/X Options}
--mcode-model=@var{model type} -msdata=@var{sdata type}
--G @var{num}
--m32rx -m32r
--mcond-exec=@var{n}
-
-@emph{M88K Options}
--m88000 -m88100 -m88110 -mbig-pic
--mcheck-zero-division -mhandle-large-shift
--midentify-revision -mno-check-zero-division
--mno-ocs-debug-info -mno-ocs-frame-position
--mno-optimize-arg-area -mno-serialize-volatile
--mno-underscores -mocs-debug-info
--mocs-frame-position -moptimize-arg-area
--mserialize-volatile -mshort-data-@var{num} -msvr3
--msvr4 -mtrap-large-shift -muse-div-instruction
--mversion-03.00 -mwarn-passed-structs
-
-@emph{RS/6000 and PowerPC Options}
--mcpu=@var{cpu type}
--mtune=@var{cpu type}
--mpower -mno-power -mpower2 -mno-power2
--mpowerpc -mno-powerpc
--mpowerpc-gpopt -mno-powerpc-gpopt
--mpowerpc-gfxopt -mno-powerpc-gfxopt
--mnew-mnemonics -mno-new-mnemonics
--mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc
--maix64 -maix32 -mxl-call -mno-xl-call -mthreads -mpe
--msoft-float -mhard-float -mmultiple -mno-multiple
--mstring -mno-string -mupdate -mno-update
--mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
--mstrict-align -mno-strict-align -mrelocatable
--mno-relocatable -mrelocatable-lib -mno-relocatable-lib
--mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
--mcall-aix -mcall-sysv -mprototype -mno-prototype
-@c CYGNUS LOCAL vmakarov
--msched-epilog -mno-sched-epilog -msched-prolog -mno-sched-prolog
--mcall-i960-old -mbit-word -mno-bit-word -mbranch-cost=@var{n}
-@c END CYGNUS LOCAL
--msim -mmvme -mads -myellowknife -memb -msdata
--msdata=@var{opt} -G @var{num}
-@c CYGNUS LOCAL vmakarov
--mvxworks
-@c END CYGNUS LOCAL
-@c CYGNUS LOCAL jlemke
--mmpc860c0[=@var{num}]
-@c END CYGNUS LOCAL
-
-@emph{RT Options}
--mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
--mfull-fp-blocks -mhc-struct-return -min-line-mul
--mminimum-fp-blocks -mnohc-struct-return
-
-@emph{MIPS Options}
--mabicalls -mcpu=@var{cpu type} -membedded-data
--membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64
--mgpopt -mhalf-pic -mhard-float -mint64 -mips1
--mips2 -mips3 -mips4 -mlong64 -mlong-calls -mmemcpy
--mmips-as -mmips-tfile -mno-abicalls
--mno-embedded-data -mno-embedded-pic
--mno-gpopt -mno-long-calls
--mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
--mrnames -msoft-float
--m4650 -msingle-float -mmad
--mstats -EL -EB -G @var{num} -nocpp
--mabi=32 -mabi=n32 -mabi=64 -mabi=eabi
-@c CYGNUS LOCAL law
--malign-jumps=@var{num} -malign-loops=@var{num}
--malign-functions=@var{num}
--mmax-skip-jumps=@var{num}
--mmax-skip-loops=@var{num}
--mmax-skip-funtions=@var{num}
-@c END CYGNUS LOCAL
-
-@emph{i386 Options}
--mcpu=@var{cpu type}
--march=@var{cpu type}
--mieee-fp -mno-fancy-math-387
--mno-fp-ret-in-387 -msoft-float -msvr3-shlib
--mno-wide-multiply -mrtd -malign-double
--mreg-alloc=@var{list} -mregparm=@var{num}
--malign-jumps=@var{num} -malign-loops=@var{num}
--malign-functions=@var{num}
-
-@emph{HPPA Options}
--mbig-switch -mdisable-fpregs -mdisable-indexing
--mfast-indirect-calls -mgas -mjump-in-delay
--mlong-load-store -mno-big-switch -mno-disable-fpregs
--mno-disable-indexing -mno-fast-indirect-calls -mno-gas
--mno-jump-in-delay -mno-long-load-store
--mno-portable-runtime -mno-soft-float -mno-space
--mno-space-regs -msoft-float -mpa-risc-1-0
--mpa-risc-1-1 -mportable-runtime
--mschedule=@var{list} -mspace -mspace-regs
-
-@emph{Intel 960 Options}
--m@var{cpu type} -masm-compat -mclean-linkage
--mcode-align -mcomplex-addr -mleaf-procedures
--mic-compat -mic2.0-compat -mic3.0-compat
--mintel-asm -mno-clean-linkage -mno-code-align
--mno-complex-addr -mno-leaf-procedures
--mno-old-align -mno-strict-align -mno-tail-call
--mnumerics -mold-align -msoft-float -mstrict-align
--mtail-call
-
-@emph{DEC Alpha Options}
--mfp-regs -mno-fp-regs -mno-soft-float -msoft-float
--malpha-as -mgas
--mieee -mieee-with-inexact -mieee-conformant
--mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode}
--mtrap-precision=@var{mode} -mbuild-constants
--mcpu=@var{cpu type}
--mbwx -mno-bwx -mcix -mno-cix -mmax -mno-max
--mmemory-latency=@var{time}
-
-@emph{Clipper Options}
--mc300 -mc400
-
-@emph{H8/300 Options}
--mrelax -mh -ms -mint32 -malign-300
-
-@emph{SH Options}
--m1 -m2 -m3 -m3e -mb -ml -mdalign -mrelax
-
-@emph{System V Options}
--Qy -Qn -YP,@var{paths} -Ym,@var{dir}
-
-@c CYGNUS LOCAL: z8k docs
-@emph{Z8000 Option}
--mz8001
-@c END CYGNUS LOCAL
-
-@emph{ARC Options}
--EB -EL
--mmangle-cpu -mcpu=@var{cpu} -mtext=@var{text section}
--mdata=@var{data section} -mrodata=@var{readonly data section}
-
-@c CYGNUS LOCAL -- meissner/d10v
-@emph{D10V Options}
--mint16 -mint32 -mdouble32 -mdouble64
--maddac3 -mno-addac3 -maccum -mno-accum -msim
--mno-cond-move -mcond-move
--masm-optimize -mno-asm-optimize
--msmall-insns -mno-small-insns
--mbranch-cost=@var{n} -mcond-exec=@var{n}
-@c END CYGNUS LOCAL -- meissner/d10v
-
-@emph{V850 Options}
--mlong-calls -mno-long-calls -mep -mno-ep
--mprolog-function -mno-prolog-function -mspace
--mtda=@var{n} -msda=@var{n} -mzda=@var{n}
--mv850 -mbig-switch
--mapp-regs -mno-app-regs
-@c CYGNUS LOCAL v850e
--mv850e
--mdisable-callt -mno-disable-callt
-@c CYGNUS LOCAL v850e
-
-@emph{NS32K Options}
--m32032 -m32332 -m32532 -m32081 -m32381 -mmult-add -mnomult-add
--msoft-float -mrtd -mnortd -mregparam -mnoregparam -msb -mnosb
--mbitfield -mnobitfield -mhimem -mnohimem
-@end smallexample
-
-@item Code Generation Options
-@xref{Code Gen Options,,Options for Code Generation Conventions}.
-@smallexample
--fcall-saved-@var{reg} -fcall-used-@var{reg}
--fexceptions -ffixed-@var{reg} -finhibit-size-directive
--fcheck-memory-usage -fprefix-function-name
--fno-common -fno-ident -fno-gnu-linker
--fpcc-struct-return -fpic -fPIC
--freg-struct-return -fshared-data -fshort-enums
--fshort-double -fvolatile -fvolatile-global
-@c CYGNUS LOCAL unaligned-pointers, unaligned-struct-hack
--funaligned-pointers -funaligned-struct-hack
-@c END CYGNUS LOCAL
-@c CYGNUS LOCAL -- meissner/nortel
--foptimize-comparisons
-@c END CYGNUS LOCAL -- meissner/nortel
--fverbose-asm -fpack-struct -fstack-check
--fargument-alias -fargument-noalias
--fargument-noalias-global
--fleading-underscore
-@end smallexample
-@end table
-
-@menu
-* Overall Options:: Controlling the kind of output:
- an executable, object files, assembler files,
- or preprocessed source.
-* C Dialect Options:: Controlling the variant of C language compiled.
-* C++ Dialect Options:: Variations on C++.
-* Warning Options:: How picky should the compiler be?
-* Debugging Options:: Symbol tables, measurements, and debugging dumps.
-* Optimize Options:: How much optimization?
-* Preprocessor Options:: Controlling header files and macro definitions.
- Also, getting dependency information for Make.
-* Assembler Options:: Passing options to the assembler.
-* Link Options:: Specifying libraries and so on.
-* Directory Options:: Where to find header files and libraries.
- Where to find the compiler executable files.
-* Target Options:: Running a cross-compiler, or an old version of GNU CC.
-@end menu
-
-@node Overall Options
-@section Options Controlling the Kind of Output
-
-Compilation can involve up to four stages: preprocessing, compilation
-proper, assembly and linking, always in that order. The first three
-stages apply to an individual source file, and end by producing an
-object file; linking combines all the object files (those newly
-compiled, and those specified as input) into an executable file.
-
-@cindex file name suffix
-For any given input file, the file name suffix determines what kind of
-compilation is done:
-
-@table @code
-@item @var{file}.c
-C source code which must be preprocessed.
-
-@item @var{file}.i
-C source code which should not be preprocessed.
-
-@item @var{file}.ii
-C++ source code which should not be preprocessed.
-
-@item @var{file}.m
-Objective-C source code. Note that you must link with the library
-@file{libobjc.a} to make an Objective-C program work.
-
-@item @var{file}.h
-C header file (not to be compiled or linked).
-
-@item @var{file}.cc
-@itemx @var{file}.cxx
-@itemx @var{file}.cpp
-@itemx @var{file}.C
-C++ source code which must be preprocessed. Note that in @samp{.cxx},
-the last two letters must both be literally @samp{x}. Likewise,
-@samp{.C} refers to a literal capital C.
-
-@item @var{file}.s
-Assembler code.
-
-@item @var{file}.S
-Assembler code which must be preprocessed.
-
-@item @var{other}
-An object file to be fed straight into linking.
-Any file name with no recognized suffix is treated this way.
-@end table
-
-You can specify the input language explicitly with the @samp{-x} option:
-
-@table @code
-@item -x @var{language}
-Specify explicitly the @var{language} for the following input files
-(rather than letting the compiler choose a default based on the file
-name suffix). This option applies to all following input files until
-the next @samp{-x} option. Possible values for @var{language} are:
-@example
-c objective-c c++
-c-header cpp-output c++-cpp-output
-assembler assembler-with-cpp
-@end example
-
-@item -x none
-Turn off any specification of a language, so that subsequent files are
-handled according to their file name suffixes (as they are if @samp{-x}
-has not been used at all).
-@end table
-
-If you only want some of the stages of compilation, you can use
-@samp{-x} (or filename suffixes) to tell @code{gcc} where to start, and
-one of the options @samp{-c}, @samp{-S}, or @samp{-E} to say where
-@code{gcc} is to stop. Note that some combinations (for example,
-@samp{-x cpp-output -E} instruct @code{gcc} to do nothing at all.
-
-@table @code
-@item -c
-Compile or assemble the source files, but do not link. The linking
-stage simply is not done. The ultimate output is in the form of an
-object file for each source file.
-
-By default, the object file name for a source file is made by replacing
-the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
-
-Unrecognized input files, not requiring compilation or assembly, are
-ignored.
-
-@item -S
-Stop after the stage of compilation proper; do not assemble. The output
-is in the form of an assembler code file for each non-assembler input
-file specified.
-
-By default, the assembler file name for a source file is made by
-replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
-
-Input files that don't require compilation are ignored.
-
-@item -E
-Stop after the preprocessing stage; do not run the compiler proper. The
-output is in the form of preprocessed source code, which is sent to the
-standard output.
-
-Input files which don't require preprocessing are ignored.
-
-@cindex output file option
-@item -o @var{file}
-Place output in file @var{file}. This applies regardless to whatever
-sort of output is being produced, whether it be an executable file,
-an object file, an assembler file or preprocessed C code.
-
-Since only one output file can be specified, it does not make sense to
-use @samp{-o} when compiling more than one input file, unless you are
-producing an executable file as output.
-
-If @samp{-o} is not specified, the default is to put an executable file
-in @file{a.out}, the object file for @file{@var{source}.@var{suffix}} in
-@file{@var{source}.o}, its assembler file in @file{@var{source}.s}, and
-all preprocessed C source on standard output.@refill
-
-@item -v
-Print (on standard error output) the commands executed to run the stages
-of compilation. Also print the version number of the compiler driver
-program and of the preprocessor and the compiler proper.
-
-@item -pipe
-Use pipes rather than temporary files for communication between the
-various stages of compilation. This fails to work on some systems where
-the assembler is unable to read from a pipe; but the GNU assembler has
-no trouble.
-
-@item --help
-Print (on the standard output) a description of the command line options
-understood by @code{gcc}. If the @code{-v} option is also specified
-then @code{--help} will also be passed on to the various processes
-invoked by @code{gcc}, so that they can display the command line options
-they accept. If the @code{-W} option is also specified then command
-line options which have no documentation associated with them will also
-be displayed.
-@end table
-
-@node Invoking G++
-@section Compiling C++ Programs
-
-@cindex suffixes for C++ source
-@cindex C++ source file suffixes
-C++ source files conventionally use one of the suffixes @samp{.C},
-@samp{.cc}, @samp{.cpp}, @samp{.c++}, @samp{.cp}, or @samp{.cxx};
-preprocessed C++ files use the suffix @samp{.ii}. GNU CC recognizes
-files with these names and compiles them as C++ programs even if you
-call the compiler the same way as for compiling C programs (usually with
-the name @code{gcc}).
-
-@findex g++
-@findex c++
-However, C++ programs often require class libraries as well as a
-compiler that understands the C++ language---and under some
-circumstances, you might want to compile programs from standard input,
-or otherwise without a suffix that flags them as C++ programs.
-@code{g++} is a program that calls GNU CC with the default language
-set to C++, and automatically specifies linking against the C++
-library. On many systems, the script @code{g++} is also
-installed with the name @code{c++}.
-
-@cindex invoking @code{g++}
-When you compile C++ programs, you may specify many of the same
-command-line options that you use for compiling programs in any
-language; or command-line options meaningful for C and related
-languages; or options that are meaningful only for C++ programs.
-@xref{C Dialect Options,,Options Controlling C Dialect}, for
-explanations of options for languages related to C.
-@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
-explanations of options that are meaningful only for C++ programs.
-
-@node C Dialect Options
-@section Options Controlling C Dialect
-@cindex dialect options
-@cindex language dialect options
-@cindex options, dialect
-
-The following options control the dialect of C (or languages derived
-from C, such as C++ and Objective C) that the compiler accepts:
-
-@table @code
-@cindex ANSI support
-@item -ansi
-Support all ANSI standard C programs.
-
-This turns off certain features of GNU C that are incompatible with ANSI
-C, such as the @code{asm}, @code{inline} and @code{typeof} keywords, and
-predefined macros such as @code{unix} and @code{vax} that identify the
-type of system you are using. It also enables the undesirable and
-rarely used ANSI trigraph feature, and it disables recognition of C++
-style @samp{//} comments.
-
-The alternate keywords @code{__asm__}, @code{__extension__},
-@code{__inline__} and @code{__typeof__} continue to work despite
-@samp{-ansi}. You would not want to use them in an ANSI C program, of
-course, but it is useful to put them in header files that might be included
-in compilations done with @samp{-ansi}. Alternate predefined macros
-such as @code{__unix__} and @code{__vax__} are also available, with or
-without @samp{-ansi}.
-
-The @samp{-ansi} option does not cause non-ANSI programs to be
-rejected gratuitously. For that, @samp{-pedantic} is required in
-addition to @samp{-ansi}. @xref{Warning Options}.
-
-The macro @code{__STRICT_ANSI__} is predefined when the @samp{-ansi}
-option is used. Some header files may notice this macro and refrain
-from declaring certain functions or defining certain macros that the
-ANSI standard doesn't call for; this is to avoid interfering with any
-programs that might use these names for other things.
-
-The functions @code{alloca}, @code{abort}, @code{exit}, and
-@code{_exit} are not builtin functions when @samp{-ansi} is used.
-
-@item -flang-isoc9x
-Enable support for features found in the C9X standard. In particular,
-enable support for the C9X @code{restrict} keyword.
-
-Even when this option is not specified, you can still use some C9X
-features in so far as they do not conflict with previous C standards.
-For example, you may use @code{__restrict__} even when -flang-isoc9x
-is not specified.
-
-@item -fno-asm
-Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
-keyword, so that code can use these words as identifiers. You can use
-the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
-instead. @samp{-ansi} implies @samp{-fno-asm}.
-
-In C++, this switch only affects the @code{typeof} keyword, since
-@code{asm} and @code{inline} are standard keywords. You may want to
-use the @samp{-fno-gnu-keywords} flag instead, as it also disables the
-other, C++-specific, extension keywords such as @code{headof}.
-
-@item -fno-builtin
-@cindex builtin functions
-@findex abort
-@findex abs
-@findex alloca
-@findex cos
-@findex exit
-@findex fabs
-@findex ffs
-@findex labs
-@findex memcmp
-@findex memcpy
-@findex sin
-@findex sqrt
-@findex strcmp
-@findex strcpy
-@findex strlen
-Don't recognize builtin functions that do not begin with `__builtin_'
-as prefix. Currently, the functions affected include @code{abort},
-@code{abs}, @code{alloca}, @code{cos}, @code{exit}, @code{fabs},
-@code{ffs}, @code{labs}, @code{memcmp}, @code{memcpy}, @code{sin},
-@code{sqrt}, @code{strcmp}, @code{strcpy}, and @code{strlen}.
-
-GCC normally generates special code to handle certain builtin functions
-more efficiently; for instance, calls to @code{alloca} may become single
-instructions that adjust the stack directly, and calls to @code{memcpy}
-may become inline copy loops. The resulting code is often both smaller
-and faster, but since the function calls no longer appear as such, you
-cannot set a breakpoint on those calls, nor can you change the behavior
-of the functions by linking with a different library.
-
-The @samp{-ansi} option prevents @code{alloca} and @code{ffs} from being
-builtin functions, since these functions do not have an ANSI standard
-meaning.
-
-@item -fhosted
-@cindex hosted environment
-
-Assert that compilation takes place in a hosted environment. This implies
-@samp{-fbuiltin}. A hosted environment is one in which the
-entire standard library is available, and in which @code{main} has a return
-type of @code{int}. Examples are nearly everything except a kernel.
-This is equivalent to @samp{-fno-freestanding}.
-
-@item -ffreestanding
-@cindex hosted environment
-
-Assert that compilation takes place in a freestanding environment. This
-implies @samp{-fno-builtin}. A freestanding environment
-is one in which the standard library may not exist, and program startup may
-not necessarily be at @code{main}. The most obvious example is an OS kernel.
-This is equivalent to @samp{-fno-hosted}.
-
-@item -trigraphs
-Support ANSI C trigraphs. You don't want to know about this
-brain-damage. The @samp{-ansi} option implies @samp{-trigraphs}.
-
-@cindex traditional C language
-@cindex C language, traditional
-@item -traditional
-Attempt to support some aspects of traditional C compilers.
-Specifically:
-
-@itemize @bullet
-@item
-All @code{extern} declarations take effect globally even if they
-are written inside of a function definition. This includes implicit
-declarations of functions.
-
-@item
-The newer keywords @code{typeof}, @code{inline}, @code{signed}, @code{const}
-and @code{volatile} are not recognized. (You can still use the
-alternative keywords such as @code{__typeof__}, @code{__inline__}, and
-so on.)
-
-@item
-Comparisons between pointers and integers are always allowed.
-
-@item
-Integer types @code{unsigned short} and @code{unsigned char} promote
-to @code{unsigned int}.
-
-@item
-Out-of-range floating point literals are not an error.
-
-@item
-Certain constructs which ANSI regards as a single invalid preprocessing
-number, such as @samp{0xe-0xd}, are treated as expressions instead.
-
-@item
-String ``constants'' are not necessarily constant; they are stored in
-writable space, and identical looking constants are allocated
-separately. (This is the same as the effect of
-@samp{-fwritable-strings}.)
-
-@cindex @code{longjmp} and automatic variables
-@item
-All automatic variables not declared @code{register} are preserved by
-@code{longjmp}. Ordinarily, GNU C follows ANSI C: automatic variables
-not declared @code{volatile} may be clobbered.
-
-@item
-@kindex \x
-@kindex \a
-@cindex escape sequences, traditional
-The character escape sequences @samp{\x} and @samp{\a} evaluate as the
-literal characters @samp{x} and @samp{a} respectively. Without
-@w{@samp{-traditional}}, @samp{\x} is a prefix for the hexadecimal
-representation of a character, and @samp{\a} produces a bell.
-@end itemize
-
-You may wish to use @samp{-fno-builtin} as well as @samp{-traditional}
-if your program uses names that are normally GNU C builtin functions for
-other purposes of its own.
-
-You cannot use @samp{-traditional} if you include any header files that
-rely on ANSI C features. Some vendors are starting to ship systems with
-ANSI C header files and you cannot use @samp{-traditional} on such
-systems to compile files that include any system headers.
-
-The @samp{-traditional} option also enables @samp{-traditional-cpp},
-which is described next.
-
-@item -traditional-cpp
-Attempt to support some aspects of traditional C preprocessors.
-Specifically:
-
-@itemize @bullet
-@item
-Comments convert to nothing at all, rather than to a space. This allows
-traditional token concatenation.
-
-@item
-In a preprocessing directive, the @samp{#} symbol must appear as the first
-character of a line.
-
-@item
-Macro arguments are recognized within string constants in a macro
-definition (and their values are stringified, though without additional
-quote marks, when they appear in such a context). The preprocessor
-always considers a string constant to end at a newline.
-
-@item
-@cindex detecting @w{@samp{-traditional}}
-The predefined macro @code{__STDC__} is not defined when you use
-@samp{-traditional}, but @code{__GNUC__} is (since the GNU extensions
-which @code{__GNUC__} indicates are not affected by
-@samp{-traditional}). If you need to write header files that work
-differently depending on whether @samp{-traditional} is in use, by
-testing both of these predefined macros you can distinguish four
-situations: GNU C, traditional GNU C, other ANSI C compilers, and other
-old C compilers. The predefined macro @code{__STDC_VERSION__} is also
-not defined when you use @samp{-traditional}. @xref{Standard
-Predefined,,Standard Predefined Macros,cpp.info,The C Preprocessor},
-for more discussion of these and other predefined macros.
-
-@item
-@cindex string constants vs newline
-@cindex newline vs string constants
-The preprocessor considers a string constant to end at a newline (unless
-the newline is escaped with @samp{\}). (Without @w{@samp{-traditional}},
-string constants can contain the newline character as typed.)
-@end itemize
-
-@item -fcond-mismatch
-Allow conditional expressions with mismatched types in the second and
-third arguments. The value of such an expression is void.
-
-@item -funsigned-char
-Let the type @code{char} be unsigned, like @code{unsigned char}.
-
-Each kind of machine has a default for what @code{char} should
-be. It is either like @code{unsigned char} by default or like
-@code{signed char} by default.
-
-Ideally, a portable program should always use @code{signed char} or
-@code{unsigned char} when it depends on the signedness of an object.
-But many programs have been written to use plain @code{char} and
-expect it to be signed, or expect it to be unsigned, depending on the
-machines they were written for. This option, and its inverse, let you
-make such a program work with the opposite default.
-
-The type @code{char} is always a distinct type from each of
-@code{signed char} or @code{unsigned char}, even though its behavior
-is always just like one of those two.
-
-@item -fsigned-char
-Let the type @code{char} be signed, like @code{signed char}.
-
-Note that this is equivalent to @samp{-fno-unsigned-char}, which is
-the negative form of @samp{-funsigned-char}. Likewise, the option
-@samp{-fno-signed-char} is equivalent to @samp{-funsigned-char}.
-
-You may wish to use @samp{-fno-builtin} as well as @samp{-traditional}
-if your program uses names that are normally GNU C builtin functions for
-other purposes of its own.
-
-You cannot use @samp{-traditional} if you include any header files that
-rely on ANSI C features. Some vendors are starting to ship systems with
-ANSI C header files and you cannot use @samp{-traditional} on such
-systems to compile files that include any system headers.
-
-@item -fsigned-bitfields
-@itemx -funsigned-bitfields
-@itemx -fno-signed-bitfields
-@itemx -fno-unsigned-bitfields
-These options control whether a bitfield is signed or unsigned, when the
-declaration does not use either @code{signed} or @code{unsigned}. By
-default, such a bitfield is signed, because this is consistent: the
-basic integer types such as @code{int} are signed types.
-
-However, when @samp{-traditional} is used, bitfields are all unsigned
-no matter what.
-
-@item -fwritable-strings
-Store string constants in the writable data segment and don't uniquize
-them. This is for compatibility with old programs which assume they can
-write into string constants. The option @samp{-traditional} also has
-this effect.
-
-Writing into string constants is a very bad idea; ``constants'' should
-be constant.
-
-@item -fallow-single-precision
-Do not promote single precision math operations to double precision,
-even when compiling with @samp{-traditional}.
-
-Traditional K&R C promotes all floating point operations to double
-precision, regardless of the sizes of the operands. On the
-architecture for which you are compiling, single precision may be faster
-than double precision. If you must use @samp{-traditional}, but want
-to use single precision operations when the operands are single
-precision, use this option. This option has no effect when compiling
-with ANSI or GNU C conventions (the default).
-
-@end table
-
-@node C++ Dialect Options
-@section Options Controlling C++ Dialect
-
-@cindex compiler options, C++
-@cindex C++ options, command line
-@cindex options, C++
-This section describes the command-line options that are only meaningful
-for C++ programs; but you can also use most of the GNU compiler options
-regardless of what language your program is in. For example, you
-might compile a file @code{firstClass.C} like this:
-
-@example
-g++ -g -frepo -O -c firstClass.C
-@end example
-
-@noindent
-In this example, only @samp{-frepo} is an option meant
-only for C++ programs; you can use the other options with any
-language supported by GNU CC.
-
-Here is a list of options that are @emph{only} for compiling C++ programs:
-
-@table @code
-@item -fno-access-control
-Turn off all access checking. This switch is mainly useful for working
-around bugs in the access control code.
-
-@item -fcheck-new
-Check that the pointer returned by @code{operator new} is non-null
-before attempting to modify the storage allocated. The current Working
-Paper requires that @code{operator new} never return a null pointer, so
-this check is normally unnecessary.
-
-An alternative to using this option is to specify that your
-@code{operator new} does not throw any exceptions; if you declare it
-@samp{throw()}, g++ will check the return value. See also @samp{new
-(nothrow)}.
-
-@item -fconserve-space
-Put uninitialized or runtime-initialized global variables into the
-common segment, as C does. This saves space in the executable at the
-cost of not diagnosing duplicate definitions. If you compile with this
-flag and your program mysteriously crashes after @code{main()} has
-completed, you may have an object that is being destroyed twice because
-two definitions were merged.
-
-This option is no longer useful on most targets, now that support has
-been added for putting variables into BSS without making them common.
-
-@item -fdollars-in-identifiers
-Accept @samp{$} in identifiers. You can also explicitly prohibit use of
-@samp{$} with the option @samp{-fno-dollars-in-identifiers}. (GNU C allows
-@samp{$} by default on most target systems, but there are a few exceptions.)
-Traditional C allowed the character @samp{$} to form part of
-identifiers. However, ANSI C and C++ forbid @samp{$} in identifiers.
-
-@c CYGNUS LOCAL Embedded C++
-@item -fembedded-cxx
-In compliance with the Embedded C++ specification, make the use of templates,
-exception handling, multiple inheritance, or RTTI illegal. Attempts to use
-namespaces are also not allowed. This makes the use of these keywords result
-in warnings by default: @code{template}, @code{typename}, @code{catch},
-@code{throw}, @code{try}, @code{using}, @code{namespace}, @code{dynamic_cast},
-@code{static_cast}, @code{reinterpret_cast}, @code{const_cast}, and
-@code{typeid}.
-To make the warnings for these things be given as errors, add the
-@code{-pedantic-errors} flag.
-@c END CYGNUS LOCAL Embedded C++
-
-@item -fno-elide-constructors
-The C++ standard allows an implementation to omit creating a temporary
-which is only used to initialize another object of the same type.
-Specifying this option disables that optimization, and forces g++ to
-call the copy constructor in all cases.
-
-@item -fexternal-templates
-Cause template instantiations to obey @samp{#pragma interface} and
-@samp{implementation}; template instances are emitted or not according
-to the location of the template definition. @xref{Template
-Instantiation}, for more information.
-
-This option is deprecated.
-
-@item -falt-external-templates
-Similar to -fexternal-templates, but template instances are emitted or
-not according to the place where they are first instantiated.
-@xref{Template Instantiation}, for more information.
-
-This option is deprecated.
-
-@item -ffor-scope
-@itemx -fno-for-scope
-If -ffor-scope is specified, the scope of variables declared in
-a @i{for-init-statement} is limited to the @samp{for} loop itself,
-as specified by the draft C++ standard.
-If -fno-for-scope is specified, the scope of variables declared in
-a @i{for-init-statement} extends to the end of the enclosing scope,
-as was the case in old versions of gcc, and other (traditional)
-implementations of C++.
-
-The default if neither flag is given to follow the standard,
-but to allow and give a warning for old-style code that would
-otherwise be invalid, or have different behavior.
-
-@item -fno-gnu-keywords
-Do not recognize @code{classof}, @code{headof}, @code{signature},
-@code{sigof} or @code{typeof} as a keyword, so that code can use these
-words as identifiers. You can use the keywords @code{__classof__},
-@code{__headof__}, @code{__signature__}, @code{__sigof__}, and
-@code{__typeof__} instead. @samp{-ansi} implies
-@samp{-fno-gnu-keywords}.
-
-@item -fguiding-decls
-Treat a function declaration with the same type as a potential function
-template instantiation as though it declares that instantiation, not a
-normal function. If a definition is given for the function later in the
-translation unit (or another translation unit if the target supports
-weak symbols), that definition will be used; otherwise the template will
-be instantiated. This behavior reflects the C++ language prior to
-September 1996, when guiding declarations were removed.
-
-This option implies @samp{-fname-mangling-version-0}, and will not work
-with other name mangling versions. Like all options that change the
-ABI, all C++ code, @emph{including libgcc.a} must be built with the same
-setting of this option.
-
-@item -fno-implicit-templates
-Never emit code for templates which are instantiated implicitly (i.e. by
-use); only emit code for explicit instantiations. @xref{Template
-Instantiation}, for more information.
-
-@item -fhandle-signatures
-Recognize the @code{signature} and @code{sigof} keywords for specifying
-abstract types. The default (@samp{-fno-handle-signatures}) is not to
-recognize them. @xref{C++ Signatures, Type Abstraction using
-Signatures}.
-
-@item -fhonor-std
-Treat the @code{namespace std} as a namespace, instead of ignoring
-it. For compatibility with earlier versions of g++, the compiler will,
-by default, ignore @code{namespace-declarations},
-@code{using-declarations}, @code{using-directives}, and
-@code{namespace-names}, if they involve @code{std}.
-
-@item -fhuge-objects
-Support virtual function calls for objects that exceed the size
-representable by a @samp{short int}. Users should not use this flag by
-default; if you need to use it, the compiler will tell you so.
-
-This flag is not useful when compiling with -fvtable-thunks.
-
-Like all options that change the ABI, all C++ code, @emph{including
-libgcc} must be built with the same setting of this option.
-
-@item -fno-implicit-templates
-Never emit code for non-inline templates which are instantiated
-implicitly (i.e. by use); only emit code for explicit instantiations.
-@xref{Template Instantiation}, for more information.
-
-@item -fno-implicit-inline-templates
-Don't emit code for implicit instantiations of inline templates, either.
-The default is to handle inlines differently so that compiles with and
-without optimization will need the same set of explicit instantiations.
-
-@item -finit-priority
-Support @samp{__attribute__ ((init_priority (n)))} for controlling the
-order of initialization of file-scope objects. On ELF targets, this
-requires GNU ld 2.10 or later.
-
-@item -fno-implement-inlines
-To save space, do not emit out-of-line copies of inline functions
-controlled by @samp{#pragma implementation}. This will cause linker
-errors if these functions are not inlined everywhere they are called.
-
-@item -fname-mangling-version-@var{n}
-Control the way in which names are mangled. Version 0 is compatible
-with versions of g++ before 2.8. Version 1 is the default. Version 1
-will allow correct mangling of function templates. For example,
-version 0 mangling does not mangle foo<int, double> and foo<int, char>
-given this declaration:
-
-@example
-template <class T, class U> void foo(T t);
-@end example
-
-Like all options that change the ABI, all C++ code, @emph{including
-libgcc} must be built with the same setting of this option.
-
-@item -foperator-names
-Recognize the operator name keywords @code{and}, @code{bitand},
-@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
-synonyms for the symbols they refer to. @samp{-ansi} implies
-@samp{-foperator-names}.
-
-@item -fno-optional-diags
-Disable diagnostics that the standard says a compiler does not need to
-issue. Currently, the only such diagnostic issued by g++ is the one for
-a name having multiple meanings within a class.
-
-@item -frepo
-Enable automatic template instantiation. This option also implies
-@samp{-fno-implicit-templates}. @xref{Template Instantiation}, for more
-information.
-
-@item -fstrict-prototype
-Within an @samp{extern "C"} linkage specification, treat a function
-declaration with no arguments, such as @samp{int foo ();}, as declaring
-the function to take no arguments. Normally, such a declaration means
-that the function @code{foo} can take any combination of arguments, as
-in C. @samp{-pedantic} implies @samp{-fstrict-prototype} unless
-overridden with @samp{-fno-strict-prototype}.
-
-Specifying this option will also suppress implicit declarations of
-functions.
-
-This flag no longer affects declarations with C++ linkage.
-
-@item -fsquangle
-@itemx -fno-squangle
-@samp{-fsquangle} will enable a compressed form of name mangling for
-identifiers. In particular, it helps to shorten very long names by recognizing
-types and class names which occur more than once, replacing them with special
-short ID codes. This option also requires any C++ libraries being used to
-be compiled with this option as well. The compiler has this disabled (the
-equivalent of @samp{-fno-squangle}) by default.
-
-Like all options that change the ABI, all C++ code, @emph{including
-libgcc.a} must be built with the same setting of this option.
-
-@item -ftemplate-depth-@var{n}
-Set the maximum instantiation depth for template classes to @var{n}.
-A limit on the template instantiation depth is needed to detect
-endless recursions during template class instantiation. ANSI/ISO C++
-conforming programs must not rely on a maximum depth greater than 17.
-
-@item -fthis-is-variable
-Permit assignment to @code{this}. The incorporation of user-defined
-free store management into C++ has made assignment to @samp{this} an
-anachronism. Therefore, by default it is invalid to assign to
-@code{this} within a class member function; that is, GNU C++ treats
-@samp{this} in a member function of class @code{X} as a non-lvalue of
-type @samp{X *}. However, for backwards compatibility, you can make it
-valid with @samp{-fthis-is-variable}.
-
-@item -fvtable-thunks
-Use @samp{thunks} to implement the virtual function dispatch table
-(@samp{vtable}). The traditional (cfront-style) approach to
-implementing vtables was to store a pointer to the function and two
-offsets for adjusting the @samp{this} pointer at the call site. Newer
-implementations store a single pointer to a @samp{thunk} function which
-does any necessary adjustment and then calls the target function.
-
-This option also enables a heuristic for controlling emission of
-vtables; if a class has any non-inline virtual functions, the vtable
-will be emitted in the translation unit containing the first one of
-those.
-
-Like all options that change the ABI, all C++ code, @emph{including
-libgcc.a} must be built with the same setting of this option.
-
-@item -nostdinc++
-Do not search for header files in the standard directories specific to
-C++, but do still search the other standard directories. (This option
-is used when building the C++ library.)
-@end table
-
-In addition, these optimization, warning, and code generation options
-have meanings only for C++ programs:
-
-@table @code
-@item -fno-default-inline
-Do not assume @samp{inline} for functions defined inside a class scope.
-@xref{Optimize Options,,Options That Control Optimization}. Note that these
-functions will have linkage like inline functions; they just won't be
-inlined by default.
-
-@item -Wctor-dtor-privacy (C++ only)
-Warn when a class seems unusable, because all the constructors or
-destructors in a class are private and the class has no friends or
-public static member functions.
-
-@item -Wnon-virtual-dtor (C++ only)
-Warn when a class declares a non-virtual destructor that should probably
-be virtual, because it looks like the class will be used polymorphically.
-
-@item -Wreorder (C++ only)
-@cindex reordering, warning
-@cindex warning for reordering of member initializers
-Warn when the order of member initializers given in the code does not
-match the order in which they must be executed. For instance:
-
-@smallexample
-struct A @{
- int i;
- int j;
- A(): j (0), i (1) @{ @}
-@};
-@end smallexample
-
-Here the compiler will warn that the member initializers for @samp{i}
-and @samp{j} will be rearranged to match the declaration order of the
-members.
-@end table
-
-The following @samp{-W@dots{}} options are not affected by @samp{-Wall}.
-
-@table @code
-@item -Weffc++ (C++ only)
-Warn about violations of various style guidelines from Scott Meyers'
-@cite{Effective C++} books. If you use this option, you should be aware
-that the standard library headers do not obey all of these guidelines;
-you can use @samp{grep -v} to filter out those warnings.
-
-@item -Wno-non-template-friend (C++ only)
-Disable warnings when non-templatized friend functions are declared
-within a template. With the advent of explicit template specification
-support in g++, if the name of the friend is an unqualified-id (ie,
-@samp{friend foo(int)}), the C++ language specification demands that the
-friend declare or define an ordinary, nontemplate function. (Section
-14.5.3). Before g++ implemented explicit specification, unqualified-ids
-could be interpreted as a particular specialization of a templatized
-function. Because this non-conforming behavior is no longer the default
-behavior for g++, @samp{-Wnon-template-friend} allows the compiler to
-check existing code for potential trouble spots, and is on by default.
-This new compiler behavior can also be turned off with the flag
-@samp{-fguiding-decls}, which activates the older, non-specification
-compiler code, or with @samp{-Wno-non-template-friend} which keeps the
-conformant compiler code but disables the helpful warning.
-
-@item -Wold-style-cast (C++ only)
-Warn if an old-style (C-style) cast is used within a C++ program. The
-new-style casts (@samp{static_cast}, @samp{reinterpret_cast}, and
-@samp{const_cast}) are less vulnerable to unintended effects.
-
-@item -Woverloaded-virtual (C++ only)
-@cindex overloaded virtual fn, warning
-@cindex warning for overloaded virtual fn
-Warn when a derived class function declaration may be an error in
-defining a virtual function. In a derived class, the
-definitions of virtual functions must match the type signature of a
-virtual function declared in the base class. With this option, the
-compiler warns when you define a function with the same name as a
-virtual function, but with a type signature that does not match any
-declarations from the base class.
-
-@item -Wno-pmf-conversions (C++ only)
-Disable the diagnostic for converting a bound pointer to member function
-to a plain pointer.
-
-@item -Wsign-promo (C++ only)
-Warn when overload resolution chooses a promotion from unsigned or
-enumeral type to a signed type over a conversion to an unsigned type of
-the same size. Previous versions of g++ would try to preserve
-unsignedness, but the standard mandates the current behavior.
-
-@item -Wsynth (C++ only)
-@cindex warning for synthesized methods
-@cindex synthesized methods, warning
-Warn when g++'s synthesis behavior does not match that of cfront. For
-instance:
-
-@smallexample
-struct A @{
- operator int ();
- A& operator = (int);
-@};
-
-main ()
-@{
- A a,b;
- a = b;
-@}
-@end smallexample
-
-In this example, g++ will synthesize a default @samp{A& operator =
-(const A&);}, while cfront will use the user-defined @samp{operator =}.
-@end table
-
-@node Warning Options
-@section Options to Request or Suppress Warnings
-@cindex options to control warnings
-@cindex warning messages
-@cindex messages, warning
-@cindex suppressing warnings
-
-Warnings are diagnostic messages that report constructions which
-are not inherently erroneous but which are risky or suggest there
-may have been an error.
-
-You can request many specific warnings with options beginning @samp{-W},
-for example @samp{-Wimplicit} to request warnings on implicit
-declarations. Each of these specific warning options also has a
-negative form beginning @samp{-Wno-} to turn off warnings;
-for example, @samp{-Wno-implicit}. This manual lists only one of the
-two forms, whichever is not the default.
-
-These options control the amount and kinds of warnings produced by GNU
-CC:
-
-@table @code
-@cindex syntax checking
-@item -fsyntax-only
-Check the code for syntax errors, but don't do anything beyond that.
-
-@item -pedantic
-Issue all the warnings demanded by strict ANSI C and ISO C++;
-reject all programs that use forbidden extensions.
-
-Valid ANSI C and ISO C++ programs should compile properly with or without
-this option (though a rare few will require @samp{-ansi}). However,
-without this option, certain GNU extensions and traditional C and C++
-features are supported as well. With this option, they are rejected.
-
-@samp{-pedantic} does not cause warning messages for use of the
-alternate keywords whose names begin and end with @samp{__}. Pedantic
-warnings are also disabled in the expression that follows
-@code{__extension__}. However, only system header files should use
-these escape routes; application programs should avoid them.
-@xref{Alternate Keywords}.
-
-This option is not intended to be @i{useful}; it exists only to satisfy
-pedants who would otherwise claim that GNU CC fails to support the ANSI
-standard.
-
-Some users try to use @samp{-pedantic} to check programs for strict ANSI
-C conformance. They soon find that it does not do quite what they want:
-it finds some non-ANSI practices, but not all---only those for which
-ANSI C @emph{requires} a diagnostic.
-
-A feature to report any failure to conform to ANSI C might be useful in
-some instances, but would require considerable additional work and would
-be quite different from @samp{-pedantic}. We don't have plans to
-support such a feature in the near future.
-
-@item -pedantic-errors
-Like @samp{-pedantic}, except that errors are produced rather than
-warnings.
-
-@item -w
-Inhibit all warning messages.
-
-@item -Wno-import
-Inhibit warning messages about the use of @samp{#import}.
-
-@item -Wchar-subscripts
-Warn if an array subscript has type @code{char}. This is a common cause
-of error, as programmers often forget that this type is signed on some
-machines.
-
-@item -Wcomment
-Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
-comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
-
-@item -Wformat
-Check calls to @code{printf} and @code{scanf}, etc., to make sure that
-the arguments supplied have types appropriate to the format string
-specified.
-
-@item -Wimplicit-int
-Warn when a declaration does not specify a type.
-
-@item -Wimplicit-function-declaration
-@itemx -Werror-implicit-function-declaration
-Give a warning (or error) whenever a function is used before being
-declared.
-
-@item -Wimplicit
-Same as @samp{-Wimplicit-int} and @samp{-Wimplicit-function-}@*
-@samp{declaration}.
-
-@item -Wmain
-Warn if the type of @samp{main} is suspicious. @samp{main} should be a
-function with external linkage, returning int, taking either zero
-arguments, two, or three arguments of appropriate types.
-
-@item -Wmultichar
-Warn if a multicharacter constant (@samp{'FOOF'}) is used. Usually they
-indicate a typo in the user's code, as they have implementation-defined
-values, and should not be used in portable code.
-
-@item -Wparentheses
-Warn if parentheses are omitted in certain contexts, such
-as when there is an assignment in a context where a truth value
-is expected, or when operators are nested whose precedence people
-often get confused about.
-
-Also warn about constructions where there may be confusion to which
-@code{if} statement an @code{else} branch belongs. Here is an example of
-such a case:
-
-@smallexample
-@{
- if (a)
- if (b)
- foo ();
- else
- bar ();
-@}
-@end smallexample
-
-In C, every @code{else} branch belongs to the innermost possible @code{if}
-statement, which in this example is @code{if (b)}. This is often not
-what the programmer expected, as illustrated in the above example by
-indentation the programmer chose. When there is the potential for this
-confusion, GNU C will issue a warning when this flag is specified.
-To eliminate the warning, add explicit braces around the innermost
-@code{if} statement so there is no way the @code{else} could belong to
-the enclosing @code{if}. The resulting code would look like this:
-
-@smallexample
-@{
- if (a)
- @{
- if (b)
- foo ();
- else
- bar ();
- @}
-@}
-@end smallexample
-
-@item -Wreturn-type
-Warn whenever a function is defined with a return-type that defaults
-to @code{int}. Also warn about any @code{return} statement with no
-return-value in a function whose return-type is not @code{void}.
-
-@item -Wswitch
-Warn whenever a @code{switch} statement has an index of enumeral type
-and lacks a @code{case} for one or more of the named codes of that
-enumeration. (The presence of a @code{default} label prevents this
-warning.) @code{case} labels outside the enumeration range also
-provoke warnings when this option is used.
-
-@item -Wtrigraphs
-Warn if any trigraphs are encountered (assuming they are enabled).
-
-@item -Wunused
-Warn whenever a variable is unused aside from its declaration,
-whenever a function is declared static but never defined, whenever a
-label is declared but not used, and whenever a statement computes a
-result that is explicitly not used.
-
-In order to get a warning about an unused function parameter, you must
-specify both @samp{-W} and @samp{-Wunused}.
-
-To suppress this warning for an expression, simply cast it to void. For
-unused variables, parameters and labels, use the @samp{unused} attribute
-(@pxref{Variable Attributes}).
-
-@item -Wuninitialized
-An automatic variable is used without first being initialized.
-
-These warnings are possible only in optimizing compilation,
-because they require data flow information that is computed only
-when optimizing. If you don't specify @samp{-O}, you simply won't
-get these warnings.
-
-These warnings occur only for variables that are candidates for
-register allocation. Therefore, they do not occur for a variable that
-is declared @code{volatile}, or whose address is taken, or whose size
-is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
-structures, unions or arrays, even when they are in registers.
-
-Note that there may be no warning about a variable that is used only
-to compute a value that itself is never used, because such
-computations may be deleted by data flow analysis before the warnings
-are printed.
-
-These warnings are made optional because GNU CC is not smart
-enough to see all the reasons why the code might be correct
-despite appearing to have an error. Here is one example of how
-this can happen:
-
-@smallexample
-@{
- int x;
- switch (y)
- @{
- case 1: x = 1;
- break;
- case 2: x = 4;
- break;
- case 3: x = 5;
- @}
- foo (x);
-@}
-@end smallexample
-
-@noindent
-If the value of @code{y} is always 1, 2 or 3, then @code{x} is
-always initialized, but GNU CC doesn't know this. Here is
-another common case:
-
-@smallexample
-@{
- int save_y;
- if (change_y) save_y = y, y = new_y;
- @dots{}
- if (change_y) y = save_y;
-@}
-@end smallexample
-
-@noindent
-This has no bug because @code{save_y} is used only if it is set.
-
-Some spurious warnings can be avoided if you declare all the functions
-you use that never return as @code{noreturn}. @xref{Function
-Attributes}.
-
-@item -Wunknown-pragmas
-@cindex warning for unknown pragmas
-@cindex unknown pragmas, warning
-@cindex pragmas, warning of unknown
-Warn when a #pragma directive is encountered which is not understood by
-GCC. If this command line option is used, warnings will even be issued
-for unknown pragmas in system header files. This is not the case if
-the warnings were only enabled by the @samp{-Wall} command line option.
-
-@item -Wall
-All of the above @samp{-W} options combined. This enables all the
-warnings about constructions that some users consider questionable, and
-that are easy to avoid (or modify to prevent the warning), even in
-conjunction with macros.
-@end table
-
-The following @samp{-W@dots{}} options are not implied by @samp{-Wall}.
-Some of them warn about constructions that users generally do not
-consider questionable, but which occasionally you might wish to check
-for; others warn about constructions that are necessary or hard to avoid
-in some cases, and there is no simple way to modify the code to suppress
-the warning.
-
-@table @code
-@item -W
-Print extra warning messages for these events:
-
-@itemize @bullet
-@cindex @code{longjmp} warnings
-@item
-A nonvolatile automatic variable might be changed by a call to
-@code{longjmp}. These warnings as well are possible only in
-optimizing compilation.
-
-The compiler sees only the calls to @code{setjmp}. It cannot know
-where @code{longjmp} will be called; in fact, a signal handler could
-call it at any point in the code. As a result, you may get a warning
-even when there is in fact no problem because @code{longjmp} cannot
-in fact be called at the place which would cause a problem.
-
-@item
-A function can return either with or without a value. (Falling
-off the end of the function body is considered returning without
-a value.) For example, this function would evoke such a
-warning:
-
-@smallexample
-@group
-foo (a)
-@{
- if (a > 0)
- return a;
-@}
-@end group
-@end smallexample
-
-@item
-An expression-statement or the left-hand side of a comma expression
-contains no side effects.
-To suppress the warning, cast the unused expression to void.
-For example, an expression such as @samp{x[i,j]} will cause a warning,
-but @samp{x[(void)i,j]} will not.
-
-@item
-An unsigned value is compared against zero with @samp{<} or @samp{<=}.
-
-@item
-A comparison like @samp{x<=y<=z} appears; this is equivalent to
-@samp{(x<=y ? 1 : 0) <= z}, which is a different interpretation from
-that of ordinary mathematical notation.
-
-@item
-Storage-class specifiers like @code{static} are not the first things in
-a declaration. According to the C Standard, this usage is obsolescent.
-
-@item
-If @samp{-Wall} or @samp{-Wunused} is also specified, warn about unused
-arguments.
-
-@item
-A comparison between signed and unsigned values could produce an
-incorrect result when the signed value is converted to unsigned.
-(But don't warn if @samp{-Wno-sign-compare} is also specified.)
-
-@item
-An aggregate has a partly bracketed initializer.
-For example, the following code would evoke such a warning,
-because braces are missing around the initializer for @code{x.h}:
-
-@smallexample
-struct s @{ int f, g; @};
-struct t @{ struct s h; int i; @};
-struct t x = @{ 1, 2, 3 @};
-@end smallexample
-
-@item
-An aggregate has an initializer which does not initialize all members.
-For example, the following code would cause such a warning, because
-@code{x.h} would be implicitly initialized to zero:
-
-@smallexample
-struct s @{ int f, g, h; @};
-struct s x = @{ 3, 4 @};
-@end smallexample
-@end itemize
-
-@item -Wtraditional
-Warn about certain constructs that behave differently in traditional and
-ANSI C.
-
-@itemize @bullet
-@item
-Macro arguments occurring within string constants in the macro body.
-These would substitute the argument in traditional C, but are part of
-the constant in ANSI C.
-
-@item
-A function declared external in one block and then used after the end of
-the block.
-
-@item
-A @code{switch} statement has an operand of type @code{long}.
-@end itemize
-
-@item -Wundef
-Warn if an undefined identifier is evaluated in an @samp{#if} directive.
-
-@item -Wshadow
-Warn whenever a local variable shadows another local variable.
-
-@item -Wid-clash-@var{len}
-Warn whenever two distinct identifiers match in the first @var{len}
-characters. This may helpyou prepare a program that will compile
-with certain obsolete, brain-damaged compilers.
-
-@item -Wlarger-than-@var{len}
-Warn whenever an object of larger than @var{len} bytes is defined.
-
-@item -Wpointer-arith
-Warn about anything that depends on the ``size of'' a function type or
-of @code{void}. GNU C assigns these types a size of 1, for
-convenience in calculations with @code{void *} pointers and pointers
-to functions.
-
-@item -Wbad-function-cast
-Warn whenever a function call is cast to a non-matching type.
-For example, warn if @code{int malloc()} is cast to @code{anything *}.
-
-@item -Wcast-qual
-Warn whenever a pointer is cast so as to remove a type qualifier from
-the target type. For example, warn if a @code{const char *} is cast
-to an ordinary @code{char *}.
-
-@item -Wcast-align
-Warn whenever a pointer is cast such that the required alignment of the
-target is increased. For example, warn if a @code{char *} is cast to
-an @code{int *} on machines where integers can only be accessed at
-two- or four-byte boundaries.
-
-@item -Wwrite-strings
-Give string constants the type @code{const char[@var{length}]} so that
-copying the address of one into a non-@code{const} @code{char *}
-pointer will get a warning. These warnings will help you find at
-compile time code that can try to write into a string constant, but
-only if you have been very careful about using @code{const} in
-declarations and prototypes. Otherwise, it will just be a nuisance;
-this is why we did not make @samp{-Wall} request these warnings.
-
-@item -Wconversion
-Warn if a prototype causes a type conversion that is different from what
-would happen to the same argument in the absence of a prototype. This
-includes conversions of fixed point to floating and vice versa, and
-conversions changing the width or signedness of a fixed point argument
-except when the same as the default promotion.
-
-Also, warn if a negative integer constant expression is implicitly
-converted to an unsigned type. For example, warn about the assignment
-@code{x = -1} if @code{x} is unsigned. But do not warn about explicit
-casts like @code{(unsigned) -1}.
-
-@item -Wsign-compare
-@cindex warning for comparison of signed and unsigned values
-@cindex comparison of signed and unsigned values, warning
-@cindex signed and unsigned values, comparison warning
-Warn when a comparison between signed and unsigned values could produce
-an incorrect result when the signed value is converted to unsigned.
-This warning is also enabled by @samp{-W}; to get the other warnings
-of @samp{-W} without this warning, use @samp{-W -Wno-sign-compare}.
-
-@item -Waggregate-return
-Warn if any functions that return structures or unions are defined or
-called. (In languages where you can return an array, this also elicits
-a warning.)
-
-@item -Wstrict-prototypes
-Warn if a function is declared or defined without specifying the
-argument types. (An old-style function definition is permitted without
-a warning if preceded by a declaration which specifies the argument
-types.)
-
-@item -Wmissing-prototypes
-Warn if a global function is defined without a previous prototype
-declaration. This warning is issued even if the definition itself
-provides a prototype. The aim is to detect global functions that fail
-to be declared in header files.
-
-@item -Wmissing-declarations
-Warn if a global function is defined without a previous declaration.
-Do so even if the definition itself provides a prototype.
-Use this option to detect global functions that are not declared in
-header files.
-
-@item -Wmissing-noreturn
-Warn about functions which might be candidates for attribute @code{noreturn}.
-Note these are only possible candidates, not absolute ones. Care should
-be taken to manually verify functions actually do not ever return before
-adding the @code{noreturn} attribute, otherwise subtle code generation
-bugs could be introduced.
-
-@item -Wredundant-decls
-Warn if anything is declared more than once in the same scope, even in
-cases where multiple declaration is valid and changes nothing.
-
-@item -Wnested-externs
-Warn if an @code{extern} declaration is encountered within an function.
-
-@item -Winline
-Warn if a function can not be inlined, and either it was declared as inline,
-or else the @samp{-finline-functions} option was given.
-
-@item -Wlong-long
-Warn if @samp{long long} type is used. This is default. To inhibit
-the warning messages, use @samp{-Wno-long-long}. Flags
-@samp{-Wlong-long} and @samp{-Wno-long-long} are taken into account
-only when @samp{-pedantic} flag is used.
-
-@item -Werror
-Make all warnings into errors.
-@end table
-
-@node Debugging Options
-@section Options for Debugging Your Program or GNU CC
-@cindex options, debugging
-@cindex debugging information options
-
-GNU CC has various special options that are used for debugging
-either your program or GCC:
-
-@table @code
-@item -g
-Produce debugging information in the operating system's native format
-(stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging
-information.
-
-On most systems that use stabs format, @samp{-g} enables use of extra
-debugging information that only GDB can use; this extra information
-makes debugging work better in GDB but will probably make other debuggers
-crash or
-refuse to read the program. If you want to control for certain whether
-to generate the extra information, use @samp{-gstabs+}, @samp{-gstabs},
-@samp{-gxcoff+}, @samp{-gxcoff}, @samp{-gdwarf-1+}, or @samp{-gdwarf-1}
-(see below).
-
-Unlike most other C compilers, GNU CC allows you to use @samp{-g} with
-@samp{-O}. The shortcuts taken by optimized code may occasionally
-produce surprising results: some variables you declared may not exist
-at all; flow of control may briefly move where you did not expect it;
-some statements may not be executed because they compute constant
-results or their values were already at hand; some statements may
-execute in different places because they were moved out of loops.
-
-Nevertheless it proves possible to debug optimized output. This makes
-it reasonable to use the optimizer for programs that might have bugs.
-
-The following options are useful when GNU CC is generated with the
-capability for more than one debugging format.
-
-@item -ggdb
-Produce debugging information for use by GDB. This means to use the
-most expressive format available (DWARF 2, stabs, or the native format
-if neither of those are supported), including GDB extensions if at all
-possible.
-
-@item -gstabs
-Produce debugging information in stabs format (if that is supported),
-without GDB extensions. This is the format used by DBX on most BSD
-systems. On MIPS, Alpha and System V Release 4 systems this option
-produces stabs debugging output which is not understood by DBX or SDB.
-On System V Release 4 systems this option requires the GNU assembler.
-
-@item -gstabs+
-Produce debugging information in stabs format (if that is supported),
-using GNU extensions understood only by the GNU debugger (GDB). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-
-@item -gcoff
-Produce debugging information in COFF format (if that is supported).
-This is the format used by SDB on most System V systems prior to
-System V Release 4.
-
-@item -gxcoff
-Produce debugging information in XCOFF format (if that is supported).
-This is the format used by the DBX debugger on IBM RS/6000 systems.
-
-@item -gxcoff+
-Produce debugging information in XCOFF format (if that is supported),
-using GNU extensions understood only by the GNU debugger (GDB). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program, and may cause assemblers other than the GNU
-assembler (GAS) to fail with an error.
-
-@item -gdwarf
-Produce debugging information in DWARF version 1 format (if that is
-supported). This is the format used by SDB on most System V Release 4
-systems.
-
-@item -gdwarf+
-Produce debugging information in DWARF version 1 format (if that is
-supported), using GNU extensions understood only by the GNU debugger
-(GDB). The use of these extensions is likely to make other debuggers
-crash or refuse to read the program.
-
-@item -gdwarf-2
-Produce debugging information in DWARF version 2 format (if that is
-supported). This is the format used by DBX on IRIX 6.
-
-@item -g@var{level}
-@itemx -ggdb@var{level}
-@itemx -gstabs@var{level}
-@itemx -gcoff@var{level}
-@itemx -gxcoff@var{level}
-@itemx -gdwarf@var{level}
-@itemx -gdwarf-2@var{level}
-Request debugging information and also use @var{level} to specify how
-much information. The default level is 2.
-
-Level 1 produces minimal information, enough for making backtraces in
-parts of the program that you don't plan to debug. This includes
-descriptions of functions and external variables, but no information
-about local variables and no line numbers.
-
-Level 3 includes extra information, such as all the macro definitions
-present in the program. Some debuggers support macro expansion when
-you use @samp{-g3}.
-
-@cindex @code{prof}
-@item -p
-Generate extra code to write profile information suitable for the
-analysis program @code{prof}. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-
-@cindex @code{gprof}
-@item -pg
-Generate extra code to write profile information suitable for the
-analysis program @code{gprof}. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-
-@cindex @code{tcov}
-@item -a
-Generate extra code to write profile information for basic blocks, which will
-record the number of times each basic block is executed, the basic block start
-address, and the function name containing the basic block. If @samp{-g} is
-used, the line number and filename of the start of the basic block will also be
-recorded. If not overridden by the machine description, the default action is
-to append to the text file @file{bb.out}.
-
-This data could be analyzed by a program like @code{tcov}. Note,
-however, that the format of the data is not what @code{tcov} expects.
-Eventually GNU @code{gprof} should be extended to process this data.
-
-@item -Q
-Makes the compiler print out each function name as it is compiled, and
-print some statistics about each pass when it finishes.
-
-@item -ax
-Generate extra code to profile basic blocks. Your executable will
-produce output that is a superset of that produced when @samp{-a} is
-used. Additional output is the source and target address of the basic
-blocks where a jump takes place, the number of times a jump is executed,
-and (optionally) the complete sequence of basic blocks being executed.
-The output is appended to file @file{bb.out}.
-
-You can examine different profiling aspects without recompilation. Your
-executable will read a list of function names from file @file{bb.in}.
-Profiling starts when a function on the list is entered and stops when
-that invocation is exited. To exclude a function from profiling, prefix
-its name with `-'. If a function name is not unique, you can
-disambiguate it by writing it in the form
-@samp{/path/filename.d:functionname}. Your executable will write the
-available paths and filenames in file @file{bb.out}.
-
-Several function names have a special meaning:
-@table @code
-@item __bb_jumps__
-Write source, target and frequency of jumps to file @file{bb.out}.
-@item __bb_hidecall__
-Exclude function calls from frequency count.
-@item __bb_showret__
-Include function returns in frequency count.
-@item __bb_trace__
-Write the sequence of basic blocks executed to file @file{bbtrace.gz}.
-The file will be compressed using the program @samp{gzip}, which must
-exist in your @code{PATH}. On systems without the @samp{popen}
-function, the file will be named @file{bbtrace} and will not be
-compressed. @strong{Profiling for even a few seconds on these systems
-will produce a very large file.} Note: @code{__bb_hidecall__} and
-@code{__bb_showret__} will not affect the sequence written to
-@file{bbtrace.gz}.
-@end table
-
-Here's a short example using different profiling parameters
-in file @file{bb.in}. Assume function @code{foo} consists of basic blocks
-1 and 2 and is called twice from block 3 of function @code{main}. After
-the calls, block 3 transfers control to block 4 of @code{main}.
-
-With @code{__bb_trace__} and @code{main} contained in file @file{bb.in},
-the following sequence of blocks is written to file @file{bbtrace.gz}:
-0 3 1 2 1 2 4. The return from block 2 to block 3 is not shown, because
-the return is to a point inside the block and not to the top. The
-block address 0 always indicates, that control is transferred
-to the trace from somewhere outside the observed functions. With
-@samp{-foo} added to @file{bb.in}, the blocks of function
-@code{foo} are removed from the trace, so only 0 3 4 remains.
-
-With @code{__bb_jumps__} and @code{main} contained in file @file{bb.in},
-jump frequencies will be written to file @file{bb.out}. The
-frequencies are obtained by constructing a trace of blocks
-and incrementing a counter for every neighbouring pair of blocks
-in the trace. The trace 0 3 1 2 1 2 4 displays the following
-frequencies:
-
-@example
-Jump from block 0x0 to block 0x3 executed 1 time(s)
-Jump from block 0x3 to block 0x1 executed 1 time(s)
-Jump from block 0x1 to block 0x2 executed 2 time(s)
-Jump from block 0x2 to block 0x1 executed 1 time(s)
-Jump from block 0x2 to block 0x4 executed 1 time(s)
-@end example
-
-With @code{__bb_hidecall__}, control transfer due to call instructions
-is removed from the trace, that is the trace is cut into three parts: 0
-3 4, 0 1 2 and 0 1 2. With @code{__bb_showret__}, control transfer due
-to return instructions is added to the trace. The trace becomes: 0 3 1
-2 3 1 2 3 4. Note, that this trace is not the same, as the sequence
-written to @file{bbtrace.gz}. It is solely used for counting jump
-frequencies.
-
-@item -fprofile-arcs
-Instrument @dfn{arcs} during compilation. For each function of your
-program, GNU CC creates a program flow graph, then finds a spanning tree
-for the graph. Only arcs that are not on the spanning tree have to be
-instrumented: the compiler adds code to count the number of times that these
-arcs are executed. When an arc is the only exit or only entrance to a
-block, the instrumentation code can be added to the block; otherwise, a
-new basic block must be created to hold the instrumentation code.
-
-Since not every arc in the program must be instrumented, programs
-compiled with this option run faster than programs compiled with
-@samp{-a}, which adds instrumentation code to every basic block in the
-program. The tradeoff: since @code{gcov} does not have
-execution counts for all branches, it must start with the execution
-counts for the instrumented branches, and then iterate over the program
-flow graph until the entire graph has been solved. Hence, @code{gcov}
-runs a little more slowly than a program which uses information from
-@samp{-a}.
-
-@samp{-fprofile-arcs} also makes it possible to estimate branch
-probabilities, and to calculate basic block execution counts. In
-general, basic block execution counts do not give enough information to
-estimate all branch probabilities. When the compiled program exits, it
-saves the arc execution counts to a file called
-@file{@var{sourcename}.da}. Use the compiler option
-@samp{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
-Control Optimization}) when recompiling, to optimize using estimated
-branch probabilities.
-
-@need 2000
-@item -ftest-coverage
-Create data files for the @code{gcov} code-coverage utility
-(@pxref{Gcov,, @code{gcov}: a GNU CC Test Coverage Program}).
-The data file names begin with the name of your source file:
-
-@table @code
-@item @var{sourcename}.bb
-A mapping from basic blocks to line numbers, which @code{gcov} uses to
-associate basic block execution counts with line numbers.
-
-@item @var{sourcename}.bbg
-A list of all arcs in the program flow graph. This allows @code{gcov}
-to reconstruct the program flow graph, so that it can compute all basic
-block and arc execution counts from the information in the
-@code{@var{sourcename}.da} file (this last file is the output from
-@samp{-fprofile-arcs}).
-@end table
-
-@item -Q
-Makes the compiler print out each function name as it is compiled, and
-print some statistics about each pass when it finishes.
-
-@item -d@var{letters}
-Says to make debugging dumps during compilation at times specified by
-@var{letters}. This is used for debugging the compiler. The file names
-for most of the dumps are made by appending a word to the source file
-name (e.g. @file{foo.c.rtl} or @file{foo.c.jump}). Here are the
-possible letters for use in @var{letters}, and their meanings:
-
-@table @samp
-@item b
-Dump after computing branch probabilities, to @file{@var{file}.bp}.
-@item c
-Dump after instruction combination, to the file @file{@var{file}.combine}.
-@item d
-Dump after delayed branch scheduling, to @file{@var{file}.dbr}.
-@item D
-Dump all macro definitions, at the end of preprocessing, in addition to
-normal output.
-@item y
-Dump debugging information during parsing, to standard error.
-@item r
-Dump after RTL generation, to @file{@var{file}.rtl}.
-@item x
-Just generate RTL for a function instead of compiling it. Usually used
-with @samp{r}.
-@item j
-Dump after first jump optimization, to @file{@var{file}.jump}.
-@item s
-Dump after CSE (including the jump optimization that sometimes
-follows CSE), to @file{@var{file}.cse}.
-@item F
-Dump after purging ADDRESSOF, to @file{@var{file}.addressof}.
-@item f
-Dump after flow analysis, to @file{@var{file}.flow}.
-@item g
-Dump after global register allocation, to @file{@var{file}.greg}.
-@item G
-Dump after GCSE, to @file{@var{file}.gcse}.
-@item j
-Dump after first jump optimization, to @file{@var{file}.jump}.
-@item J
-Dump after last jump optimization, to @file{@var{file}.jump2}.
-@item k
-Dump after conversion from registers to stack, to @file{@var{file}.stack}.
-@item l
-Dump after local register allocation, to @file{@var{file}.lreg}.
-@item L
-Dump after loop optimization, to @file{@var{file}.loop}.
-@item M
-Dump after performing the machine dependent reorganisation pass, to
-@file{@var{file}.mach}.
-@item N
-Dump after the register move pass, to @file{@var{file}.regmove}.
-@item r
-Dump after RTL generation, to @file{@var{file}.rtl}.
-@item R
-Dump after the second instruction scheduling pass, to @file{@var{file}.sched2}.
-@item s
-Dump after CSE (including the jump optimization that sometimes follows
-CSE), to @file{@var{file}.cse}.
-@item S
-Dump after the first instruction scheduling pass, to @file{@var{file}.sched}.
-@item t
-Dump after the second CSE pass (including the jump optimization that
-sometimes follows CSE), to @file{@var{file}.cse2}.
-@item x
-Just generate RTL for a function instead of compiling it. Usually used
-with @samp{r}.
-@item a
-Produce all the dumps listed above.
-@item m
-Print statistics on memory usage, at the end of the run, to
-standard error.
-@item p
-Annotate the assembler output with a comment indicating which
-pattern and alternative was used.
-@item y
-Dump debugging information during parsing, to standard error.
-@item A
-Annotate the assembler output with miscellaneous debugging information.
-@end table
-
-@item -fdump-unnumbered
-When doing debugging dumps (see -d option above), suppress instruction
-numbers and line number note output. This makes it more feasible to
-use diff on debugging dumps for compiler invokations with different
-options, in particular with and without -g.
-
-@item -fpretend-float
-When running a cross-compiler, pretend that the target machine uses the
-same floating point format as the host machine. This causes incorrect
-output of the actual floating constants, but the actual instruction
-sequence will probably be the same as GNU CC would make when running on
-the target machine.
-
-@item -save-temps
-Store the usual ``temporary'' intermediate files permanently; place them
-in the current directory and name them based on the source file. Thus,
-compiling @file{foo.c} with @samp{-c -save-temps} would produce files
-@file{foo.i} and @file{foo.s}, as well as @file{foo.o}.
-
-@item -print-file-name=@var{library}
-Print the full absolute name of the library file @var{library} that
-would be used when linking---and don't do anything else. With this
-option, GNU CC does not compile or link anything; it just prints the
-file name.
-
-@item -print-prog-name=@var{program}
-Like @samp{-print-file-name}, but searches for a program such as @samp{cpp}.
-
-@item -print-libgcc-file-name
-Same as @samp{-print-file-name=libgcc.a}.
-
-This is useful when you use @samp{-nostdlib} or @samp{-nodefaultlibs}
-but you do want to link with @file{libgcc.a}. You can do
-
-@example
-gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
-@end example
-
-@item -print-search-dirs
-Print the name of the configured installation directory and a list of
-program and library directories gcc will search---and don't do anything else.
-
-This is useful when gcc prints the error message
-@samp{installation problem, cannot exec cpp: No such file or directory}.
-To resolve this you either need to put @file{cpp} and the other compiler
-components where gcc expects to find them, or you can set the environment
-variable @code{GCC_EXEC_PREFIX} to the directory where you installed them.
-Don't forget the trailing '/'.
-@xref{Environment Variables}.
-@end table
-
-@node Optimize Options
-@section Options That Control Optimization
-@cindex optimize options
-@cindex options, optimization
-
-These options control various sorts of optimizations:
-
-@table @code
-@item -O
-@itemx -O1
-Optimize. Optimizing compilation takes somewhat more time, and a lot
-more memory for a large function.
-
-Without @samp{-O}, the compiler's goal is to reduce the cost of
-compilation and to make debugging produce the expected results.
-Statements are independent: if you stop the program with a breakpoint
-between statements, you can then assign a new value to any variable or
-change the program counter to any other statement in the function and
-get exactly the results you would expect from the source code.
-
-Without @samp{-O}, the compiler only allocates variables declared
-@code{register} in registers. The resulting compiled code is a little
-worse than produced by PCC without @samp{-O}.
-
-With @samp{-O}, the compiler tries to reduce code size and execution
-time.
-
-When you specify @samp{-O}, the compiler turns on @samp{-fthread-jumps}
-and @samp{-fdefer-pop} on all machines. The compiler turns on
-@samp{-fdelayed-branch} on machines that have delay slots, and
-@samp{-fomit-frame-pointer} on machines that can support debugging even
-without a frame pointer. On some machines the compiler also turns
-on other flags.@refill
-
-@item -O2
-Optimize even more. GNU CC performs nearly all supported optimizations
-that do not involve a space-speed tradeoff. The compiler does not
-perform loop unrolling or function inlining when you specify @samp{-O2}.
-As compared to @samp{-O}, this option increases both compilation time
-and the performance of the generated code.
-
-@samp{-O2} turns on all optional optimizations except for loop unrolling
-and function inlining. It also turns on the @samp{-fforce-mem} option
-on all machines and frame pointer elimination on machines where doing so
-does not interfere with debugging.
-
-@item -O3
-Optimize yet more. @samp{-O3} turns on all optimizations specified by
-@samp{-O2} and also turns on the @samp{inline-functions} option.
-
-@item -O0
-Do not optimize.
-
-@item -Os
-Optimize for size. @samp{-Os} enables all @samp{-O2} optimizations that
-do not typically increase code size. It also performs further
-optimizations designed to reduce code size.
-
-If you use multiple @samp{-O} options, with or without level numbers,
-the last such option is the one that is effective.
-@end table
-
-Options of the form @samp{-f@var{flag}} specify machine-independent
-flags. Most flags have both positive and negative forms; the negative
-form of @samp{-ffoo} would be @samp{-fno-foo}. In the table below,
-only one of the forms is listed---the one which is not the default.
-You can figure out the other form by either removing @samp{no-} or
-adding it.
-
-@table @code
-@item -ffloat-store
-Do not store floating point variables in registers, and inhibit other
-options that might change whether a floating point value is taken from a
-register or memory.
-
-@cindex floating point precision
-This option prevents undesirable excess precision on machines such as
-the 68000 where the floating registers (of the 68881) keep more
-precision than a @code{double} is supposed to have. Similarly for the
-x86 architecture. For most programs, the excess precision does only
-good, but a few programs rely on the precise definition of IEEE floating
-point. Use @samp{-ffloat-store} for such programs, after modifying
-them to store all pertinent intermediate computations into variables.
-
-@item -fno-default-inline
-Do not make member functions inline by default merely because they are
-defined inside the class scope (C++ only). Otherwise, when you specify
-@w{@samp{-O}}, member functions defined inside class scope are compiled
-inline by default; i.e., you don't need to add @samp{inline} in front of
-the member function name.
-
-@item -fno-defer-pop
-Always pop the arguments to each function call as soon as that function
-returns. For machines which must pop arguments after a function call,
-the compiler normally lets arguments accumulate on the stack for several
-function calls and pops them all at once.
-
-@item -fforce-mem
-Force memory operands to be copied into registers before doing
-arithmetic on them. This produces better code by making all memory
-references potential common subexpressions. When they are not common
-subexpressions, instruction combination should eliminate the separate
-register-load. The @samp{-O2} option turns on this option.
-
-@item -fforce-addr
-Force memory address constants to be copied into registers before
-doing arithmetic on them. This may produce better code just as
-@samp{-fforce-mem} may.
-
-@item -fomit-frame-pointer
-Don't keep the frame pointer in a register for functions that
-don't need one. This avoids the instructions to save, set up and
-restore frame pointers; it also makes an extra register available
-in many functions. @strong{It also makes debugging impossible on
-some machines.}
-
-@ifset INTERNALS
-On some machines, such as the Vax, this flag has no effect, because
-the standard calling sequence automatically handles the frame pointer
-and nothing is saved by pretending it doesn't exist. The
-machine-description macro @code{FRAME_POINTER_REQUIRED} controls
-whether a target machine supports this flag. @xref{Registers}.@refill
-@end ifset
-@ifclear INTERNALS
-On some machines, such as the Vax, this flag has no effect, because
-the standard calling sequence automatically handles the frame pointer
-and nothing is saved by pretending it doesn't exist. The
-machine-description macro @code{FRAME_POINTER_REQUIRED} controls
-whether a target machine supports this flag. @xref{Registers,,Register
-Usage, gcc.info, Using and Porting GCC}.@refill
-@end ifclear
-
-@item -fno-inline
-Don't pay attention to the @code{inline} keyword. Normally this option
-is used to keep the compiler from expanding any functions inline.
-Note that if you are not optimizing, no functions can be expanded inline.
-
-@item -finline-functions
-Integrate all simple functions into their callers. The compiler
-heuristically decides which functions are simple enough to be worth
-integrating in this way.
-
-If all calls to a given function are integrated, and the function is
-declared @code{static}, then the function is normally not output as
-assembler code in its own right.
-
-@item -fkeep-inline-functions
-Even if all calls to a given function are integrated, and the function
-is declared @code{static}, nevertheless output a separate run-time
-callable version of the function. This switch does not affect
-@code{extern inline} functions.
-
-@item -fkeep-static-consts
-Emit variables declared @code{static const} when optimization isn't turned
-on, even if the variables aren't referenced.
-
-GNU CC enables this option by default. If you want to force the compiler to
-check if the variable was referenced, regardless of whether or not
-optimization is turned on, use the @samp{-fno-keep-static-consts} option.
-
-@item -fno-function-cse
-Do not put function addresses in registers; make each instruction that
-calls a constant function contain the function's address explicitly.
-
-This option results in less efficient code, but some strange hacks
-that alter the assembler output may be confused by the optimizations
-performed when this option is not used.
-
-@item -ffast-math
-This option allows GCC to violate some ANSI or IEEE rules and/or
-specifications in the interest of optimizing code for speed. For
-example, it allows the compiler to assume arguments to the @code{sqrt}
-function are non-negative numbers and that no floating-point values
-are NaNs.
-
-This option should never be turned on by any @samp{-O} option since
-it can result in incorrect output for programs which depend on
-an exact implementation of IEEE or ANSI rules/specifications for
-math functions.
-@end table
-
-@c following causes underfulls.. they don't look great, but we deal.
-@c --mew 26jan93
-The following options control specific optimizations. The @samp{-O2}
-option turns on all of these optimizations except @samp{-funroll-loops}
-and @samp{-funroll-all-loops}. On most machines, the @samp{-O} option
-turns on the @samp{-fthread-jumps} and @samp{-fdelayed-branch} options,
-but specific machines may handle it differently.
-
-You can use the following flags in the rare cases when ``fine-tuning''
-of optimizations to be performed is desired.
-
-@table @code
-@item -fstrength-reduce
-Perform the optimizations of loop strength reduction and
-elimination of iteration variables.
-
-@item -fthread-jumps
-Perform optimizations where we check to see if a jump branches to a
-location where another comparison subsumed by the first is found. If
-so, the first branch is redirected to either the destination of the
-second branch or a point immediately following it, depending on whether
-the condition is known to be true or false.
-
-@item -fcse-follow-jumps
-In common subexpression elimination, scan through jump instructions
-when the target of the jump is not reached by any other path. For
-example, when CSE encounters an @code{if} statement with an
-@code{else} clause, CSE will follow the jump when the condition
-tested is false.
-
-@item -fcse-skip-blocks
-This is similar to @samp{-fcse-follow-jumps}, but causes CSE to
-follow jumps which conditionally skip over blocks. When CSE
-encounters a simple @code{if} statement with no else clause,
-@samp{-fcse-skip-blocks} causes CSE to follow the jump around the
-body of the @code{if}.
-
-@item -frerun-cse-after-loop
-Re-run common subexpression elimination after loop optimizations has been
-performed.
-
-@item -frerun-loop-opt
-Run the loop optimizer twice.
-
-@item -fgcse
-Perform a global common subexpression elimination pass.
-This pass also performs global constant and copy propagation.
-
-@c CYGNUS LOCAL LRS
-@item -flive-range
-Perform live range splitting of variables at loop boundaries. This option
-is enabled by default at @samp{-O2} optimization and higher for targets which
-use stabs debug symbols.
-@c END CYGNUS LOCAL
-
-@item -fexpensive-optimizations
-Perform a number of minor optimizations that are relatively expensive.
-
-@item -foptimize-register-moves
-@item -fregmove
-Attempt to reassign register numbers in move instructions and as
-operands of other simple instructions in order to maximize the amount of
-register tying. This is especially helpful on machines with two-operand
-instructions. GNU CC enables this optimization by default with @samp{-O2}
-or higher.
-
-Note @code{-fregmove} and @code{-foptimize-register-moves} are the same
-optimization.
-
-@item -fdelayed-branch
-If supported for the target machine, attempt to reorder instructions
-to exploit instruction slots available after delayed branch
-instructions.
-
-@item -fschedule-insns
-If supported for the target machine, attempt to reorder instructions to
-eliminate execution stalls due to required data being unavailable. This
-helps machines that have slow floating point or memory load instructions
-by allowing other instructions to be issued until the result of the load
-or floating point instruction is required.
-
-@item -fschedule-insns2
-Similar to @samp{-fschedule-insns}, but requests an additional pass of
-instruction scheduling after register allocation has been done. This is
-especially useful on machines with a relatively small number of
-registers and where memory load instructions take more than one cycle.
-
-@item -ffunction-sections
-@item -fdata-sections
-Place each function or data item into its own section in the output
-file if the target supports arbitrary sections. The name of the
-function or the name of the data item determines the section's name
-in the output file.
-
-Use these options on systems where the linker can perform optimizations
-to improve locality of reference in the instruction space. HPPA
-processors running HP-UX and Sparc processors running Solaris 2 have
-linkers with such optimizations. Other systems using the ELF object format
-as well as AIX may have these optimizations in the future.
-
-Only use these options when there are significant benefits from doing
-so. When you specify these options, the assembler and linker will
-create larger object and executable files and will also be slower.
-You will not be able to use @code{gprof} on all systems if you
-specify this option and you may have problems with debugging if
-you specify both this option and @samp{-g}.
-
-@item -fcaller-saves
-Enable values to be allocated in registers that will be clobbered by
-function calls, by emitting extra instructions to save and restore the
-registers around such calls. Such allocation is done only when it
-seems to result in better code than would otherwise be produced.
-
-This option is always enabled by default on certain machines, usually
-those which have no call-preserved registers to use instead.
-
-For all machines, optimization level 2 and higher enables this flag by
-default.
-
-@item -funroll-loops
-Perform the optimization of loop unrolling. This is only done for loops
-whose number of iterations can be determined at compile time or run time.
-@samp{-funroll-loop} implies both @samp{-fstrength-reduce} and
-@samp{-frerun-cse-after-loop}.
-
-@item -funroll-all-loops
-Perform the optimization of loop unrolling. This is done for all loops
-and usually makes programs run more slowly. @samp{-funroll-all-loops}
-implies @samp{-fstrength-reduce} as well as @samp{-frerun-cse-after-loop}.
-
-@item -fmove-all-movables
-Forces all invariant computations in loops to be moved
-outside the loop.
-
-@item -freduce-all-givs
-Forces all general-induction variables in loops to be
-strength-reduced.
-
-@emph{Note:} When compiling programs written in Fortran,
-@samp{-fmove-all-moveables} and @samp{-freduce-all-givs} are enabled
-by default when you use the optimizer.
-
-These options may generate better or worse code; results are highly
-dependent on the structure of loops within the source code.
-
-These two options are intended to be removed someday, once
-they have helped determine the efficacy of various
-approaches to improving loop optimizations.
-
-Please let us (@code{egcs@@cygnus.com} and @code{fortran@@gnu.org})
-know how use of these options affects
-the performance of your production code.
-We're very interested in code that runs @emph{slower}
-when these options are @emph{enabled}.
-
-@item -fno-peephole
-Disable any machine-specific peephole optimizations.
-
-@item -fbranch-probabilities
-After running a program compiled with @samp{-fprofile-arcs}
-(@pxref{Debugging Options,, Options for Debugging Your Program or
-@code{gcc}}), you can compile it a second time using
-@samp{-fbranch-probabilities}, to improve optimizations based on
-guessing the path a branch might take.
-
-@ifset INTERNALS
-With @samp{-fbranch-probabilities}, GCC puts a @samp{REG_EXEC_COUNT}
-note on the first instruction of each basic block, and a
-@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
-These can be used to improve optimization. Currently, they are only
-used in one place: in @file{reorg.c}, instead of guessing which path a
-branch is mostly to take, the @samp{REG_BR_PROB} values are used to
-exactly determine which path is taken more often.
-@end ifset
-
-@item -fstrict-aliasing
-Allows the compiler to assume the strictest aliasing rules applicable to
-the language being compiled. For C (and C++), this activates
-optimizations based on the type of expressions. In particular, an
-object of one type is assumed never to reside at the same address as an
-object of a different type, unless the types are almost the same. For
-example, an @code{unsigned int} can alias an @code{int}, but not a
-@code{void*} or a @code{double}. A character type may alias any other
-type.
-
-Pay special attention to code like this:
-@example
-union a_union @{
- int i;
- double d;
-@};
-
-int f() @{
- a_union t;
- t.d = 3.0;
- return t.i;
-@}
-@end example
-The practice of reading from a different union member than the one most
-recently written to (called ``type-punning'') is common. Even with
-@samp{-fstrict-aliasing}, type-punning is allowed, provided the memory
-is accessed through the union type. So, the code above will work as
-expected. However, this code might not:
-@example
-int f() @{
- a_union t;
- int* ip;
- t.d = 3.0;
- ip = &t.i;
- return *ip;
-@}
-@end example
-
-@ifset INTERNALS
-Every language that wishes to perform language-specific alias analysis
-should define a function that computes, given an @code{tree}
-node, an alias set for the node. Nodes in different alias sets are not
-allowed to alias. For an example, see the C front-end function
-@code{c_get_alias_set}.
-@end ifset
-
-@end table
-
-@node Preprocessor Options
-@section Options Controlling the Preprocessor
-@cindex preprocessor options
-@cindex options, preprocessor
-
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-
-If you use the @samp{-E} option, nothing is done except preprocessing.
-Some of these options make sense only together with @samp{-E} because
-they cause the preprocessor output to be unsuitable for actual
-compilation.
-
-@table @code
-@item -include @var{file}
-Process @var{file} as input before processing the regular input file.
-In effect, the contents of @var{file} are compiled first. Any @samp{-D}
-and @samp{-U} options on the command line are always processed before
-@samp{-include @var{file}}, regardless of the order in which they are
-written. All the @samp{-include} and @samp{-imacros} options are
-processed in the order in which they are written.
-
-@item -imacros @var{file}
-Process @var{file} as input, discarding the resulting output, before
-processing the regular input file. Because the output generated from
-@var{file} is discarded, the only effect of @samp{-imacros @var{file}}
-is to make the macros defined in @var{file} available for use in the
-main input.
-
-Any @samp{-D} and @samp{-U} options on the command line are always
-processed before @samp{-imacros @var{file}}, regardless of the order in
-which they are written. All the @samp{-include} and @samp{-imacros}
-options are processed in the order in which they are written.
-
-@item -idirafter @var{dir}
-@cindex second include path
-Add the directory @var{dir} to the second include path. The directories
-on the second include path are searched when a header file is not found
-in any of the directories in the main include path (the one that
-@samp{-I} adds to).
-
-@item -iprefix @var{prefix}
-Specify @var{prefix} as the prefix for subsequent @samp{-iwithprefix}
-options.
-
-@item -iwithprefix @var{dir}
-Add a directory to the second include path. The directory's name is
-made by concatenating @var{prefix} and @var{dir}, where @var{prefix} was
-specified previously with @samp{-iprefix}. If you have not specified a
-prefix yet, the directory containing the installed passes of the
-compiler is used as the default.
-
-@item -iwithprefixbefore @var{dir}
-Add a directory to the main include path. The directory's name is made
-by concatenating @var{prefix} and @var{dir}, as in the case of
-@samp{-iwithprefix}.
-
-@item -isystem @var{dir}
-Add a directory to the beginning of the second include path, marking it
-as a system directory, so that it gets the same special treatment as
-is applied to the standard system directories.
-
-@item -isystem-c++ @var{dir}
-Same behavior as with @samp{-isystem}, but do not make headers in @var{dir} be
-implicitly evaluated as if they include the @samp{extern "C"} linkage
-specification.
-
-@item -nostdinc
-Do not search the standard system directories for header files. Only
-the directories you have specified with @samp{-I} options (and the
-current directory, if appropriate) are searched. @xref{Directory
-Options}, for information on @samp{-I}.
-
-By using both @samp{-nostdinc} and @samp{-I-}, you can limit the include-file
-search path to only those directories you specify explicitly.
-
-@item -undef
-Do not predefine any nonstandard macros. (Including architecture flags).
-
-@item -E
-Run only the C preprocessor. Preprocess all the C source files
-specified and output the results to standard output or to the
-specified output file.
-
-@item -C
-Tell the preprocessor not to discard comments. Used with the
-@samp{-E} option.
-
-@item -P
-Tell the preprocessor not to generate @samp{#line} directives.
-Used with the @samp{-E} option.
-
-@cindex make
-@cindex dependencies, make
-@item -M
-Tell the preprocessor to output a rule suitable for @code{make}
-describing the dependencies of each object file. For each source file,
-the preprocessor outputs one @code{make}-rule whose target is the object
-file name for that source file and whose dependencies are all the
-@code{#include} header files it uses. This rule may be a single line or
-may be continued with @samp{\}-newline if it is long. The list of rules
-is printed on standard output instead of the preprocessed C program.
-
-@samp{-M} implies @samp{-E}.
-
-Another way to specify output of a @code{make} rule is by setting
-the environment variable @code{DEPENDENCIES_OUTPUT} (@pxref{Environment
-Variables}).
-
-@item -MM
-Like @samp{-M} but the output mentions only the user header files
-included with @samp{#include "@var{file}"}. System header files
-included with @samp{#include <@var{file}>} are omitted.
-
-@item -MD
-Like @samp{-M} but the dependency information is written to a file made by
-replacing ".c" with ".d" at the end of the input file names.
-This is in addition to compiling the file as specified---@samp{-MD} does
-not inhibit ordinary compilation the way @samp{-M} does.
-
-In Mach, you can use the utility @code{md} to merge multiple dependency
-files into a single dependency file suitable for using with the @samp{make}
-command.
-
-@item -MMD
-Like @samp{-MD} except mention only user header files, not system
-header files.
-
-@item -MG
-Treat missing header files as generated files and assume they live in the
-same directory as the source file. If you specify @samp{-MG}, you
-must also specify either @samp{-M} or @samp{-MM}. @samp{-MG} is not
-supported with @samp{-MD} or @samp{-MMD}.
-
-@item -H
-Print the name of each header file used, in addition to other normal
-activities.
-
-@item -A@var{question}(@var{answer})
-Assert the answer @var{answer} for @var{question}, in case it is tested
-with a preprocessing conditional such as @samp{#if
-#@var{question}(@var{answer})}. @samp{-A-} disables the standard
-assertions that normally describe the target machine.
-
-@item -D@var{macro}
-Define macro @var{macro} with the string @samp{1} as its definition.
-
-@item -D@var{macro}=@var{defn}
-Define macro @var{macro} as @var{defn}. All instances of @samp{-D} on
-the command line are processed before any @samp{-U} options.
-
-@item -U@var{macro}
-Undefine macro @var{macro}. @samp{-U} options are evaluated after all
-@samp{-D} options, but before any @samp{-include} and @samp{-imacros}
-options.
-
-@item -dM
-Tell the preprocessor to output only a list of the macro definitions
-that are in effect at the end of preprocessing. Used with the @samp{-E}
-option.
-
-@item -dD
-Tell the preprocessing to pass all macro definitions into the output, in
-their proper sequence in the rest of the output.
-
-@item -dN
-Like @samp{-dD} except that the macro arguments and contents are omitted.
-Only @samp{#define @var{name}} is included in the output.
-
-@item -trigraphs
-Support ANSI C trigraphs. The @samp{-ansi} option also has this effect.
-
-@item -Wp,@var{option}
-Pass @var{option} as an option to the preprocessor. If @var{option}
-contains commas, it is split into multiple options at the commas.
-@end table
-
-@node Assembler Options
-@section Passing Options to the Assembler
-
-@c prevent bad page break with this line
-You can pass options to the assembler.
-
-@table @code
-@item -Wa,@var{option}
-Pass @var{option} as an option to the assembler. If @var{option}
-contains commas, it is split into multiple options at the commas.
-@end table
-
-@node Link Options
-@section Options for Linking
-@cindex link options
-@cindex options, linking
-
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is
-not doing a link step.
-
-@table @code
-@cindex file names
-@item @var{object-file-name}
-A file name that does not end in a special recognized suffix is
-considered to name an object file or library. (Object files are
-distinguished from libraries by the linker according to the file
-contents.) If linking is done, these object files are used as input
-to the linker.
-
-@item -c
-@itemx -S
-@itemx -E
-If any of these options is used, then the linker is not run, and
-object file names should not be used as arguments. @xref{Overall
-Options}.
-
-@cindex Libraries
-@item -l@var{library}
-Search the library named @var{library} when linking.
-
-It makes a difference where in the command you write this option; the
-linker searches processes libraries and object files in the order they
-are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
-after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
-to functions in @samp{z}, those functions may not be loaded.
-
-The linker searches a standard list of directories for the library,
-which is actually a file named @file{lib@var{library}.a}. The linker
-then uses this file as if it had been specified precisely by name.
-
-The directories searched include several standard system directories
-plus any that you specify with @samp{-L}.
-
-Normally the files found this way are library files---archive files
-whose members are object files. The linker handles an archive file by
-scanning through it for members which define symbols that have so far
-been referenced but not defined. But if the file that is found is an
-ordinary object file, it is linked in the usual fashion. The only
-difference between using an @samp{-l} option and specifying a file name
-is that @samp{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
-and searches several directories.
-
-@item -lobjc
-You need this special case of the @samp{-l} option in order to
-link an Objective C program.
-
-@item -nostartfiles
-Do not use the standard system startup files when linking.
-The standard system libraries are used normally, unless @code{-nostdlib}
-or @code{-nodefaultlibs} is used.
-
-@item -nodefaultlibs
-Do not use the standard system libraries when linking.
-Only the libraries you specify will be passed to the linker.
-The standard startup files are used normally, unless @code{-nostartfiles}
-is used. The compiler may generate calls to memcmp, memset, and memcpy
-for System V (and ANSI C) environments or to bcopy and bzero for
-BSD environments. These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-
-@item -nostdlib
-Do not use the standard system startup files or libraries when linking.
-No startup files and only the libraries you specify will be passed to
-the linker. The compiler may generate calls to memcmp, memset, and memcpy
-for System V (and ANSI C) environments or to bcopy and bzero for
-BSD environments. These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-
-@cindex @code{-lgcc}, use with @code{-nostdlib}
-@cindex @code{-nostdlib} and unresolved references
-@cindex unresolved references and @code{-nostdlib}
-@cindex @code{-lgcc}, use with @code{-nodefaultlibs}
-@cindex @code{-nodefaultlibs} and unresolved references
-@cindex unresolved references and @code{-nodefaultlibs}
-One of the standard libraries bypassed by @samp{-nostdlib} and
-@samp{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
-that GNU CC uses to overcome shortcomings of particular machines, or special
-needs for some languages.
-@ifset INTERNALS
-(@xref{Interface,,Interfacing to GNU CC Output}, for more discussion of
-@file{libgcc.a}.)
-@end ifset
-@ifclear INTERNALS
-(@xref{Interface,,Interfacing to GNU CC Output,gcc.info,Porting GNU CC},
-for more discussion of @file{libgcc.a}.)
-@end ifclear
-In most cases, you need @file{libgcc.a} even when you want to avoid
-other standard libraries. In other words, when you specify @samp{-nostdlib}
-or @samp{-nodefaultlibs} you should usually specify @samp{-lgcc} as well.
-This ensures that you have no unresolved references to internal GNU CC
-library subroutines. (For example, @samp{__main}, used to ensure C++
-constructors will be called; @pxref{Collect2,,@code{collect2}}.)
-
-@item -s
-Remove all symbol table and relocation information from the executable.
-
-@item -static
-On systems that support dynamic linking, this prevents linking with the shared
-libraries. On other systems, this option has no effect.
-
-@item -shared
-Produce a shared object which can then be linked with other objects to
-form an executable. Not all systems support this option. You must
-also specify @samp{-fpic} or @samp{-fPIC} on some systems when
-you specify this option.
-
-@item -symbolic
-Bind references to global symbols when building a shared object. Warn
-about any unresolved references (unless overridden by the link editor
-option @samp{-Xlinker -z -Xlinker defs}). Only a few systems support
-this option.
-
-@item -Xlinker @var{option}
-Pass @var{option} as an option to the linker. You can use this to
-supply system-specific linker options which GNU CC does not know how to
-recognize.
-
-If you want to pass an option that takes an argument, you must use
-@samp{-Xlinker} twice, once for the option and once for the argument.
-For example, to pass @samp{-assert definitions}, you must write
-@samp{-Xlinker -assert -Xlinker definitions}. It does not work to write
-@samp{-Xlinker "-assert definitions"}, because this passes the entire
-string as a single argument, which is not what the linker expects.
-
-@item -Wl,@var{option}
-Pass @var{option} as an option to the linker. If @var{option} contains
-commas, it is split into multiple options at the commas.
-
-@item -u @var{symbol}
-Pretend the symbol @var{symbol} is undefined, to force linking of
-library modules to define it. You can use @samp{-u} multiple times with
-different symbols to force loading of additional library modules.
-@end table
-
-@node Directory Options
-@section Options for Directory Search
-@cindex directory options
-@cindex options, directory search
-@cindex search path
-
-These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-
-@table @code
-@item -I@var{dir}
-Add the directory @var{dir} to the head of the list of directories to be
-searched for header files. This can be used to override a system header
-file, substituting your own version, since these directories are
-searched before the system header file directories. If you use more
-than one @samp{-I} option, the directories are scanned in left-to-right
-order; the standard system directories come after.
-
-@item -I-
-Any directories you specify with @samp{-I} options before the @samp{-I-}
-option are searched only for the case of @samp{#include "@var{file}"};
-they are not searched for @samp{#include <@var{file}>}.
-
-If additional directories are specified with @samp{-I} options after
-the @samp{-I-}, these directories are searched for all @samp{#include}
-directives. (Ordinarily @emph{all} @samp{-I} directories are used
-this way.)
-
-In addition, the @samp{-I-} option inhibits the use of the current
-directory (where the current input file came from) as the first search
-directory for @samp{#include "@var{file}"}. There is no way to
-override this effect of @samp{-I-}. With @samp{-I.} you can specify
-searching the directory which was current when the compiler was
-invoked. That is not exactly the same as what the preprocessor does
-by default, but it is often satisfactory.
-
-@samp{-I-} does not inhibit the use of the standard system directories
-for header files. Thus, @samp{-I-} and @samp{-nostdinc} are
-independent.
-
-@item -L@var{dir}
-Add directory @var{dir} to the list of directories to be searched
-for @samp{-l}.
-
-@item -B@var{prefix}
-This option specifies where to find the executables, libraries,
-include files, and data files of the compiler itself.
-
-The compiler driver program runs one or more of the subprograms
-@file{cpp}, @file{cc1}, @file{as} and @file{ld}. It tries
-@var{prefix} as a prefix for each program it tries to run, both with and
-without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
-
-For each subprogram to be run, the compiler driver first tries the
-@samp{-B} prefix, if any. If that name is not found, or if @samp{-B}
-was not specified, the driver tries two standard prefixes, which are
-@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc-lib/}. If neither of
-those results in a file name that is found, the unmodified program
-name is searched for using the directories specified in your
-@samp{PATH} environment variable.
-
-@samp{-B} prefixes that effectively specify directory names also apply
-to libraries in the linker, because the compiler translates these
-options into @samp{-L} options for the linker. They also apply to
-includes files in the preprocessor, because the compiler translates these
-options into @samp{-isystem} options for the preprocessor. In this case,
-the compiler appends @samp{include} to the prefix.
-
-The run-time support file @file{libgcc.a} can also be searched for using
-the @samp{-B} prefix, if needed. If it is not found there, the two
-standard prefixes above are tried, and that is all. The file is left
-out of the link if it is not found by those means.
-
-Another way to specify a prefix much like the @samp{-B} prefix is to use
-the environment variable @code{GCC_EXEC_PREFIX}. @xref{Environment
-Variables}.
-
-@item -specs=@var{file}
-Process @var{file} after the compiler reads in the standard @file{specs}
-file, in order to override the defaults that the @file{gcc} driver
-program uses when determining what switches to pass to @file{cc1},
-@file{cc1plus}, @file{as}, @file{ld}, etc. More than one
-@samp{-specs=}@var{file} can be specified on the command line, and they
-are processed in order, from left to right.
-@end table
-
-@node Target Options
-@section Specifying Target Machine and Compiler Version
-@cindex target options
-@cindex cross compiling
-@cindex specifying machine version
-@cindex specifying compiler version and target machine
-@cindex compiler version, specifying
-@cindex target machine, specifying
-
-By default, GNU CC compiles code for the same type of machine that you
-are using. However, it can also be installed as a cross-compiler, to
-compile for some other type of machine. In fact, several different
-configurations of GNU CC, for different target machines, can be
-installed side by side. Then you specify which one to use with the
-@samp{-b} option.
-
-In addition, older and newer versions of GNU CC can be installed side
-by side. One of them (probably the newest) will be the default, but
-you may sometimes wish to use another.
-
-@table @code
-@item -b @var{machine}
-The argument @var{machine} specifies the target machine for compilation.
-This is useful when you have installed GNU CC as a cross-compiler.
-
-The value to use for @var{machine} is the same as was specified as the
-machine type when configuring GNU CC as a cross-compiler. For
-example, if a cross-compiler was configured with @samp{configure
-i386v}, meaning to compile for an 80386 running System V, then you
-would specify @samp{-b i386v} to run that cross compiler.
-
-When you do not specify @samp{-b}, it normally means to compile for
-the same type of machine that you are using.
-
-@item -V @var{version}
-The argument @var{version} specifies which version of GNU CC to run.
-This is useful when multiple versions are installed. For example,
-@var{version} might be @samp{2.0}, meaning to run GNU CC version 2.0.
-
-The default version, when you do not specify @samp{-V}, is the last
-version of GNU CC that you installed.
-@end table
-
-The @samp{-b} and @samp{-V} options actually work by controlling part of
-the file name used for the executable files and libraries used for
-compilation. A given version of GNU CC, for a given target machine, is
-normally kept in the directory @file{/usr/local/lib/gcc-lib/@var{machine}/@var{version}}.@refill
-
-Thus, sites can customize the effect of @samp{-b} or @samp{-V} either by
-changing the names of these directories or adding alternate names (or
-symbolic links). If in directory @file{/usr/local/lib/gcc-lib/} the
-file @file{80386} is a link to the file @file{i386v}, then @samp{-b
-80386} becomes an alias for @samp{-b i386v}.
-
-In one respect, the @samp{-b} or @samp{-V} do not completely change
-to a different compiler: the top-level driver program @code{gcc}
-that you originally invoked continues to run and invoke the other
-executables (preprocessor, compiler per se, assembler and linker)
-that do the real work. However, since no real work is done in the
-driver program, it usually does not matter that the driver program
-in use is not the one for the specified target and version.
-
-The only way that the driver program depends on the target machine is
-in the parsing and handling of special machine-specific options.
-However, this is controlled by a file which is found, along with the
-other executables, in the directory for the specified version and
-target machine. As a result, a single installed driver program adapts
-to any specified target machine and compiler version.
-
-The driver program executable does control one significant thing,
-however: the default version and target machine. Therefore, you can
-install different instances of the driver program, compiled for
-different targets or versions, under different names.
-
-For example, if the driver for version 2.0 is installed as @code{ogcc}
-and that for version 2.1 is installed as @code{gcc}, then the command
-@code{gcc} will use version 2.1 by default, while @code{ogcc} will use
-2.0 by default. However, you can choose either version with either
-command with the @samp{-V} option.
-
-@node Submodel Options
-@section Hardware Models and Configurations
-@cindex submodel options
-@cindex specifying hardware config
-@cindex hardware models and configurations, specifying
-@cindex machine dependent options
-
-Earlier we discussed the standard option @samp{-b} which chooses among
-different installed compilers for completely different target
-machines, such as Vax vs. 68000 vs. 80386.
-
-In addition, each of these target machine types can have its own
-special options, starting with @samp{-m}, to choose among various
-hardware models or configurations---for example, 68010 vs 68020,
-floating coprocessor or none. A single installed version of the
-compiler can compile for any model or configuration, according to the
-options specified.
-
-Some configurations of the compiler also support additional special
-options, usually for compatibility with other compilers on the same
-platform.
-
-@ifset INTERNALS
-These options are defined by the macro @code{TARGET_SWITCHES} in the
-machine description. The default for the options is also defined by
-that macro, which enables you to change the defaults.
-@end ifset
-
-@c CYGNUS LOCAL: z8k docs
-@c CYGNUS LOCAL -- meissner/d10v
-
-@menu
-* M680x0 Options::
-* VAX Options::
-* SPARC Options::
-* Convex Options::
-* AMD29K Options::
-* ARM Options::
-* Thumb Options::
-* MN10200 Options::
-* MN10300 Options::
-* M32R/D/X Options::
-* M88K Options::
-* RS/6000 and PowerPC Options::
-* RT Options::
-* MIPS Options::
-* i386 Options::
-* HPPA Options::
-* Intel 960 Options::
-* DEC Alpha Options::
-* Clipper Options::
-* H8/300 Options::
-* SH Options::
-* System V Options::
-* Z8000 Option::
-* V850 Options::
-* NS32K Options::
-* ARC Options::
-* D10V Options::
-@c CYGNUS LOCAL d30v yes, the blank line is needed.
-
-* D30V Options::
-@c END CYGNUS LOCAL
-
-@end menu
-
-@node M680x0 Options
-@subsection M680x0 Options
-@cindex M680x0 options
-
-These are the @samp{-m} options defined for the 68000 series. The default
-values for these options depends on which style of 68000 was selected when
-the compiler was configured; the defaults for the most common choices are
-given below.
-
-@table @code
-@item -m68000
-@itemx -mc68000
-Generate output for a 68000. This is the default
-when the compiler is configured for 68000-based systems.
-
-Use this option for microcontrollers with a 68000 or EC000 core,
-including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
-
-@item -m68020
-@itemx -mc68020
-Generate output for a 68020. This is the default
-when the compiler is configured for 68020-based systems.
-
-@item -m68881
-Generate output containing 68881 instructions for floating point.
-This is the default for most 68020 systems unless @samp{-nfp} was
-specified when the compiler was configured.
-
-@item -m68030
-Generate output for a 68030. This is the default when the compiler is
-configured for 68030-based systems.
-
-@item -m68040
-Generate output for a 68040. This is the default when the compiler is
-configured for 68040-based systems.
-
-This option inhibits the use of 68881/68882 instructions that have to be
-emulated by software on the 68040. Use this option if your 68040 does not
-have code to emulate those instructions.
-
-@item -m68060
-Generate output for a 68060. This is the default when the compiler is
-configured for 68060-based systems.
-
-This option inhibits the use of 68020 and 68881/68882 instructions that
-have to be emulated by software on the 68060. Use this option if your 68060
-does not have code to emulate those instructions.
-
-@item -mcpu32
-Generate output for a CPU32. This is the default
-when the compiler is configured for CPU32-based systems.
-
-Use this option for microcontrollers with a
-CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
-68336, 68340, 68341, 68349 and 68360.
-
-@item -m5200
-Generate output for a 520X "coldfire" family cpu. This is the default
-when the compiler is configured for 520X-based systems.
-
-Use this option for microcontroller with a 5200 core, including
-the MCF5202, MCF5203, MCF5204 and MCF5202.
-
-
-@item -m68020-40
-Generate output for a 68040, without using any of the new instructions.
-This results in code which can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68040.
-
-@item -m68020-60
-Generate output for a 68060, without using any of the new instructions.
-This results in code which can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68060.
-
-@item -mfpa
-Generate output containing Sun FPA instructions for floating point.
-
-@item -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not available for all m68k
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this can't be done directly in cross-compilation. You must
-make your own arrangements to provide suitable library functions for
-cross-compilation. The embedded targets @samp{m68k-*-aout} and
-@samp{m68k-*-coff} do provide software floating point support.
-
-@item -mshort
-Consider type @code{int} to be 16 bits wide, like @code{short int}.
-
-@item -mnobitfield
-Do not use the bit-field instructions. The @samp{-m68000}, @samp{-mcpu32}
-and @samp{-m5200} options imply @w{@samp{-mnobitfield}}.
-
-@item -mbitfield
-Do use the bit-field instructions. The @samp{-m68020} option implies
-@samp{-mbitfield}. This is the default if you use a configuration
-designed for a 68020.
-
-@item -mrtd
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return with the @code{rtd}
-instruction, which pops their arguments while returning. This
-saves one instruction in the caller since there is no need to pop
-the arguments there.
-
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including @code{printf});
-otherwise incorrect code will be generated for calls to those
-functions.
-
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-
-The @code{rtd} instruction is supported by the 68010, 68020, 68030,
-68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
-
-@item -malign-int
-@itemx -mno-align-int
-Control whether GNU CC aligns @code{int}, @code{long}, @code{long long},
-@code{float}, @code{double}, and @code{long double} variables on a 32-bit
-boundary (@samp{-malign-int}) or a 16-bit boundary (@samp{-mno-align-int}).
-Aligning variables on 32-bit boundaries produces code that runs somewhat
-faster on processors with 32-bit busses at the expense of more memory.
-
-@strong{Warning:} if you use the @samp{-malign-int} switch, GNU CC will
-align structures containing the above types differently than
-most published application binary interface specifications for the m68k.
-
-@end table
-
-@node VAX Options
-@subsection VAX Options
-@cindex VAX options
-
-These @samp{-m} options are defined for the Vax:
-
-@table @code
-@item -munix
-Do not output certain jump instructions (@code{aobleq} and so on)
-that the Unix assembler for the Vax cannot handle across long
-ranges.
-
-@item -mgnu
-Do output those jump instructions, on the assumption that you
-will assemble with the GNU assembler.
-
-@item -mg
-Output code for g-format floating point numbers instead of d-format.
-@end table
-
-@node SPARC Options
-@subsection SPARC Options
-@cindex SPARC options
-
-These @samp{-m} switches are supported on the SPARC:
-
-@table @code
-@item -mno-app-regs
-@itemx -mapp-regs
-Specify @samp{-mapp-regs} to generate output using the global registers
-2 through 4, which the SPARC SVR4 ABI reserves for applications. This
-is the default.
-
-To be fully SVR4 ABI compliant at the cost of some performance loss,
-specify @samp{-mno-app-regs}. You should compile libraries and system
-software with this option.
-
-@item -mfpu
-@itemx -mhard-float
-Generate output containing floating point instructions. This is the
-default.
-
-@item -mno-fpu
-@itemx -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not available for all SPARC
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation. The embedded targets @samp{sparc-*-aout} and
-@samp{sparclite-*-*} do provide software floating point support.
-
-@samp{-msoft-float} changes the calling convention in the output file;
-therefore, it is only useful if you compile @emph{all} of a program with
-this option. In particular, you need to compile @file{libgcc.a}, the
-library that comes with GNU CC, with @samp{-msoft-float} in order for
-this to work.
-
-@item -mhard-quad-float
-Generate output containing quad-word (long double) floating point
-instructions.
-
-@item -msoft-quad-float
-Generate output containing library calls for quad-word (long double)
-floating point instructions. The functions called are those specified
-in the SPARC ABI. This is the default.
-
-As of this writing, there are no sparc implementations that have hardware
-support for the quad-word floating point instructions. They all invoke
-a trap handler for one of these instructions, and then the trap handler
-emulates the effect of the instruction. Because of the trap handler overhead,
-this is much slower than calling the ABI library routines. Thus the
-@samp{-msoft-quad-float} option is the default.
-
-@item -mno-epilogue
-@itemx -mepilogue
-With @samp{-mepilogue} (the default), the compiler always emits code for
-function exit at the end of each function. Any function exit in
-the middle of the function (such as a return statement in C) will
-generate a jump to the exit code at the end of the function.
-
-With @samp{-mno-epilogue}, the compiler tries to emit exit code inline
-at every function exit.
-
-@item -mno-flat
-@itemx -mflat
-With @samp{-mflat}, the compiler does not generate save/restore instructions
-and will use a "flat" or single register window calling convention.
-This model uses %i7 as the frame pointer and is compatible with the normal
-register window model. Code from either may be intermixed.
-The local registers and the input registers (0-5) are still treated as
-"call saved" registers and will be saved on the stack as necessary.
-
-With @samp{-mno-flat} (the default), the compiler emits save/restore
-instructions (except for leaf functions) and is the normal mode of operation.
-
-@item -mno-unaligned-doubles
-@itemx -munaligned-doubles
-Assume that doubles have 8 byte alignment. This is the default.
-
-With @samp{-munaligned-doubles}, GNU CC assumes that doubles have 8 byte
-alignment only if they are contained in another type, or if they have an
-absolute address. Otherwise, it assumes they have 4 byte alignment.
-Specifying this option avoids some rare compatibility problems with code
-generated by other compilers. It is not the default because it results
-in a performance loss, especially for floating point code.
-
-@item -mv8
-@itemx -msparclite
-These two options select variations on the SPARC architecture.
-
-By default (unless specifically configured for the Fujitsu SPARClite),
-GCC generates code for the v7 variant of the SPARC architecture.
-
-@samp{-mv8} will give you SPARC v8 code. The only difference from v7
-code is that the compiler emits the integer multiply and integer
-divide instructions which exist in SPARC v8 but not in SPARC v7.
-
-@samp{-msparclite} will give you SPARClite code. This adds the integer
-multiply, integer divide step and scan (@code{ffs}) instructions which
-exist in SPARClite but not in SPARC v7.
-
-These options are deprecated and will be deleted in GNU CC 2.9.
-They have been replaced with @samp{-mcpu=xxx}.
-
-@item -mcypress
-@itemx -msupersparc
-These two options select the processor for which the code is optimised.
-
-With @samp{-mcypress} (the default), the compiler optimizes code for the
-Cypress CY7C602 chip, as used in the SparcStation/SparcServer 3xx series.
-This is also appropriate for the older SparcStation 1, 2, IPX etc.
-
-With @samp{-msupersparc} the compiler optimizes code for the SuperSparc cpu, as
-used in the SparcStation 10, 1000 and 2000 series. This flag also enables use
-of the full SPARC v8 instruction set.
-
-These options are deprecated and will be deleted in GNU CC 2.9.
-They have been replaced with @samp{-mcpu=xxx}.
-
-@item -mcpu=@var{cpu_type}
-Set the instruction set, register set, and instruction scheduling parameters
-for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
-@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
-@samp{hypersparc}, @samp{sparclite86x}, @samp{f930}, @samp{f934},
-@samp{sparclet}, @samp{tsc701}, @samp{v9}, and @samp{ultrasparc}.
-
-Default instruction scheduling parameters are used for values that select
-an architecture and not an implementation. These are @samp{v7}, @samp{v8},
-@samp{sparclite}, @samp{sparclet}, @samp{v9}.
-
-Here is a list of each supported architecture and their supported
-implementations.
-
-@smallexample
- v7: cypress
- v8: supersparc, hypersparc
- sparclite: f930, f934, sparclite86x
- sparclet: tsc701
- v9: ultrasparc
-@end smallexample
-
-@item -mtune=@var{cpu_type}
-Set the instruction scheduling parameters for machine type
-@var{cpu_type}, but do not set the instruction set or register set that the
-option @samp{-mcpu=}@var{cpu_type} would.
-
-The same values for @samp{-mcpu=}@var{cpu_type} are used for
-@samp{-mtune=}@*@var{cpu_type}, though the only useful values are those that
-select a particular cpu implementation: @samp{cypress}, @samp{supersparc},
-@samp{hypersparc}, @samp{f930}, @samp{f934}, @samp{sparclite86x},
-@samp{tsc701}, @samp{ultrasparc}.
-
-@item -malign-loops=@var{num}
-Align loops to a 2 raised to a @var{num} byte boundary. If
-@samp{-malign-loops} is not specified, the default is 2.
-
-@item -malign-jumps=@var{num}
-Align instructions that are only jumped to to a 2 raised to a @var{num}
-byte boundary. If @samp{-malign-jumps} is not specified, the default is 2.
-
-@item -malign-functions=@var{num}
-Align the start of functions to a 2 raised to @var{num} byte boundary.
-If @samp{-malign-functions} is not specified, the default is 2 if compiling
-for 32 bit sparc, and 5 if compiling for 64 bit sparc.
-
-@end table
-
-These @samp{-m} switches are supported in addition to the above
-on the SPARCLET processor.
-
-@table @code
-@item -mlittle-endian
-Generate code for a processor running in little-endian mode.
-
-@item -mlive-g0
-Treat register @code{%g0} as a normal register.
-GCC will continue to clobber it as necessary but will not assume
-it always reads as 0.
-
-@item -mbroken-saverestore
-Generate code that does not use non-trivial forms of the @code{save} and
-@code{restore} instructions. Early versions of the SPARCLET processor do
-not correctly handle @code{save} and @code{restore} instructions used with
-arguments. They correctly handle them used without arguments. A @code{save}
-instruction used without arguments increments the current window pointer
-but does not allocate a new stack frame. It is assumed that the window
-overflow trap handler will properly handle this case as will interrupt
-handlers.
-@end table
-
-These @samp{-m} switches are supported in addition to the above
-on SPARC V9 processors in 64 bit environments.
-
-@table @code
-@item -mlittle-endian
-Generate code for a processor running in little-endian mode.
-
-@item -m32
-@itemx -m64
-Generate code for a 32 bit or 64 bit environment.
-The 32 bit environment sets int, long and pointer to 32 bits.
-The 64 bit environment sets int to 32 bits and long and pointer
-to 64 bits.
-
-@item -mcmodel=medlow
-Generate code for the Medium/Low code model: the program must be linked
-in the low 32 bits of the address space. Pointers are 64 bits.
-Programs can be statically or dynamically linked.
-
-@item -mcmodel=medmid
-Generate code for the Medium/Middle code model: the program must be linked
-in the low 44 bits of the address space, the text segment must be less than
-2G bytes, and data segment must be within 2G of the text segment.
-Pointers are 64 bits.
-
-@item -mcmodel=medany
-Generate code for the Medium/Anywhere code model: the program may be linked
-anywhere in the address space, the text segment must be less than
-2G bytes, and data segment must be within 2G of the text segment.
-Pointers are 64 bits.
-
-@item -mcmodel=embmedany
-Generate code for the Medium/Anywhere code model for embedded systems:
-assume a 32 bit text and a 32 bit data segment, both starting anywhere
-(determined at link time). Register %g4 points to the base of the
-data segment. Pointers still 64 bits.
-Programs are statically linked, PIC is not supported.
-
-@item -mstack-bias
-@itemx -mno-stack-bias
-With @samp{-mstack-bias}, GNU CC assumes that the stack pointer, and
-frame pointer if present, are offset by -2047 which must be added back
-when making stack frame references.
-Otherwise, assume no such offset is present.
-@end table
-
-@node Convex Options
-@subsection Convex Options
-@cindex Convex options
-
-These @samp{-m} options are defined for Convex:
-
-@table @code
-@item -mc1
-Generate output for C1. The code will run on any Convex machine.
-The preprocessor symbol @code{__convex__c1__} is defined.
-
-@item -mc2
-Generate output for C2. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C2.
-The preprocessor symbol @code{__convex_c2__} is defined.
-
-@item -mc32
-Generate output for C32xx. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C32.
-The preprocessor symbol @code{__convex_c32__} is defined.
-
-@item -mc34
-Generate output for C34xx. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C34.
-The preprocessor symbol @code{__convex_c34__} is defined.
-
-@item -mc38
-Generate output for C38xx. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C38.
-The preprocessor symbol @code{__convex_c38__} is defined.
-
-@item -margcount
-Generate code which puts an argument count in the word preceding each
-argument list. This is compatible with regular CC, and a few programs
-may need the argument count word. GDB and other source-level debuggers
-do not need it; this info is in the symbol table.
-
-@item -mnoargcount
-Omit the argument count word. This is the default.
-
-@item -mvolatile-cache
-Allow volatile references to be cached. This is the default.
-
-@item -mvolatile-nocache
-Volatile references bypass the data cache, going all the way to memory.
-This is only needed for multi-processor code that does not use standard
-synchronization instructions. Making non-volatile references to volatile
-locations will not necessarily work.
-
-@item -mlong32
-Type long is 32 bits, the same as type int. This is the default.
-
-@item -mlong64
-Type long is 64 bits, the same as type long long. This option is useless,
-because no library support exists for it.
-@end table
-
-@node AMD29K Options
-@subsection AMD29K Options
-@cindex AMD29K options
-
-These @samp{-m} options are defined for the AMD Am29000:
-
-@table @code
-@item -mdw
-@kindex -mdw
-@cindex DW bit (29k)
-Generate code that assumes the @code{DW} bit is set, i.e., that byte and
-halfword operations are directly supported by the hardware. This is the
-default.
-
-@item -mndw
-@kindex -mndw
-Generate code that assumes the @code{DW} bit is not set.
-
-@item -mbw
-@kindex -mbw
-@cindex byte writes (29k)
-Generate code that assumes the system supports byte and halfword write
-operations. This is the default.
-
-@item -mnbw
-@kindex -mnbw
-Generate code that assumes the systems does not support byte and
-halfword write operations. @samp{-mnbw} implies @samp{-mndw}.
-
-@item -msmall
-@kindex -msmall
-@cindex memory model (29k)
-Use a small memory model that assumes that all function addresses are
-either within a single 256 KB segment or at an absolute address of less
-than 256k. This allows the @code{call} instruction to be used instead
-of a @code{const}, @code{consth}, @code{calli} sequence.
-
-@item -mnormal
-@kindex -mnormal
-Use the normal memory model: Generate @code{call} instructions only when
-calling functions in the same file and @code{calli} instructions
-otherwise. This works if each file occupies less than 256 KB but allows
-the entire executable to be larger than 256 KB. This is the default.
-
-@item -mlarge
-Always use @code{calli} instructions. Specify this option if you expect
-a single file to compile into more than 256 KB of code.
-
-@item -m29050
-@kindex -m29050
-@cindex processor selection (29k)
-Generate code for the Am29050.
-
-@item -m29000
-@kindex -m29000
-Generate code for the Am29000. This is the default.
-
-@item -mkernel-registers
-@kindex -mkernel-registers
-@cindex kernel and user registers (29k)
-Generate references to registers @code{gr64-gr95} instead of to
-registers @code{gr96-gr127}. This option can be used when compiling
-kernel code that wants a set of global registers disjoint from that used
-by user-mode code.
-
-Note that when this option is used, register names in @samp{-f} flags
-must use the normal, user-mode, names.
-
-@item -muser-registers
-@kindex -muser-registers
-Use the normal set of global registers, @code{gr96-gr127}. This is the
-default.
-
-@item -mstack-check
-@itemx -mno-stack-check
-@kindex -mstack-check
-@cindex stack checks (29k)
-Insert (or do not insert) a call to @code{__msp_check} after each stack
-adjustment. This is often used for kernel code.
-
-@item -mstorem-bug
-@itemx -mno-storem-bug
-@kindex -mstorem-bug
-@cindex storem bug (29k)
-@samp{-mstorem-bug} handles 29k processors which cannot handle the
-separation of a mtsrim insn and a storem instruction (most 29000 chips
-to date, but not the 29050).
-
-@item -mno-reuse-arg-regs
-@itemx -mreuse-arg-regs
-@kindex -mreuse-arg-regs
-@samp{-mno-reuse-arg-regs} tells the compiler to only use incoming argument
-registers for copying out arguments. This helps detect calling a function
-with fewer arguments than it was declared with.
-
-@item -mno-impure-text
-@itemx -mimpure-text
-@kindex -mimpure-text
-@samp{-mimpure-text}, used in addition to @samp{-shared}, tells the compiler to
-not pass @samp{-assert pure-text} to the linker when linking a shared object.
-
-@item -msoft-float
-@kindex -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not part of GNU CC.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-@end table
-
-@node ARM Options
-@subsection ARM Options
-@cindex ARM options
-
-These @samp{-m} options are defined for Advanced RISC Machines (ARM)
-architectures:
-
-@table @code
-@item -mapcs-frame
-@kindex -mapcs-frame
-Generate a stack frame that is compliant with the ARM Procedure Call
-Standard for all functions, even if this is not strictly necessary for
-correct execution of the code. Specifying @samp{-fomit-frame-pointer}
-with this option will cause the stack frames not to be generated for
-leaf functions. The default is @samp{-mno-apcs-frame}.
-
-@item -mapcs
-@kindex -mapcs
-This is a synonym for @samp{-mapcs-frame}.
-
-@item -mapcs-26
-@kindex -mapcs-26
-Generate code for a processor running with a 26-bit program counter,
-and conforming to the function calling standards for the APCS 26-bit
-option. This option replaces the @samp{-m2} and @samp{-m3} options
-of previous releases of the compiler.
-
-@item -mapcs-32
-@kindex -mapcs-32
-Generate code for a processor running with a 32-bit program counter,
-and conforming to the function calling standards for the APCS 32-bit
-option. This option replaces the @samp{-m6} option of previous releases
-of the compiler.
-
-@item -mapcs-stack-check
-@kindex -mapcs-stack-check
-@kindex -mno-apcs-stack-check
-Generate code to check the amount of stack space available upon entry to
-every function (that actually uses some stack space). If there is
-insufficient space available then either the function
-@samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
-called, depending upon the amount of stack space required. The run time
-system is required to provide these functions. The default is
-@samp{-mno-apcs-stack-check}, since this produces smaller code.
-
-@item -mapcs-float
-@kindex -mapcs-float
-@kindex -mno-apcs-float
-Pass floating point arguments using the float point registers. This is
-one of the variants of the APCS. This option is reccommended if the
-target hardware has a floating point unit or if a lot of floating point
-arithmetic is going to be performed by the code. The default is
-@samp{-mno-apcs-float}, since integer only code is slightly increased in
-size if @samp{-mapcs-float} is used.
-
-@item -mapcs-reentrant
-@kindex -mapcs-reentrant
-@kindex -mno-apcs-reentrant
-Generate reentrant, position independent code. This is the equivalent
-to specifying the @samp{-fpic} option. The default is
-@samp{-mno-apcs-reentrant}.
-
-@item -mthumb-interwork
-@kindex -mthumb-interwork
-@kindex -mno-thumb-interwork
-Generate code which supports calling between the ARM and THUMB
-instruction sets. Without this option the two instruction sets cannot
-be reliably used inside one program. The default is
-@samp{-mno-thumb-interwork}, since slightly larger code is generated
-when @samp{-mthumb-interwork} is specified.
-
-@item -mno-sched-prolog
-@kindex -mno-sched-prolog
-@kindex -msched-prolog
-Prevent the reordering of instructions in the function prolog, or the
-merging of those instruction with the instructions in the function's
-body. This means that all functions will start with a recognisable set
-of instructions (or in fact one of a chioce from a small set of
-different function prologues), and this information can be used to
-locate the start if functions inside an executable piece of code. The
-default is @samp{-msched-prolog}.
-
-@item -mhard-float
-Generate output containing floating point instructions. This is the
-default.
-
-@item -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not available for all ARM
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation.
-
-@samp{-msoft-float} changes the calling convention in the output file;
-therefore, it is only useful if you compile @emph{all} of a program with
-this option. In particular, you need to compile @file{libgcc.a}, the
-library that comes with GNU CC, with @samp{-msoft-float} in order for
-this to work.
-
-@item -mlittle-endian
-Generate code for a processor running in little-endian mode. This is
-the default for all standard configurations.
-
-@item -mbig-endian
-Generate code for a processor running in big-endian mode; the default is
-to compile code for a little-endian processor.
-
-@item -mwords-little-endian
-This option only applies when generating code for big-endian processors.
-Generate code for a little-endian word order but a big-endian byte
-order. That is, a byte order of the form @samp{32107654}. Note: this
-option should only be used if you require compatibility with code for
-big-endian ARM processors generated by versions of the compiler prior to
-2.8.
-
-@item -mshort-load-bytes
-@kindex -mshort-load-bytes
-Do not try to load half-words (eg @samp{short}s) by loading a word from
-an unaligned address. For some targets the MMU is configured to trap
-unaligned loads; use this option to generate code that is safe in these
-environments.
-
-@item -mno-short-load-bytes
-@kindex -mno-short-load-bytes
-Use unaligned word loads to load half-words (eg @samp{short}s). This
-option produces more efficient code, but the MMU is sometimes configured
-to trap these instructions.
-
-@item -mshort-load-words
-@kindex -mshort-load-words
-This is a synonym for the @samp{-mno-short-load-bytes}.
-
-@item -mno-short-load-words
-@kindex -mno-short-load-words
-This is a synonym for the @samp{-mshort-load-bytes}.
-
-@item -mbsd
-@kindex -mbsd
-This option only applies to RISC iX. Emulate the native BSD-mode
-compiler. This is the default if @samp{-ansi} is not specified.
-
-@item -mxopen
-@kindex -mxopen
-This option only applies to RISC iX. Emulate the native X/Open-mode
-compiler.
-
-@item -mno-symrename
-@kindex -mno-symrename
-This option only applies to RISC iX. Do not run the assembler
-post-processor, @samp{symrename}, after code has been assembled.
-Normally it is necessary to modify some of the standard symbols in
-preparation for linking with the RISC iX C library; this option
-suppresses this pass. The post-processor is never run when the
-compiler is built for cross-compilation.
-
-@item -mcpu=<name>
-@kindex -mcpu=
-This specifies the name of the target ARM processor. GCC uses this name
-to determine what kind of instructions it can use when generating
-assembly code. Permissable names are: arm2, arm250, arm3, arm6, arm60,
-arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi,
-arm70, arm700, arm700i, arm710, arm710c, arm7100, arm7500, arm7500fe,
-arm7tdmi, arm8, strongarm, strongarm110
-
-@item -march=<name>
-@kindex -march=
-This specifies the name of the target ARM architecture. GCC uses this
-name to determine what kind of instructions it can use when generating
-assembly code. This option can be used in conjunction with or instead
-of the @samp{-mcpu=} option. Permissable names are: armv2, armv2a,
-armv3, armv3m, armv4, armv4t
-
-@item -mfpe=<number>
-@kindex -mfpe=
-This specifes the version of the floating point emulation available on
-the target. Permissable values are 2 and 3.
-
-@item -mstructure-size-boundary=<n>
-@kindex -mstructure-size-boundary
-The size of all structures and unions will be rounded up to a multiple
-of the number of bits set by this option. Permissable values are 8 and
-32. The default value varies for different toolchains. For the COFF
-targeted toolchain the default value is 8. Specifying the larger number
-can produced faster, more efficient code, but can also increase the size
-of the program. The two values are potentially incompatible. Code
-compiled with one value cannot necessarily expect to work with code or
-libraries compiled with the other value, if they exchange information
-using structures or unions. Programmers are encouraged to use the 32
-value as future versions of the toolchain may default to this value.
-
-@item -mabort-on-noreturn
-@kindex -mabort-on-noreturn
-@kindex -mnoabort-on-noreturn
-Generate a call to the function abort at the end of a noreturn function.
-It will be executed if the function tries to return.
-
-@c CYGNUS LOCAL nickc/thumb-pe
-@item -mnop-fun-dllimport
-@kindex -mnop-fun-dllimport
-Disable the support for the @emph{dllimport} attribute.
-
-@c END CYGNUS LOCAL
-
-@end table
-
-
-@node Thumb Options
-@subsection Thumb Options
-@cindex Thumb Options
-
-@table @code
-
-@item -mthumb-interwork
-@kindex -mthumb-interwork
-@kindex -mno-thumb-interwork
-Generate code which supports calling between the THUMB and ARM
-instruction sets. Without this option the two instruction sets cannot
-be reliably used inside one program. The default is
-@samp{-mno-thumb-interwork}, since slightly smaller code is generated
-with this option.
-
-@item -mtpcs-frame
-@kindex -mtpcs-frame
-@kindex -mno-tpcs-frame
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all non-leaf functions. (A leaf function is one that does
-not call any other functions). The default is @samp{-mno-apcs-frame}.
-
-@item -mtpcs-leaf-frame
-@kindex -mtpcs-leaf-frame
-@kindex -mno-tpcs-leaf-frame
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all leaf functions. (A leaf function is one that does
-not call any other functions). The default is @samp{-mno-apcs-leaf-frame}.
-
-@item -mlittle-endian
-@kindex -mlittle-endian
-Generate code for a processor running in little-endian mode. This is
-the default for all standard configurations.
-
-@item -mbig-endian
-@kindex -mbig-endian
-Generate code for a processor running in big-endian mode.
-
-@item -mstructure-size-boundary=<n>
-@kindex -mstructure-size-boundary
-The size of all structures and unions will be rounded up to a multiple
-of the number of bits set by this option. Permissable values are 8 and
-32. The default value varies for different toolchains. For the COFF
-targeted toolchain the default value is 8. Specifying the larger number
-can produced faster, more efficient code, but can also increase the size
-of the program. The two values are potentially incompatible. Code
-compiled with one value cannot necessarily expect to work with code or
-libraries compiled with the other value, if they exchange information
-using structures or unions. Programmers are encouraged to use the 32
-value as future versions of the toolchain may default to this value.
-
-@c CYGNUS LOCAL nickc/thumb-pe
-@item -mnop-fun-dllimport
-@kindex -mnop-fun-dllimport
-Disable the support for the @emph{dllimport} attribute.
-
-@item -mcallee-super-interworking
-@kindex -mcallee-super-interworking
-Gives all externally visible functions in the file being compiled an ARM
-instruction set header which switches to Thumb mode before executing the
-rest of the function. This allows these functions to be called from
-non-interworking code.
-
-@item -mcaller-super-interworking
-@kindex -mcaller-super-interworking
-Allows calls via function pointers (including virtual functions) to
-execute correctly regardless of whether the target code has been
-compiled for interworking or not. There is a small overhead in the cost
-of executing a funciton pointer if this option is enabled.
-
-@c END CYGNUS LOCAL
-
-@end table
-
-@node MN10200 Options
-@subsection MN10200 Options
-@cindex MN10200 options
-These @samp{-m} options are defined for Matsushita MN10200 architectures:
-@table @code
-
-@item -mrelax
-Indicate to the linker that it should perform a relaxation optimization pass
-to shorten branches, calls and absolute memory addresses. This option only
-has an effect when used on the command line for the final link step.
-
-This option makes symbolic debugging impossible.
-@end table
-
-@node MN10300 Options
-@subsection MN10300 Options
-@cindex MN10300 options
-These @samp{-m} options are defined for Matsushita MN10300 architectures:
-
-@table @code
-@item -mmult-bug
-Generate code to avoid bugs in the multiply instructions for the MN10300
-processors. This is the default.
-
-@item -mno-mult-bug
-Do not generate code to avoid bugs in the multiply instructions for the
-MN10300 processors.
-
-@item -mrelax
-Indicate to the linker that it should perform a relaxation optimization pass
-to shorten branches, calls and absolute memory addresses. This option only
-has an effect when used on the command line for the final link step.
-
-This option makes symbolic debugging impossible.
-@end table
-
-
-@node M32R/D/X Options
-@subsection M32R/D/X Options
-@cindex M32R/D/X options
-
-These @samp{-m} options are defined for Mitsubishi M32R/D/X architectures:
-
-@table @code
-@item -mcode-model=small
-Assume all objects live in the lower 16MB of memory (so that their addresses
-can be loaded with the @code{ld24} instruction), and assume all subroutines
-are reachable with the @code{bl} instruction.
-This is the default.
-
-The addressability of a particular object can be set with the
-@code{model} attribute.
-
-@item -mcode-model=medium
-Assume objects may be anywhere in the 32 bit address space (the compiler
-will generate @code{seth/add3} instructions to load their addresses), and
-assume all subroutines are reachable with the @code{bl} instruction.
-
-@item -mcode-model=large
-Assume objects may be anywhere in the 32 bit address space (the compiler
-will generate @code{seth/add3} instructions to load their addresses), and
-assume subroutines may not be reachable with the @code{bl} instruction
-(the compiler will generate the much slower @code{seth/add3/jl}
-instruction sequence).
-
-@item -msdata=none
-Disable use of the small data area. Variables will be put into
-one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
-@code{section} attribute has been specified).
-This is the default.
-
-The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
-Objects may be explicitly put in the small data area with the
-@code{section} attribute using one of these sections.
-
-@item -msdata=sdata
-Put small global and static data in the small data area, but do not
-generate special code to reference them.
-
-@item -msdata=use
-Put small global and static data in the small data area, and generate
-special instructions to reference them.
-
-@item -G @var{num}
-@cindex smaller data references
-Put global and static objects less than or equal to @var{num} bytes
-into the small data or bss sections instead of the normal data or bss
-sections. The default value of @var{num} is 8.
-The @samp{-msdata} option must be set to one of @samp{sdata} or @samp{use}
-for this option to have any effect.
-
-All modules should be compiled with the same @samp{-G @var{num}} value.
-Compiling with different values of @var{num} may or may not work; if it
-doesn't the linker will give an error message - incorrect code will not be
-generated.
-
-@item -m32rx
-@cindex m32rx instruction set
-Enable support for the extended m32rx instruction set. If this option
-is given to the compiler then the compile time constant __M32RX__ will
-automatically be defined.
-
-@item -m32r
-@cindex m32r instruction set
-Disable support for the extended m32rx instruction set, and just use the
-ordinary m32r instruction set instead.
-
-@item -mcond-exec=@var{n}
-Specify the maximum number of conditionally executed instructions that
-replace a branch. The default is 4.
-
-
-@end table
-
-@node M88K Options
-@subsection M88K Options
-@cindex M88k options
-
-These @samp{-m} options are defined for Motorola 88k architectures:
-
-@table @code
-@item -m88000
-@kindex -m88000
-Generate code that works well on both the m88100 and the
-m88110.
-
-@item -m88100
-@kindex -m88100
-Generate code that works best for the m88100, but that also
-runs on the m88110.
-
-@item -m88110
-@kindex -m88110
-Generate code that works best for the m88110, and may not run
-on the m88100.
-
-@item -mbig-pic
-@kindex -mbig-pic
-Obsolete option to be removed from the next revision.
-Use @samp{-fPIC}.
-
-@item -midentify-revision
-@kindex -midentify-revision
-@kindex ident
-@cindex identifying source, compiler (88k)
-Include an @code{ident} directive in the assembler output recording the
-source file name, compiler name and version, timestamp, and compilation
-flags used.
-
-@item -mno-underscores
-@kindex -mno-underscores
-@cindex underscores, avoiding (88k)
-In assembler output, emit symbol names without adding an underscore
-character at the beginning of each name. The default is to use an
-underscore as prefix on each name.
-
-@item -mocs-debug-info
-@itemx -mno-ocs-debug-info
-@kindex -mocs-debug-info
-@kindex -mno-ocs-debug-info
-@cindex OCS (88k)
-@cindex debugging, 88k OCS
-Include (or omit) additional debugging information (about registers used
-in each stack frame) as specified in the 88open Object Compatibility
-Standard, ``OCS''. This extra information allows debugging of code that
-has had the frame pointer eliminated. The default for DG/UX, SVr4, and
-Delta 88 SVr3.2 is to include this information; other 88k configurations
-omit this information by default.
-
-@item -mocs-frame-position
-@kindex -mocs-frame-position
-@cindex register positions in frame (88k)
-When emitting COFF debugging information for automatic variables and
-parameters stored on the stack, use the offset from the canonical frame
-address, which is the stack pointer (register 31) on entry to the
-function. The DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use
-@samp{-mocs-frame-position}; other 88k configurations have the default
-@samp{-mno-ocs-frame-position}.
-
-@item -mno-ocs-frame-position
-@kindex -mno-ocs-frame-position
-@cindex register positions in frame (88k)
-When emitting COFF debugging information for automatic variables and
-parameters stored on the stack, use the offset from the frame pointer
-register (register 30). When this option is in effect, the frame
-pointer is not eliminated when debugging information is selected by the
--g switch.
-
-@item -moptimize-arg-area
-@itemx -mno-optimize-arg-area
-@kindex -moptimize-arg-area
-@kindex -mno-optimize-arg-area
-@cindex arguments in frame (88k)
-Control how function arguments are stored in stack frames.
-@samp{-moptimize-arg-area} saves space by optimizing them, but this
-conflicts with the 88open specifications. The opposite alternative,
-@samp{-mno-optimize-arg-area}, agrees with 88open standards. By default
-GNU CC does not optimize the argument area.
-
-@item -mshort-data-@var{num}
-@kindex -mshort-data-@var{num}
-@cindex smaller data references (88k)
-@cindex r0-relative references (88k)
-Generate smaller data references by making them relative to @code{r0},
-which allows loading a value using a single instruction (rather than the
-usual two). You control which data references are affected by
-specifying @var{num} with this option. For example, if you specify
-@samp{-mshort-data-512}, then the data references affected are those
-involving displacements of less than 512 bytes.
-@samp{-mshort-data-@var{num}} is not effective for @var{num} greater
-than 64k.
-
-@item -mserialize-volatile
-@kindex -mserialize-volatile
-@itemx -mno-serialize-volatile
-@kindex -mno-serialize-volatile
-@cindex sequential consistency on 88k
-Do, or don't, generate code to guarantee sequential consistency
-of volatile memory references. By default, consistency is
-guaranteed.
-
-The order of memory references made by the MC88110 processor does
-not always match the order of the instructions requesting those
-references. In particular, a load instruction may execute before
-a preceding store instruction. Such reordering violates
-sequential consistency of volatile memory references, when there
-are multiple processors. When consistency must be guaranteed,
-GNU C generates special instructions, as needed, to force
-execution in the proper order.
-
-The MC88100 processor does not reorder memory references and so
-always provides sequential consistency. However, by default, GNU
-C generates the special instructions to guarantee consistency
-even when you use @samp{-m88100}, so that the code may be run on an
-MC88110 processor. If you intend to run your code only on the
-MC88100 processor, you may use @samp{-mno-serialize-volatile}.
-
-The extra code generated to guarantee consistency may affect the
-performance of your application. If you know that you can safely
-forgo this guarantee, you may use @samp{-mno-serialize-volatile}.
-
-@item -msvr4
-@itemx -msvr3
-@kindex -msvr4
-@kindex -msvr3
-@cindex assembler syntax, 88k
-@cindex SVr4
-Turn on (@samp{-msvr4}) or off (@samp{-msvr3}) compiler extensions
-related to System V release 4 (SVr4). This controls the following:
-
-@enumerate
-@item
-Which variant of the assembler syntax to emit.
-@item
-@samp{-msvr4} makes the C preprocessor recognize @samp{#pragma weak}
-that is used on System V release 4.
-@item
-@samp{-msvr4} makes GNU CC issue additional declaration directives used in
-SVr4.
-@end enumerate
-
-@samp{-msvr4} is the default for the m88k-motorola-sysv4 and
-m88k-dg-dgux m88k configurations. @samp{-msvr3} is the default for all
-other m88k configurations.
-
-@item -mversion-03.00
-@kindex -mversion-03.00
-This option is obsolete, and is ignored.
-@c ??? which asm syntax better for GAS? option there too?
-
-@item -mno-check-zero-division
-@itemx -mcheck-zero-division
-@kindex -mno-check-zero-division
-@kindex -mcheck-zero-division
-@cindex zero division on 88k
-Do, or don't, generate code to guarantee that integer division by
-zero will be detected. By default, detection is guaranteed.
-
-Some models of the MC88100 processor fail to trap upon integer
-division by zero under certain conditions. By default, when
-compiling code that might be run on such a processor, GNU C
-generates code that explicitly checks for zero-valued divisors
-and traps with exception number 503 when one is detected. Use of
-mno-check-zero-division suppresses such checking for code
-generated to run on an MC88100 processor.
-
-GNU C assumes that the MC88110 processor correctly detects all
-instances of integer division by zero. When @samp{-m88110} is
-specified, both @samp{-mcheck-zero-division} and
-@samp{-mno-check-zero-division} are ignored, and no explicit checks for
-zero-valued divisors are generated.
-
-@item -muse-div-instruction
-@kindex -muse-div-instruction
-@cindex divide instruction, 88k
-Use the div instruction for signed integer division on the
-MC88100 processor. By default, the div instruction is not used.
-
-On the MC88100 processor the signed integer division instruction
-div) traps to the operating system on a negative operand. The
-operating system transparently completes the operation, but at a
-large cost in execution time. By default, when compiling code
-that might be run on an MC88100 processor, GNU C emulates signed
-integer division using the unsigned integer division instruction
-divu), thereby avoiding the large penalty of a trap to the
-operating system. Such emulation has its own, smaller, execution
-cost in both time and space. To the extent that your code's
-important signed integer division operations are performed on two
-nonnegative operands, it may be desirable to use the div
-instruction directly.
-
-On the MC88110 processor the div instruction (also known as the
-divs instruction) processes negative operands without trapping to
-the operating system. When @samp{-m88110} is specified,
-@samp{-muse-div-instruction} is ignored, and the div instruction is used
-for signed integer division.
-
-Note that the result of dividing INT_MIN by -1 is undefined. In
-particular, the behavior of such a division with and without
-@samp{-muse-div-instruction} may differ.
-
-@item -mtrap-large-shift
-@itemx -mhandle-large-shift
-@kindex -mtrap-large-shift
-@kindex -mhandle-large-shift
-@cindex bit shift overflow (88k)
-@cindex large bit shifts (88k)
-Include code to detect bit-shifts of more than 31 bits; respectively,
-trap such shifts or emit code to handle them properly. By default GNU CC
-makes no special provision for large bit shifts.
-
-@item -mwarn-passed-structs
-@kindex -mwarn-passed-structs
-@cindex structure passing (88k)
-Warn when a function passes a struct as an argument or result.
-Structure-passing conventions have changed during the evolution of the C
-language, and are often the source of portability problems. By default,
-GNU CC issues no such warning.
-@end table
-
-@node RS/6000 and PowerPC Options
-@subsection IBM RS/6000 and PowerPC Options
-@cindex RS/6000 and PowerPC Options
-@cindex IBM RS/6000 and PowerPC Options
-
-These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
-@table @code
-@item -mpower
-@itemx -mno-power
-@itemx -mpower2
-@itemx -mno-power2
-@itemx -mpowerpc
-@itemx -mno-powerpc
-@itemx -mpowerpc-gpopt
-@itemx -mno-powerpc-gpopt
-@itemx -mpowerpc-gfxopt
-@itemx -mno-powerpc-gfxopt
-@itemx -mpowerpc64
-@itemx -mno-powerpc64
-@kindex -mpower
-@kindex -mpower2
-@kindex -mpowerpc
-@kindex -mpowerpc-gpopt
-@kindex -mpowerpc-gfxopt
-@kindex -mpowerpc64
-GNU CC supports two related instruction set architectures for the
-RS/6000 and PowerPC. The @dfn{POWER} instruction set are those
-instructions supported by the @samp{rios} chip set used in the original
-RS/6000 systems and the @dfn{PowerPC} instruction set is the
-architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
-the IBM 4xx microprocessors.
-
-Neither architecture is a subset of the other. However there is a
-large common subset of instructions supported by both. An MQ
-register is included in processors supporting the POWER architecture.
-
-You use these options to specify which instructions are available on the
-processor you are using. The default value of these options is
-determined when configuring GNU CC. Specifying the
-@samp{-mcpu=@var{cpu_type}} overrides the specification of these
-options. We recommend you use the @samp{-mcpu=@var{cpu_type}} option
-rather than the options listed above.
-
-The @samp{-mpower} option allows GNU CC to generate instructions that
-are found only in the POWER architecture and to use the MQ register.
-Specifying @samp{-mpower2} implies @samp{-power} and also allows GNU CC
-to generate instructions that are present in the POWER2 architecture but
-not the original POWER architecture.
-
-The @samp{-mpowerpc} option allows GNU CC to generate instructions that
-are found only in the 32-bit subset of the PowerPC architecture.
-Specifying @samp{-mpowerpc-gpopt} implies @samp{-mpowerpc} and also allows
-GNU CC to use the optional PowerPC architecture instructions in the
-General Purpose group, including floating-point square root. Specifying
-@samp{-mpowerpc-gfxopt} implies @samp{-mpowerpc} and also allows GNU CC to
-use the optional PowerPC architecture instructions in the Graphics
-group, including floating-point select.
-
-The @samp{-mpowerpc64} option allows GNU CC to generate the additional
-64-bit instructions that are found in the full PowerPC64 architecture
-and to treat GPRs as 64-bit, doubleword quantities. GNU CC defaults to
-@samp{-mno-powerpc64}.
-
-If you specify both @samp{-mno-power} and @samp{-mno-powerpc}, GNU CC
-will use only the instructions in the common subset of both
-architectures plus some special AIX common-mode calls, and will not use
-the MQ register. Specifying both @samp{-mpower} and @samp{-mpowerpc}
-permits GNU CC to use any instruction from either architecture and to
-allow use of the MQ register; specify this for the Motorola MPC601.
-
-@item -mnew-mnemonics
-@itemx -mold-mnemonics
-@kindex -mnew-mnemonics
-@kindex -mold-mnemonics
-Select which mnemonics to use in the generated assembler code.
-@samp{-mnew-mnemonics} requests output that uses the assembler mnemonics
-defined for the PowerPC architecture, while @samp{-mold-mnemonics}
-requests the assembler mnemonics defined for the POWER architecture.
-Instructions defined in only one architecture have only one mnemonic;
-GNU CC uses that mnemonic irrespective of which of these options is
-specified.
-
-GNU CC defaults to the mnemonics appropriate for the architecture in
-use. Specifying @samp{-mcpu=@var{cpu_type}} sometimes overrides the
-value of these option. Unless you are building a cross-compiler, you
-should normally not specify either @samp{-mnew-mnemonics} or
-@samp{-mold-mnemonics}, but should instead accept the default.
-
-@item -mcpu=@var{cpu_type}
-@kindex -mcpu
-Set architecture type, register usage, choice of mnemonics, and
-instruction scheduling parameters for machine type @var{cpu_type}.
-Supported values for @var{cpu_type} are @samp{rs6000}, @samp{rios1},
-@samp{rios2}, @samp{rsc}, @samp{601}, @samp{602}, @samp{603},
-@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{740},
-@samp{750}, @samp{power}, @samp{power2}, @samp{powerpc}, @samp{403},
-@samp{505}, @samp{801}, @samp{821}, @samp{823}, and @samp{860} and
-@samp{common}. @samp{-mcpu=power}, @samp{-mcpu=power2}, and
-@samp{-mcpu=powerpc} specify generic POWER, POWER2 and pure PowerPC
-(i.e., not MPC601) architecture machine types, with an appropriate,
-generic processor model assumed for scheduling purposes.@refill
-
-@c overfull hbox here --bob 22 jul96
-@c original text between ignore ... end ignore
-@ignore
-Specifying any of the @samp{-mcpu=rios1}, @samp{-mcpu=rios2},
-@samp{-mcpu=rsc}, @samp{-mcpu=power}, or @samp{-mcpu=power2} options
-enables the @samp{-mpower} option and disables the @samp{-mpowerpc}
-option; @samp{-mcpu=601} enables both the @samp{-mpower} and
-@samp{-mpowerpc} options; all of @samp{-mcpu=602}, @samp{-mcpu=603},
-@samp{-mcpu=603e}, @samp{-mcpu=604}, @samp{-mcpu=604e},
-@samp{-mcpu=620}, @samp{-mcpu=403}, @samp{-mcpu=505}, @samp{-mcpu=801},
-@c CYGNUS LOCAL vmakarov
-@samp{-mcpu=740}, @samp{-mcpu=750},
-@c END CYGNUS LOCAL
-@samp{-mcpu=821}, @samp{-mcpu=823}, @samp{-mcpu=860} and
-@samp{-mcpu=powerpc} enable the @samp{-mpowerpc} option and disable the
-@samp{-mpower} option; @samp{-mcpu=common} disables both the
-@samp{-mpower} and @samp{-mpowerpc} options.@refill
-@end ignore
-@c changed paragraph
-Specifying any of the following options:
-@samp{-mcpu=rios1}, @samp{-mcpu=rios2}, @samp{-mcpu=rsc},
-@samp{-mcpu=power}, or @samp{-mcpu=power2}
-enables the @samp{-mpower} option and disables the @samp{-mpowerpc} option;
-@samp{-mcpu=601} enables both the @samp{-mpower} and @samp{-mpowerpc} options.
-All of @samp{-mcpu=602}, @samp{-mcpu=603}, @samp{-mcpu=603e},
-@samp{-mcpu=604}, @samp{-mcpu=620},
-enable the @samp{-mpowerpc} option and disable the @samp{-mpower} option.
-Exactly similarly, all of @samp{-mcpu=403},
-@samp{-mcpu=505}, @samp{-mcpu=821}, @samp{-mcpu=860} and @samp{-mcpu=powerpc}
-enable the @samp{-mpowerpc} option and disable the @samp{-mpower} option.
-@samp{-mcpu=common} disables both the
-@samp{-mpower} and @samp{-mpowerpc} options.@refill
-@c end changes to prevent overfull hboxes
-
-AIX versions 4 or greater selects @samp{-mcpu=common} by default, so
-that code will operate on all members of the RS/6000 and PowerPC
-families. In that case, GNU CC will use only the instructions in the
-common subset of both architectures plus some special AIX common-mode
-calls, and will not use the MQ register. GNU CC assumes a generic
-processor model for scheduling purposes.
-
-Specifying any of the options @samp{-mcpu=rios1}, @samp{-mcpu=rios2},
-@samp{-mcpu=rsc}, @samp{-mcpu=power}, or @samp{-mcpu=power2} also
-disables the @samp{new-mnemonics} option. Specifying @samp{-mcpu=601},
-@samp{-mcpu=602}, @samp{-mcpu=603}, @samp{-mcpu=603e}, @samp{-mcpu=604},
-@samp{620}, @samp{403}, or @samp{-mcpu=powerpc} also enables the
-@samp{new-mnemonics} option.@refill
-
-Specifying @samp{-mcpu=403}, @samp{-mcpu=821}, or @samp{-mcpu=860} also
-enables the @samp{-msoft-float} option.
-
-@item -mtune=@var{cpu_type}
-Set the instruction scheduling parameters for machine type
-@var{cpu_type}, but do not set the architecture type, register usage,
-choice of mnemonics like @samp{-mcpu=}@var{cpu_type} would. The same
-values for @var{cpu_type} are used for @samp{-mtune=}@var{cpu_type} as
-for @samp{-mcpu=}@var{cpu_type}. The @samp{-mtune=}@var{cpu_type}
-option overrides the @samp{-mcpu=}@var{cpu_type} option in terms of
-instruction scheduling parameters.
-
-@item -mfull-toc
-@itemx -mno-fp-in-toc
-@itemx -mno-sum-in-toc
-@itemx -mminimal-toc
-@kindex -mminimal-toc
-Modify generation of the TOC (Table Of Contents), which is created for
-every executable file. The @samp{-mfull-toc} option is selected by
-default. In that case, GNU CC will allocate at least one TOC entry for
-each unique non-automatic variable reference in your program. GNU CC
-will also place floating-point constants in the TOC. However, only
-16,384 entries are available in the TOC.
-
-If you receive a linker error message that saying you have overflowed
-the available TOC space, you can reduce the amount of TOC space used
-with the @samp{-mno-fp-in-toc} and @samp{-mno-sum-in-toc} options.
-@samp{-mno-fp-in-toc} prevents GNU CC from putting floating-point
-constants in the TOC and @samp{-mno-sum-in-toc} forces GNU CC to
-generate code to calculate the sum of an address and a constant at
-run-time instead of putting that sum into the TOC. You may specify one
-or both of these options. Each causes GNU CC to produce very slightly
-slower and larger code at the expense of conserving TOC space.
-
-If you still run out of space in the TOC even when you specify both of
-these options, specify @samp{-mminimal-toc} instead. This option causes
-GNU CC to make only one TOC entry for every file. When you specify this
-option, GNU CC will produce code that is slower and larger but which
-uses extremely little TOC space. You may wish to use this option
-only on files that contain less frequently executed code. @refill
-
-@item -maix64
-@itemx -maix32
-@kindex -maix64
-@kindex -maix32
-Enable AIX 64-bit ABI and calling convention: 64-bit pointers, 64-bit
-@code{long} type, and the infrastructure needed to support them.
-Specifying @samp{-maix64} implies @samp{-mpowerpc64} and
-@samp{-mpowerpc}, while @samp{-maix32} disables the 64-bit ABI and
-implies @samp{-mno-powerpc64}. GNU CC defaults to @samp{-maix32}.
-
-@item -mxl-call
-@itemx -mno-xl-call
-@kindex -mxl-call
-On AIX, pass floating-point arguments to prototyped functions beyond the
-register save area (RSA) on the stack in addition to argument FPRs. The
-AIX calling convention was extended but not initially documented to
-handle an obscure K&R C case of calling a function that takes the
-address of its arguments with fewer arguments than declared. AIX XL
-compilers access floating point arguments which do not fit in the
-RSA from the stack when a subroutine is compiled without
-optimization. Because always storing floating-point arguments on the
-stack is inefficient and rarely needed, this option is not enabled by
-default and only is necessary when calling subroutines compiled by AIX
-XL compilers without optimization.
-
-@item -mthreads
-@kindex -mthreads
-Support @dfn{AIX Threads}. Link an application written to use
-@dfn{pthreads} with special libraries and startup code to enable the
-application to run.
-
-@item -mpe
-@kindex -mpe
-Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE). Link an
-application written to use message passing with special startup code to
-enable the application to run. The system must have PE installed in the
-standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
-must be overridden with the @samp{-specs=} option to specify the
-appropriate directory location. The Parallel Environment does not
-support threads, so the @samp{-mpe} option and the @samp{-mthreads}
-option are incompatible.
-
-@item -msoft-float
-@itemx -mhard-float
-@kindex -msoft-float
-Generate code that does not use (uses) the floating-point register set.
-Software floating point emulation is provided if you use the
-@samp{-msoft-float} option, and pass the option to GNU CC when linking.
-
-@item -mmultiple
-@itemx -mno-multiple
-Generate code that uses (does not use) the load multiple word
-instructions and the store multiple word instructions. These
-instructions are generated by default on POWER systems, and not
-generated on PowerPC systems. Do not use @samp{-mmultiple} on little
-endian PowerPC systems, since those instructions do not work when the
-processor is in little endian mode. The exceptions are PPC740 and
-PPC750 which permit the instructions usage in little endian mode.
-
-@item -mstring
-@itemx -mno-string
-@kindex -mstring
-Generate code that uses (does not use) the load string instructions
-and the store string word instructions to save multiple registers and
-do small block moves. These instructions are generated by default on
-POWER systems, and not generated on PowerPC systems. Do not use
-@samp{-mstring} on little endian PowerPC systems, since those
-instructions do not work when the processor is in little endian mode.
-The exceptions are PPC740 and PPC750 which permit the instructions
-usage in little endian mode.
-
-@item -mupdate
-@itemx -mno-update
-@kindex -mupdate
-Generate code that uses (does not use) the load or store instructions
-that update the base register to the address of the calculated memory
-location. These instructions are generated by default. If you use
-@samp{-mno-update}, there is a small window between the time that the
-stack pointer is updated and the address of the previous frame is
-stored, which means code that walks the stack frame across interrupts or
-signals may get corrupted data.
-
-@item -mfused-madd
-@itemx -mno-fused-madd
-@kindex -mfused-madd
-Generate code that uses (does not use) the floating point multiply and
-accumulate instructions. These instructions are generated by default if
-hardware floating is used.
-
-@item -mno-bit-align
-@itemx -mbit-align
-@kindex -mbit-align
-On System V.4 and embedded PowerPC systems do not (do) force structures
-and unions that contain bit fields to be aligned to the base type of the
-bit field.
-
-For example, by default a structure containing nothing but 8
-@code{unsigned} bitfields of length 1 would be aligned to a 4 byte
-boundary and have a size of 4 bytes. By using @samp{-mno-bit-align},
-the structure would be aligned to a 1 byte boundary and be one byte in
-size.
-
-@c CYGNUS LOCAL vmakarov
-@item -mno-bit-word
-@itemx -mbit-word
-On System V.4 and embedded PowerPC systems do not (do) force structures
-and unions that contain bit fields to align the bit field within the
-structure to the base type of the bitfield. Unlike @samp{-mbit-align}
-and @samp{-mno-bit-align}, the alignment of the structure itself is not
-changed, just the alignment of bitfields within the structure.
-
-For example, by default, the structure:
-
-@smallexample
-struct A @{
- int :0;
- int i2:20;
- int i3:17;
-@};
-@end smallexample
-
-would normally put the field @var{i3} starting at bit 20, and it would
-cross the word boundary. If you use @samp{-mno-bit-word}, the field
-will begin on the next word boundary so that it does not cross a word
-boundary.
-
-@item -mbranch-cost=@var{n}
-Set the value of the internal macro @samp{BRANCH_COST} to be @var{n}.
-Higher values mean branches are more costly, so the compiler will try
-harder to generate code that does not use branches. The default is 3.
-@c END CYGNUS LOCAL
-
-@item -mno-strict-align
-@itemx -mstrict-align
-@kindex -mstrict-align
-On System V.4 and embedded PowerPC systems do not (do) assume that
-unaligned memory references will be handled by the system.
-
-@item -mrelocatable
-@itemx -mno-relocatable
-@kindex -mrelocatable
-On embedded PowerPC systems generate code that allows (does not allow)
-the program to be relocated to a different address at runtime. If you
-use @samp{-mrelocatable} on any module, all objects linked together must
-be compiled with @samp{-mrelocatable} or @samp{-mrelocatable-lib}.
-
-@item -mrelocatable-lib
-@itemx -mno-relocatable-lib
-On embedded PowerPC systems generate code that allows (does not allow)
-the program to be relocated to a different address at runtime. Modules
-compiled with @samp{-mrelocatable-lib} can be linked with either modules
-compiled without @samp{-mrelocatable} and @samp{-mrelocatable-lib} or
-with modules compiled with the @samp{-mrelocatable} options.
-
-@item -mno-toc
-@itemx -mtoc
-On System V.4 and embedded PowerPC systems do not (do) assume that
-register 2 contains a pointer to a global area pointing to the addresses
-used in the program.
-
-@item -mlittle
-@itemx -mlittle-endian
-On System V.4 and embedded PowerPC systems compile code for the
-processor in little endian mode. The @samp{-mlittle-endian} option is
-the same as @samp{-mlittle}.
-
-@item -mbig
-@itemx -mbig-endian
-On System V.4 and embedded PowerPC systems compile code for the
-processor in big endian mode. The @samp{-mbig-endian} option is
-the same as @samp{-mbig}.
-
-@item -mcall-sysv
-On System V.4 and embedded PowerPC systems compile code using calling
-conventions that adheres to the March 1995 draft of the System V
-Application Binary Interface, PowerPC processor supplement. This is the
-default unless you configured GCC using @samp{powerpc-*-eabiaix}.
-
-@item -mcall-sysv-eabi
-Specify both @samp{-mcall-sysv} and @samp{-meabi} options.
-
-@item -mcall-sysv-noeabi
-Specify both @samp{-mcall-sysv} and @samp{-mno-eabi} options.
-
-@item -mcall-aix
-On System V.4 and embedded PowerPC systems compile code using calling
-conventions that are similar to those used on AIX. This is the
-default if you configured GCC using @samp{powerpc-*-eabiaix}.
-
-@item -mcall-solaris
-On System V.4 and embedded PowerPC systems compile code for the Solaris
-operating system.
-
-@item -mcall-linux
-On System V.4 and embedded PowerPC systems compile code for the
-Linux-based GNU system.
-
-@c CYGNUS LOCAL vmakarov
-@item -mcall-i960-old
-On System V.4 and embedded PowerPC systems compile code so that
-structure layout is compatible with the Intel i960 compiler using the
-@samp{-mold-align}, @samp{-mno-strict-align}, and @samp{-mca} switches.
-The @samp{-mcall-i960-old} option sets the @samp{-mlittle},
-@samp{-meabi}, @samp{-mno-bit-word}, and @samp{-mno-strict-align}
-PowerPC options, and also forces the type @code{wchar_t} to be an
-@code{int} instead of @code{long int}.
-@c END CYGNUS LOCAL
-
-@item -mprototype
-@itemx -mno-prototype
-On System V.4 and embedded PowerPC systems assume that all calls to
-variable argument functions are properly prototyped. Otherwise, the
-compiler must insert an instruction before every non prototyped call to
-set or clear bit 6 of the condition code register (@var{CR}) to
-indicate whether floating point values were passed in the floating point
-registers in case the function takes a variable arguments. With
-@samp{-mprototype}, only calls to prototyped variable argument functions
-will set or clear the bit.
-
-@c CYGNUS LOCAL -- vmakarov/prolog-epilog instruction scheduling
-@item -msched-epilog
-@itemx -mno-sched-epilog
-Generate RTL instructions for function epilogue which permits to make
-epilogue instruction scheduling for @samp{eabi}. By default assembler
-code is generated and epilogue instruction scheduling is not possible.
-
-@item -msched-prolog
-@itemx -mno-sched-prolog
-Generate RTL instructions for function prologue which permits to make
-prologue instruction scheduling for @samp{eabi}. By default assembler
-code is generated and prologue instruction scheduling is not possible.
-@c END CYGNUS LOCAL
-
-@item -msim
-On embedded PowerPC systems, assume that the startup module is called
-@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
-@file{libc.a}. This is the default for @samp{powerpc-*-eabisim}.
-configurations.
-
-@item -mmvme
-On embedded PowerPC systems, assume that the startup module is called
-@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
-@file{libc.a}.
-
-@item -mads
-On embedded PowerPC systems, assume that the startup module is called
-@file{crt0.o} and the standard C libraries are @file{libads.a} and
-@file{libc.a}.
-
-@item -myellowknife
-On embedded PowerPC systems, assume that the startup module is called
-@file{crt0.o} and the standard C libraries are @file{libyk.a} and
-@file{libc.a}.
-
-@item -memb
-On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
-header to indicate that @samp{eabi} extended relocations are used.
-
-@item -meabi
-@itemx -mno-eabi
-On System V.4 and embedded PowerPC systems do (do not) adhere to the
-Embedded Applications Binary Interface (eabi) which is a set of
-modifications to the System V.4 specifications. Selecting @code{-meabi}
-means that the stack is aligned to an 8 byte boundary, a function
-@code{__eabi} is called to from @code{main} to set up the eabi
-environment, and the @samp{-msdata} option can use both @code{r2} and
-@code{r13} to point to two separate small data areas. Selecting
-@code{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
-do not call an initialization function from @code{main}, and the
-@samp{-msdata} option will only use @code{r13} to point to a single
-small data area. The @samp{-meabi} option is on by default if you
-configured GCC using one of the @samp{powerpc*-*-eabi*} options.
-
-@item -msdata=eabi
-On System V.4 and embedded PowerPC systems, put small initialized
-@code{const} global and static data in the @samp{.sdata2} section, which
-is pointed to by register @code{r2}. Put small initialized
-non-@code{const} global and static data in the @samp{.sdata} section,
-which is pointed to by register @code{r13}. Put small uninitialized
-global and static data in the @samp{.sbss} section, which is adjacent to
-the @samp{.sdata} section. The @samp{-msdata=eabi} option is
-incompatible with the @samp{-mrelocatable} option. The
-@samp{-msdata=eabi} option also sets the @samp{-memb} option.
-
-@item -msdata=sysv
-On System V.4 and embedded PowerPC systems, put small global and static
-data in the @samp{.sdata} section, which is pointed to by register
-@code{r13}. Put small uninitialized global and static data in the
-@samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
-The @samp{-msdata=sysv} option is incompatible with the
-@samp{-mrelocatable} option.
-
-@item -msdata=default
-@itemx -msdata
-On System V.4 and embedded PowerPC systems, if @samp{-meabi} is used,
-compile code the same as @samp{-msdata=eabi}, otherwise compile code the
-same as @samp{-msdata=sysv}.
-
-@item -msdata-data
-On System V.4 and embedded PowerPC systems, put small global and static
-data in the @samp{.sdata} section. Put small uninitialized global and
-static data in the @samp{.sbss} section. Do not use register @code{r13}
-to address small data however. This is the default behavior unless
-other @samp{-msdata} options are used.
-
-@item -msdata=none
-@itemx -mno-sdata
-On embedded PowerPC systems, put all initialized global and static data
-in the @samp{.data} section, and all uninitialized data in the
-@samp{.bss} section.
-
-@item -G @var{num}
-@cindex smaller data references (PowerPC)
-@cindex .sdata/.sdata2 references (PowerPC)
-On embedded PowerPC systems, put global and static items less than or
-equal to @var{num} bytes into the small data or bss sections instead of
-the normal data or bss section. By default, @var{num} is 8. The
-@samp{-G @var{num}} switch is also passed to the linker.
-All modules should be compiled with the same @samp{-G @var{num}} value.
-
-@item -mregnames
-@itemx -mno-regnames
-On System V.4 and embedded PowerPC systems do (do not) emit register
-names in the assembly language output using symbolic forms.
-
-@c CYGNUS LOCAL vmakarov
-@item -mvxworks
-On System V.4 and embedded PowerPC systems, specify that you are
-compiling for a VxWorks system.
-@c END CYGNUS LOCAL
-@c CYGNUS LOCAL jlemke
-
-@item -mmpc860c0[=@var{num}]
-@kindex mmpc860c0
-This option is only applicable to MPC860 chips when producing ELF
-executables with the GNU linker. It does not cause any changes to
-the .o files but causes the linker to perform a check for
-"problematic" conditional branches and implement a work around.
-
-The problem is that some chips may treat the target instruction
-as a no-op, given the following conditions:
-
-@smallexample
-1/ The processor is an MPC860, version C0 or earlier.
-2/ A forward conditional branch is executed.
-3/ The branch is predicted as not taken.
-4/ The branch is taken.
-5/ The branch is located in the last 5 words of a page.
-6/ The branch target is located on a subsequent page.
-@end smallexample
-
-The optional argument is the number of words that are checked
-at the end of each text page. It may be any value from 1 to 10
-and defaults to 5.
-@c END CYGNUS LOCAL
-@end table
-@node RT Options
-@subsection IBM RT Options
-@cindex RT options
-@cindex IBM RT options
-
-These @samp{-m} options are defined for the IBM RT PC:
-
-@table @code
-@item -min-line-mul
-Use an in-line code sequence for integer multiplies. This is the
-default.
-
-@item -mcall-lib-mul
-Call @code{lmul$$} for integer multiples.
-
-@item -mfull-fp-blocks
-Generate full-size floating point data blocks, including the minimum
-amount of scratch space recommended by IBM. This is the default.
-
-@item -mminimum-fp-blocks
-Do not include extra scratch space in floating point data blocks. This
-results in smaller code, but slower execution, since scratch space must
-be allocated dynamically.
-
-@cindex @file{varargs.h} and RT PC
-@cindex @file{stdarg.h} and RT PC
-@item -mfp-arg-in-fpregs
-Use a calling sequence incompatible with the IBM calling convention in
-which floating point arguments are passed in floating point registers.
-Note that @code{varargs.h} and @code{stdargs.h} will not work with
-floating point operands if this option is specified.
-
-@item -mfp-arg-in-gregs
-Use the normal calling convention for floating point arguments. This is
-the default.
-
-@item -mhc-struct-return
-Return structures of more than one word in memory, rather than in a
-register. This provides compatibility with the MetaWare HighC (hc)
-compiler. Use the option @samp{-fpcc-struct-return} for compatibility
-with the Portable C Compiler (pcc).
-
-@item -mnohc-struct-return
-Return some structures of more than one word in registers, when
-convenient. This is the default. For compatibility with the
-IBM-supplied compilers, use the option @samp{-fpcc-struct-return} or the
-option @samp{-mhc-struct-return}.
-@end table
-
-@node MIPS Options
-@subsection MIPS Options
-@cindex MIPS options
-
-These @samp{-m} options are defined for the MIPS family of computers:
-
-@table @code
-@item -mcpu=@var{cpu type}
-Assume the defaults for the machine type @var{cpu type} when scheduling
-instructions. The choices for @var{cpu type} are @samp{r2000}, @samp{r3000},
-@samp{r4000}, @samp{r4400}, @samp{r4600}, and @samp{r6000}. While picking a
-specific @var{cpu type} will schedule things appropriately for that
-particular chip, the compiler will not generate any code that does not
-meet level 1 of the MIPS ISA (instruction set architecture) without
-the @samp{-mips2} or @samp{-mips3} switches being used.
-
-@item -mips1
-Issue instructions from level 1 of the MIPS ISA. This is the default.
-@samp{r3000} is the default @var{cpu type} at this ISA level.
-
-@item -mips2
-Issue instructions from level 2 of the MIPS ISA (branch likely, square
-root instructions). @samp{r6000} is the default @var{cpu type} at this
-ISA level.
-
-@item -mips3
-Issue instructions from level 3 of the MIPS ISA (64 bit instructions).
-@samp{r4000} is the default @var{cpu type} at this ISA level.
-This option does not change the sizes of any of the C data types.
-
-@item -mips4
-Issue instructions from level 4 of the MIPS ISA. @samp{r8000} is the
-default @var{cpu type} at this ISA level.
-
-@item -mfp32
-Assume that 32 32-bit floating point registers are available. This is
-the default.
-
-@item -mfp64
-Assume that 32 64-bit floating point registers are available. This is
-the default when the @samp{-mips3} option is used.
-
-@item -mgp32
-Assume that 32 32-bit general purpose registers are available. This is
-the default.
-
-@item -mgp64
-Assume that 32 64-bit general purpose registers are available. This is
-the default when the @samp{-mips3} option is used.
-
-@item -mint64
-Types long, int, and pointer are 64 bits. This works only if @samp{-mips3}
-is also specified.
-
-@item -mlong64
-Types long and pointer are 64 bits, and type int is 32 bits.
-This works only if @samp{-mips3} is also specified.
-
-@itemx -mabi=32
-@itemx -mabi=n32
-@itemx -mabi=64
-@itemx -mabi=eabi
-Generate code for the indicated ABI.
-
-@item -mmips-as
-Generate code for the MIPS assembler, and invoke @file{mips-tfile} to
-add normal debug information. This is the default for all
-platforms except for the OSF/1 reference platform, using the OSF/rose
-object format. If the either of the @samp{-gstabs} or @samp{-gstabs+}
-switches are used, the @file{mips-tfile} program will encapsulate the
-stabs within MIPS ECOFF.
-
-@item -mgas
-Generate code for the GNU assembler. This is the default on the OSF/1
-reference platform, using the OSF/rose object format. Also, this is
-the default if the configure option @samp{--with-gnu-as} is used.
-
-@item -msplit-addresses
-@itemx -mno-split-addresses
-Generate code to load the high and low parts of address constants separately.
-This allows @code{gcc} to optimize away redundant loads of the high order
-bits of addresses. This optimization requires GNU as and GNU ld.
-This optimization is enabled by default for some embedded targets where
-GNU as and GNU ld are standard.
-
-@item -mrnames
-@itemx -mno-rnames
-The @samp{-mrnames} switch says to output code using the MIPS software
-names for the registers, instead of the hardware names (ie, @var{a0}
-instead of @var{$4}). The only known assembler that supports this option
-is the Algorithmics assembler.
-
-@item -mgpopt
-@itemx -mno-gpopt
-The @samp{-mgpopt} switch says to write all of the data declarations
-before the instructions in the text section, this allows the MIPS
-assembler to generate one word memory references instead of using two
-words for short global or static data items. This is on by default if
-optimization is selected.
-
-@item -mstats
-@itemx -mno-stats
-For each non-inline function processed, the @samp{-mstats} switch
-causes the compiler to emit one line to the standard error file to
-print statistics about the program (number of registers saved, stack
-size, etc.).
-
-@item -mmemcpy
-@itemx -mno-memcpy
-The @samp{-mmemcpy} switch makes all block moves call the appropriate
-string function (@samp{memcpy} or @samp{bcopy}) instead of possibly
-generating inline code.
-
-@item -mmips-tfile
-@itemx -mno-mips-tfile
-The @samp{-mno-mips-tfile} switch causes the compiler not
-postprocess the object file with the @file{mips-tfile} program,
-after the MIPS assembler has generated it to add debug support. If
-@file{mips-tfile} is not run, then no local variables will be
-available to the debugger. In addition, @file{stage2} and
-@file{stage3} objects will have the temporary file names passed to the
-assembler embedded in the object file, which means the objects will
-not compare the same. The @samp{-mno-mips-tfile} switch should only
-be used when there are bugs in the @file{mips-tfile} program that
-prevents compilation.
-
-@item -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not part of GNU CC.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-
-@item -mhard-float
-Generate output containing floating point instructions. This is the
-default if you use the unmodified sources.
-
-@item -mabicalls
-@itemx -mno-abicalls
-Emit (or do not emit) the pseudo operations @samp{.abicalls},
-@samp{.cpload}, and @samp{.cprestore} that some System V.4 ports use for
-position independent code.
-
-@item -mlong-calls
-@itemx -mno-long-calls
-Do all calls with the @samp{JALR} instruction, which requires
-loading up a function's address into a register before the call.
-You need to use this switch, if you call outside of the current
-512 megabyte segment to functions that are not through pointers.
-
-@item -mhalf-pic
-@itemx -mno-half-pic
-Put pointers to extern references into the data section and load them
-up, rather than put the references in the text section.
-
-@item -membedded-pic
-@itemx -mno-embedded-pic
-Generate PIC code suitable for some embedded systems. All calls are
-made using PC relative address, and all data is addressed using the $gp
-register. No more than 65536 bytes of global data may be used. This
-requires GNU as and GNU ld which do most of the work. This currently
-only works on targets which use ECOFF; it does not work with ELF.
-
-@item -membedded-data
-@itemx -mno-embedded-data
-Allocate variables to the read-only data section first if possible, then
-next in the small data section if possible, otherwise in data. This gives
-slightly slower code than the default, but reduces the amount of RAM required
-when executing, and thus may be preferred for some embedded systems.
-
-@item -msingle-float
-@itemx -mdouble-float
-The @samp{-msingle-float} switch tells gcc to assume that the floating
-point coprocessor only supports single precision operations, as on the
-@samp{r4650} chip. The @samp{-mdouble-float} switch permits gcc to use
-double precision operations. This is the default.
-
-@item -mmad
-@itemx -mno-mad
-Permit use of the @samp{mad}, @samp{madu} and @samp{mul} instructions,
-as on the @samp{r4650} chip.
-
-@item -m4650
-Turns on @samp{-msingle-float}, @samp{-mmad}, and, at least for now,
-@samp{-mcpu=r4650}.
-
-@item -EL
-Compile code for the processor in little endian mode.
-The requisite libraries are assumed to exist.
-
-@item -EB
-Compile code for the processor in big endian mode.
-The requisite libraries are assumed to exist.
-
-@item -G @var{num}
-@cindex smaller data references (MIPS)
-@cindex gp-relative references (MIPS)
-Put global and static items less than or equal to @var{num} bytes into
-the small data or bss sections instead of the normal data or bss
-section. This allows the assembler to emit one word memory reference
-instructions based on the global pointer (@var{gp} or @var{$28}),
-instead of the normal two words used. By default, @var{num} is 8 when
-the MIPS assembler is used, and 0 when the GNU assembler is used. The
-@samp{-G @var{num}} switch is also passed to the assembler and linker.
-All modules should be compiled with the same @samp{-G @var{num}}
-value.
-
-@item -nocpp
-Tell the MIPS assembler to not run its preprocessor over user
-assembler files (with a @samp{.s} suffix) when assembling them.
-
-@c CYGNUS LOCAL law
-@item -malign-loops=@var{num}
-Align loops to a 2 raised to a @var{num} byte boundary. If
-@samp{-malign-loops} is not specified, the default is 2. Note specific
-MIPS targets may override the default value.
-
-@item -malign-jumps=@var{num}
-Align instructions that are only jumped to to a 2 raised to a @var{num}
-byte boundary. If @samp{-malign-jumps} is not specified, the default is 2.
-Note specific MIPS targets may override the default value.
-
-@item -malign-functions=@var{num}
-Align the start of functions to a 2 raised to @var{num} byte boundary.
-If @samp{-malign-functions} is not specified, the default is 2.
-Note specific MIPS targets may override the default value.
-
-@item -mmax-skip-loops=@var{num}
-Maximum number of padding bytes allowed to satisfy a loop alignment
-request. The default value is zero which specifies no limit on the number
-of padding bytes.
-Note specific MIPS targets may override the default value.
-
-@item -mmax-skip-jumps=@var{num}
-Maximum number of padding bytes allowed to satisfy a loop alignment
-request. The default value is zero which specifies no limit on the number
-of padding bytes.
-Note specific MIPS targets may override the default value.
-
-@item -mmax-skip-functions=@var{num}
-Maximum number of padding bytes allowed to satisfy a loop alignment
-request. The default value is zero which specifies no limit on the number
-of padding bytes. This option may have no effect when combined with other
-options such as @samp{-ffunction-sections}.
-Note specific MIPS targets may override the default value.
-@c END CYGNUS LOCAL
-@end table
-
-@ifset INTERNALS
-These options are defined by the macro
-@code{TARGET_SWITCHES} in the machine description. The default for the
-options is also defined by that macro, which enables you to change the
-defaults.
-@end ifset
-
-@node i386 Options
-@subsection Intel 386 Options
-@cindex i386 Options
-@cindex Intel 386 Options
-
-These @samp{-m} options are defined for the i386 family of computers:
-
-@table @code
-@item -mcpu=@var{cpu type}
-Assume the defaults for the machine type @var{cpu type} when scheduling
-instructions. The choices for @var{cpu type} are: @samp{i386},
-@samp{i486}, @samp{i586} (@samp{pentium}), @samp{pentium}, @samp{i686}
-(@samp{pentiumpro}) and @samp{pentiumpro}. While picking a specific
-@var{cpu type} will schedule things appropriately for that particular
-chip, the compiler will not generate any code that does not run on the
-i386 without the @samp{-march=@var{cpu type}} option being used.
-
-@item -march=@var{cpu type}
-Generate instructions for the machine type @var{cpu type}. The choices
-for @var{cpu type} are: @samp{i386}, @samp{i486}, @samp{pentium}, and
-@samp{pentiumpro}. Specifying @samp{-march=@var{cpu type}} implies
-@samp{-mcpu=@var{cpu type}}.
-
-@item -m386
-@itemx -m486
-@itemx -mpentium
-@itemx -mpentiumpro
-Synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and -mcpu=pentiumpro
-respectively.
-
-@item -mieee-fp
-@itemx -mno-ieee-fp
-Control whether or not the compiler uses IEEE floating point
-comparisons. These handle correctly the case where the result of a
-comparison is unordered.
-
-@item -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not part of GNU CC.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-
-On machines where a function returns floating point results in the 80387
-register stack, some floating point opcodes may be emitted even if
-@samp{-msoft-float} is used.
-
-@item -mno-fp-ret-in-387
-Do not use the FPU registers for return values of functions.
-
-The usual calling convention has functions return values of types
-@code{float} and @code{double} in an FPU register, even if there
-is no FPU. The idea is that the operating system should emulate
-an FPU.
-
-The option @samp{-mno-fp-ret-in-387} causes such values to be returned
-in ordinary CPU registers instead.
-
-@item -mno-fancy-math-387
-Some 387 emulators do not support the @code{sin}, @code{cos} and
-@code{sqrt} instructions for the 387. Specify this option to avoid
-generating those instructions. This option is the default on FreeBSD.
-As of revision 2.6.1, these instructions are not generated unless you
-also use the @samp{-ffast-math} switch.
-
-@item -malign-double
-@itemx -mno-align-double
-Control whether GNU CC aligns @code{double}, @code{long double}, and
-@code{long long} variables on a two word boundary or a one word
-boundary. Aligning @code{double} variables on a two word boundary will
-produce code that runs somewhat faster on a @samp{Pentium} at the
-expense of more memory.
-
-@strong{Warning:} if you use the @samp{-malign-double} switch,
-structures containing the above types will be aligned differently than
-the published application binary interface specifications for the 386.
-
-@item -msvr3-shlib
-@itemx -mno-svr3-shlib
-Control whether GNU CC places uninitialized locals into @code{bss} or
-@code{data}. @samp{-msvr3-shlib} places these locals into @code{bss}.
-These options are meaningful only on System V Release 3.
-
-@item -mno-wide-multiply
-@itemx -mwide-multiply
-Control whether GNU CC uses the @code{mul} and @code{imul} that produce
-64 bit results in @code{eax:edx} from 32 bit operands to do @code{long
-long} multiplies and 32-bit division by constants.
-
-@item -mrtd
-Use a different function-calling convention, in which functions that
-take a fixed number of arguments return with the @code{ret} @var{num}
-instruction, which pops their arguments while returning. This saves one
-instruction in the caller since there is no need to pop the arguments
-there.
-
-You can specify that an individual function is called with this calling
-sequence with the function attribute @samp{stdcall}. You can also
-override the @samp{-mrtd} option by using the function attribute
-@samp{cdecl}. @xref{Function Attributes}
-
-@strong{Warning:} this calling convention is incompatible with the one
-normally used on Unix, so you cannot use it if you need to call
-libraries compiled with the Unix compiler.
-
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including @code{printf});
-otherwise incorrect code will be generated for calls to those
-functions.
-
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-
-@item -mreg-alloc=@var{regs}
-Control the default allocation order of integer registers. The
-string @var{regs} is a series of letters specifying a register. The
-supported letters are: @code{a} allocate EAX; @code{b} allocate EBX;
-@code{c} allocate ECX; @code{d} allocate EDX; @code{S} allocate ESI;
-@code{D} allocate EDI; @code{B} allocate EBP.
-
-@item -mregparm=@var{num}
-Control how many registers are used to pass integer arguments. By
-default, no registers are used to pass arguments, and at most 3
-registers can be used. You can control this behavior for a specific
-function by using the function attribute @samp{regparm}. @xref{Function Attributes}
-
-@strong{Warning:} if you use this switch, and
-@var{num} is nonzero, then you must build all modules with the same
-value, including any libraries. This includes the system libraries and
-startup modules.
-
-@item -malign-loops=@var{num}
-Align loops to a 2 raised to a @var{num} byte boundary. If
-@samp{-malign-loops} is not specified, the default is 2 unless
-gas 2.8 (or later) is being used in which case the default is
-to align the loop on a 16 byte boundary if it is less than 8
-bytes away.
-
-@item -malign-jumps=@var{num}
-Align instructions that are only jumped to to a 2 raised to a @var{num}
-byte boundary. If @samp{-malign-jumps} is not specified, the default is
-2 if optimizing for a 386, and 4 if optimizing for a 486 unless
-gas 2.8 (or later) is being used in which case the default is
-to align the instruction on a 16 byte boundary if it is less
-than 8 bytes away.
-
-@item -malign-functions=@var{num}
-Align the start of functions to a 2 raised to @var{num} byte boundary.
-If @samp{-malign-functions} is not specified, the default is 2 if optimizing
-for a 386, and 4 if optimizing for a 486.
-@end table
-
-@node HPPA Options
-@subsection HPPA Options
-@cindex HPPA Options
-
-These @samp{-m} options are defined for the HPPA family of computers:
-
-@table @code
-@item -mpa-risc-1-0
-Generate code for a PA 1.0 processor.
-
-@item -mpa-risc-1-1
-Generate code for a PA 1.1 processor.
-
-@item -mbig-switch
-Generate code suitable for big switch tables. Use this option only if
-the assembler/linker complain about out of range branches within a switch
-table.
-
-@item -mjump-in-delay
-Fill delay slots of function calls with unconditional jump instructions
-by modifying the return pointer for the function call to be the target
-of the conditional jump.
-
-@item -mdisable-fpregs
-Prevent floating point registers from being used in any manner. This is
-necessary for compiling kernels which perform lazy context switching of
-floating point registers. If you use this option and attempt to perform
-floating point operations, the compiler will abort.
-
-@item -mdisable-indexing
-Prevent the compiler from using indexing address modes. This avoids some
-rather obscure problems when compiling MIG generated code under MACH.
-
-@item -mno-space-regs
-Generate code that assumes the target has no space registers. This allows
-GCC to generate faster indirect calls and use unscaled index address modes.
-
-Such code is suitable for level 0 PA systems and kernels.
-
-@item -mfast-indirect-calls
-Generate code that assumes calls never cross space boundaries. This
-allows GCC to emit code which performs faster indirect calls.
-
-This option will not work in the presense of shared libraries or nested
-functions.
-
-@item -mspace
-Optimize for space rather than execution time. Currently this only
-enables out of line function prologues and epilogues. This option is
-incompatible with PIC code generation and profiling.
-
-@item -mlong-load-store
-Generate 3-instruction load and store sequences as sometimes required by
-the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
-the HP compilers.
-
-@item -mportable-runtime
-Use the portable calling conventions proposed by HP for ELF systems.
-
-@item -mgas
-Enable the use of assembler directives only GAS understands.
-
-@item -mschedule=@var{cpu type}
-Schedule code according to the constraints for the machine type
-@var{cpu type}. The choices for @var{cpu type} are @samp{700} for
-7@var{n}0 machines, @samp{7100} for 7@var{n}5 machines, and @samp{7100LC}
-for 7@var{n}2 machines. @samp{7100} is the default for @var{cpu type}.
-
-Note the @samp{7100LC} scheduling information is incomplete and using
-@samp{7100LC} often leads to bad schedules. For now it's probably best
-to use @samp{7100} instead of @samp{7100LC} for the 7@var{n}2 machines.
-
-@item -mlinker-opt
-Enable the optimization pass in the HPUX linker. Note this makes symbolic
-debugging impossible. It also triggers a bug in the HPUX 8 and HPUX 9 linkers
-in which they give bogus error messages when linking some programs.
-
-@item -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries are not available for all HPPA
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation. The embedded target @samp{hppa1.1-*-pro}
-does provide software floating point support.
-
-@samp{-msoft-float} changes the calling convention in the output file;
-therefore, it is only useful if you compile @emph{all} of a program with
-this option. In particular, you need to compile @file{libgcc.a}, the
-library that comes with GNU CC, with @samp{-msoft-float} in order for
-this to work.
-@end table
-
-@node Intel 960 Options
-@subsection Intel 960 Options
-
-These @samp{-m} options are defined for the Intel 960 implementations:
-
-@table @code
-@item -m@var{cpu type}
-Assume the defaults for the machine type @var{cpu type} for some of
-the other options, including instruction scheduling, floating point
-support, and addressing modes. The choices for @var{cpu type} are
-@samp{ka}, @samp{kb}, @samp{mc}, @samp{ca}, @samp{cf},
-@samp{sa}, and @samp{sb}.
-The default is
-@samp{kb}.
-
-@item -mnumerics
-@itemx -msoft-float
-The @samp{-mnumerics} option indicates that the processor does support
-floating-point instructions. The @samp{-msoft-float} option indicates
-that floating-point support should not be assumed.
-
-@item -mleaf-procedures
-@itemx -mno-leaf-procedures
-Do (or do not) attempt to alter leaf procedures to be callable with the
-@code{bal} instruction as well as @code{call}. This will result in more
-efficient code for explicit calls when the @code{bal} instruction can be
-substituted by the assembler or linker, but less efficient code in other
-cases, such as calls via function pointers, or using a linker that doesn't
-support this optimization.
-
-@item -mtail-call
-@itemx -mno-tail-call
-Do (or do not) make additional attempts (beyond those of the
-machine-independent portions of the compiler) to optimize tail-recursive
-calls into branches. You may not want to do this because the detection of
-cases where this is not valid is not totally complete. The default is
-@samp{-mno-tail-call}.
-
-@item -mcomplex-addr
-@itemx -mno-complex-addr
-Assume (or do not assume) that the use of a complex addressing mode is a
-win on this implementation of the i960. Complex addressing modes may not
-be worthwhile on the K-series, but they definitely are on the C-series.
-The default is currently @samp{-mcomplex-addr} for all processors except
-the CB and CC.
-
-@item -mcode-align
-@itemx -mno-code-align
-Align code to 8-byte boundaries for faster fetching (or don't bother).
-Currently turned on by default for C-series implementations only.
-
-@ignore
-@item -mclean-linkage
-@itemx -mno-clean-linkage
-These options are not fully implemented.
-@end ignore
-
-@item -mic-compat
-@itemx -mic2.0-compat
-@itemx -mic3.0-compat
-Enable compatibility with iC960 v2.0 or v3.0.
-
-@item -masm-compat
-@itemx -mintel-asm
-Enable compatibility with the iC960 assembler.
-
-@item -mstrict-align
-@itemx -mno-strict-align
-Do not permit (do permit) unaligned accesses.
-
-@item -mold-align
-Enable structure-alignment compatibility with Intel's gcc release version
-1.3 (based on gcc 1.37). This option implies @samp{-mstrict-align}.
-
-@item -mlong-double-64
-Implement type @samp{long double} as 64-bit floating point numbers.
-Without the option @samp{long double} is implemented by 80-bit
-floating point numbers. The only reason we have it because there is
-no 128-bit @samp{long double} support in @samp{fp-bit.c} yet. So it
-is only useful for people using soft-float targets. Otherwise, we
-should recommend against use of it.
-
-@c CYGNUS LOCAL move coalescence
-@item -mmove-coalescence
-@itemx -mno-move-coalescence
-Enable (or disable) coalescing several move instructions in one move
-instruction. This optimization is on only when unaligned access is
-permitted. By default the optimization is off.
-@c END CYGNUS LOCAL move coalescence
-@end table
-
-@node DEC Alpha Options
-@subsection DEC Alpha Options
-
-These @samp{-m} options are defined for the DEC Alpha implementations:
-
-@table @code
-@item -mno-soft-float
-@itemx -msoft-float
-Use (do not use) the hardware floating-point instructions for
-floating-point operations. When @code{-msoft-float} is specified,
-functions in @file{libgcc1.c} will be used to perform floating-point
-operations. Unless they are replaced by routines that emulate the
-floating-point operations, or compiled in such a way as to call such
-emulations routines, these routines will issue floating-point
-operations. If you are compiling for an Alpha without floating-point
-operations, you must ensure that the library is built so as not to call
-them.
-
-Note that Alpha implementations without floating-point operations are
-required to have floating-point registers.
-
-@item -mfp-reg
-@itemx -mno-fp-regs
-Generate code that uses (does not use) the floating-point register set.
-@code{-mno-fp-regs} implies @code{-msoft-float}. If the floating-point
-register set is not used, floating point operands are passed in integer
-registers as if they were integers and floating-point results are passed
-in $0 instead of $f0. This is a non-standard calling sequence, so any
-function with a floating-point argument or return value called by code
-compiled with @code{-mno-fp-regs} must also be compiled with that
-option.
-
-A typical use of this option is building a kernel that does not use,
-and hence need not save and restore, any floating-point registers.
-
-@item -mieee
-The Alpha architecture implements floating-point hardware optimized for
-maximum performance. It is mostly compliant with the IEEE floating
-point standard. However, for full compliance, software assistance is
-required. This option generates code fully IEEE compliant code
-@emph{except} that the @var{inexact flag} is not maintained (see below).
-If this option is turned on, the CPP macro @code{_IEEE_FP} is defined
-during compilation. The option is a shorthand for: @samp{-D_IEEE_FP
--mfp-trap-mode=su -mtrap-precision=i -mieee-conformant}. The resulting
-code is less efficient but is able to correctly support denormalized
-numbers and exceptional IEEE values such as not-a-number and plus/minus
-infinity. Other Alpha compilers call this option
-@code{-ieee_with_no_inexact}.
-
-@item -mieee-with-inexact
-@c overfull hbox here --bob 22 jul96
-@c original text between ignore ... end ignore
-@ignore
-This is like @samp{-mieee} except the generated code also maintains the
-IEEE @var{inexact flag}. Turning on this option causes the generated
-code to implement fully-compliant IEEE math. The option is a shorthand
-for @samp{-D_IEEE_FP -D_IEEE_FP_INEXACT} plus @samp{-mieee-conformant},
-@samp{-mfp-trap-mode=sui}, and @samp{-mtrap-precision=i}. On some Alpha
-implementations the resulting code may execute significantly slower than
-the code generated by default. Since there is very little code that
-depends on the @var{inexact flag}, you should normally not specify this
-option. Other Alpha compilers call this option
-@samp{-ieee_with_inexact}.
-@end ignore
-@c changed paragraph
-This is like @samp{-mieee} except the generated code also maintains the
-IEEE @var{inexact flag}. Turning on this option causes the generated
-code to implement fully-compliant IEEE math. The option is a shorthand
-for @samp{-D_IEEE_FP -D_IEEE_FP_INEXACT} plus the three following:
-@samp{-mieee-conformant},
-@samp{-mfp-trap-mode=sui},
-and @samp{-mtrap-precision=i}.
-On some Alpha implementations the resulting code may execute
-significantly slower than the code generated by default. Since there
-is very little code that depends on the @var{inexact flag}, you should
-normally not specify this option. Other Alpha compilers call this
-option @samp{-ieee_with_inexact}.
-@c end changes to prevent overfull hboxes
-
-@item -mfp-trap-mode=@var{trap mode}
-This option controls what floating-point related traps are enabled.
-Other Alpha compilers call this option @samp{-fptm }@var{trap mode}.
-The trap mode can be set to one of four values:
-
-@table @samp
-@item n
-This is the default (normal) setting. The only traps that are enabled
-are the ones that cannot be disabled in software (e.g., division by zero
-trap).
-
-@item u
-In addition to the traps enabled by @samp{n}, underflow traps are enabled
-as well.
-
-@item su
-Like @samp{su}, but the instructions are marked to be safe for software
-completion (see Alpha architecture manual for details).
-
-@item sui
-Like @samp{su}, but inexact traps are enabled as well.
-@end table
-
-@item -mfp-rounding-mode=@var{rounding mode}
-Selects the IEEE rounding mode. Other Alpha compilers call this option
-@samp{-fprm }@var{rounding mode}. The @var{rounding mode} can be one
-of:
-
-@table @samp
-@item n
-Normal IEEE rounding mode. Floating point numbers are rounded towards
-the nearest machine number or towards the even machine number in case
-of a tie.
-
-@item m
-Round towards minus infinity.
-
-@item c
-Chopped rounding mode. Floating point numbers are rounded towards zero.
-
-@item d
-Dynamic rounding mode. A field in the floating point control register
-(@var{fpcr}, see Alpha architecture reference manual) controls the
-rounding mode in effect. The C library initializes this register for
-rounding towards plus infinity. Thus, unless your program modifies the
-@var{fpcr}, @samp{d} corresponds to round towards plus infinity.@end table
-
-@item -mtrap-precision=@var{trap precision}
-In the Alpha architecture, floating point traps are imprecise. This
-means without software assistance it is impossible to recover from a
-floating trap and program execution normally needs to be terminated.
-GNU CC can generate code that can assist operating system trap handlers
-in determining the exact location that caused a floating point trap.
-Depending on the requirements of an application, different levels of
-precisions can be selected:
-
-@table @samp
-@item p
-Program precision. This option is the default and means a trap handler
-can only identify which program caused a floating point exception.
-
-@item f
-Function precision. The trap handler can determine the function that
-caused a floating point exception.
-
-@item i
-Instruction precision. The trap handler can determine the exact
-instruction that caused a floating point exception.
-@end table
-
-Other Alpha compilers provide the equivalent options called
-@samp{-scope_safe} and @samp{-resumption_safe}.
-
-@item -mieee-conformant
-This option marks the generated code as IEEE conformant. You must not
-use this option unless you also specify @samp{-mtrap-precision=i} and either
-@samp{-mfp-trap-mode=su} or @samp{-mfp-trap-mode=sui}. Its only effect
-is to emit the line @samp{.eflag 48} in the function prologue of the
-generated assembly file. Under DEC Unix, this has the effect that
-IEEE-conformant math library routines will be linked in.
-
-@item -mbuild-constants
-Normally GNU CC examines a 32- or 64-bit integer constant to
-see if it can construct it from smaller constants in two or three
-instructions. If it cannot, it will output the constant as a literal and
-generate code to load it from the data segment at runtime.
-
-Use this option to require GNU CC to construct @emph{all} integer constants
-using code, even if it takes more instructions (the maximum is six).
-
-You would typically use this option to build a shared library dynamic
-loader. Itself a shared library, it must relocate itself in memory
-before it can find the variables and constants in its own data segment.
-
-@item -malpha-as
-@itemx -mgas
-Select whether to generate code to be assembled by the vendor-supplied
-assembler (@samp{-malpha-as}) or by the GNU assembler @samp{-mgas}.
-
-@item -mbwx
-@itemx -mno-bwx
-@itemx -mcix
-@itemx -mno-cix
-@itemx -mmax
-@itemx -mno-max
-Indicate whether GNU CC should generate code to use the optional BWX,
-CIX, and MAX instruction sets. The default is to use the instruction sets
-supported by the CPU type specified via @samp{-mcpu=} option or that
-of the CPU on which GNU CC was built if none was specified.
-
-@item -mcpu=@var{cpu_type}
-Set the instruction set, register set, and instruction scheduling
-parameters for machine type @var{cpu_type}. You can specify either the
-@samp{EV} style name or the corresponding chip number. GNU CC
-supports scheduling parameters for the EV4 and EV5 family of processors
-and will choose the default values for the instruction set from
-the processor you specify. If you do not specify a processor type,
-GNU CC will default to the processor on which the compiler was built.
-
-Supported values for @var{cpu_type} are
-
-@table @samp
-@item ev4
-@itemx 21064
-Schedules as an EV4 and has no instruction set extensions.
-
-@item ev5
-@itemx 21164
-Schedules as an EV5 and has no instruction set extensions.
-
-@item ev56
-@itemx 21164a
-Schedules as an EV5 and supports the BWX extension.
-
-@item pca56
-@itemx 21164pc
-@itemx 21164PC
-Schedules as an EV5 and supports the BWX and MAX extensions.
-
-@item ev6
-@itemx 21264
-Schedules as an EV5 (until Digital releases the scheduling parameters
-for the EV6) and supports the BWX, CIX, and MAX extensions.
-@end table
-
-@item -mmemory-latency=@var{time}
-Sets the latency the scheduler should assume for typical memory
-references as seen by the application. This number is highly
-dependant on the memory access patterns used by the application
-and the size of the external cache on the machine.
-
-Valid options for @var{time} are
-
-@table @samp
-@item @var{number}
-A decimal number representing clock cycles.
-
-@item L1
-@itemx L2
-@itemx L3
-@itemx main
-The compiler contains estimates of the number of clock cycles for
-``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
-(also called Dcache, Scache, and Bcache), as well as to main memory.
-Note that L3 is only valid for EV5.
-
-@end table
-@end table
-
-@node Clipper Options
-@subsection Clipper Options
-
-These @samp{-m} options are defined for the Clipper implementations:
-
-@table @code
-@item -mc300
-Produce code for a C300 Clipper processor. This is the default.
-
-@itemx -mc400
-Produce code for a C400 Clipper processor i.e. use floating point
-registers f8..f15.
-@end table
-
-@node H8/300 Options
-@subsection H8/300 Options
-
-These @samp{-m} options are defined for the H8/300 implementations:
-
-@table @code
-@item -mrelax
-Shorten some address references at link time, when possible; uses the
-linker option @samp{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
-ld.info, Using ld}, for a fuller description.
-
-@item -mh
-Generate code for the H8/300H.
-
-@item -ms
-Generate code for the H8/S.
-
-@item -mint32
-Make @code{int} data 32 bits by default.
-
-@item -malign-300
-On the h8/300h, use the same alignment rules as for the h8/300.
-The default for the h8/300h is to align longs and floats on 4 byte boundaries.
-@samp{-malign-300} causes them to be aligned on 2 byte boundaries.
-This option has no effect on the h8/300.
-@end table
-
-@node SH Options
-@subsection SH Options
-
-These @samp{-m} options are defined for the SH implementations:
-
-@table @code
-@item -m1
-Generate code for the SH1.
-
-@item -m2
-Generate code for the SH2.
-
-@item -m3
-Generate code for the SH3.
-
-@item -m3e
-Generate code for the SH3e.
-
-@item -mb
-Compile code for the processor in big endian mode.
-
-@item -ml
-Compile code for the processor in little endian mode.
-
-@item -mdalign
-Align doubles at 64 bit boundaries. Note that this changes the calling
-conventions, and thus some functions from the standard C library will
-not work unless you recompile it first with -mdalign.
-
-@item -mrelax
-Shorten some address references at link time, when possible; uses the
-linker option @samp{-relax}.
-@end table
-
-@node System V Options
-@subsection Options for System V
-
-These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-
-@table @code
-@item -G
-Create a shared object.
-It is recommended that @samp{-symbolic} or @samp{-shared} be used instead.
-
-@item -Qy
-Identify the versions of each tool used by the compiler, in a
-@code{.ident} assembler directive in the output.
-
-@item -Qn
-Refrain from adding @code{.ident} directives to the output file (this is
-the default).
-
-@item -YP,@var{dirs}
-Search the directories @var{dirs}, and no others, for libraries
-specified with @samp{-l}.
-
-@item -Ym,@var{dir}
-Look in the directory @var{dir} to find the M4 preprocessor.
-The assembler uses this option.
-@c This is supposed to go with a -Yd for predefined M4 macro files, but
-@c the generic assembler that comes with Solaris takes just -Ym.
-@end table
-
-@c CYGNUS LOCAL: z8k docs
-@c (not yet submitted to FSF)
-@node Z8000 Option
-@subsection Zilog Z8000 Option
-
-GNU CC recognizes one special option when configured to generate
-code for the Z8000 family:
-
-@table @code
-@item -mz8001
-Generate code for the segmented variant of the Z8000 architecture.
-(Without this option, @code{gcc} generates unsegmented Z8000 code;
-suitable, for example, for the Z8002.)
-@end table
-@c END CYGNUS LOCAL
-
-@node V850 Options
-@subsection V850 Options
-@cindex V850 Options
-
-These @samp{-m} options are defined for V850 implementations:
-
-@table @code
-@item -mlong-calls
-@itemx -mno-long-calls
-Treat all calls as being far away (near). If calls are assumed to be
-far away, the compiler will always load the functions address up into a
-register, and call indirect through the pointer.
-
-@item -mno-ep
-@itemx -mep
-Do not optimize (do optimize) basic blocks that use the same index
-pointer 4 or more times to copy pointer into the @code{ep} register, and
-use the shorter @code{sld} and @code{sst} instructions. The @samp{-mep}
-option is on by default if you optimize.
-
-@item -mno-prolog-function
-@itemx -mprolog-function
-Do not use (do use) external functions to save and restore registers at
-the prolog and epilog of a function. The external functions are slower,
-but use less code space if more than one function saves the same number
-of registers. The @samp{-mprolog-function} option is on by default if
-you optimize.
-
-@item -mspace
-Try to make the code as small as possible. At present, this just turns
-on the @samp{-mep} and @samp{-mprolog-function} options.
-
-@item -mtda=@var{n}
-Put static or global variables whose size is @var{n} bytes or less into
-the tiny data area that register @code{ep} points to. The tiny data
-area can hold up to 256 bytes in total (128 bytes for byte references).
-
-@item -msda=@var{n}
-Put static or global variables whose size is @var{n} bytes or less into
-the small data area that register @code{gp} points to. The small data
-area can hold up to 64 kilobytes.
-
-@item -mzda=@var{n}
-Put static or global variables whose size is @var{n} bytes or less into
-the first 32 kilobytes of memory.
-
-@item -mv850
-Specify that the target processor is the V850.
-
-@item -mbig-switch
-Generate code suitable for big switch tables. Use this option only if
-the assembler/linker complain about out of range branches within a switch
-table.
-
-@item -mapp-regs
-This option will cause r2 and r5 to be used in the code generated by
-the compiler. This setting is the default.
-
-@item -mno-app-regs
-This option will cause r2 and r5 to be treated as fixed registers.
-
-@c CYGNUS LOCAL v850e
-@item -mv850e
-Specify that the target processor is the V850E. The preprocessor
-constant @samp{__v850e__} will be defined if this option is used.
-
-If neither @samp{-mv850} nor @samp{-mv850e} are defined
-then a default target processor will be chosen and the relevant
-@samp{__v850*__} preprocessor constant will be defined.
-
-The preprocessor constants @samp{__v850} and @samp{__v851__} are always
-defined, regardless of which processor variant is the target.
-
-@item -mdisable-callt
-This option will suppress generation of the CALLT instruction for the
-v850e flavors of the v850 architecture. The default is
-@samp{-mno-disable-callt} which allows the CALLT instruction to be used.
-
-@c END CYGNUS LOCAL
-
-@end table
-
-@node ARC Options
-@subsection ARC Options
-@cindex ARC Options
-
-These options are defined for ARC implementations:
-
-@table @code
-@item -EL
-Compile code for little endian mode. This is the default.
-
-@item -EB
-Compile code for big endian mode.
-
-@item -mmangle-cpu
-Prepend the name of the cpu to all public symbol names.
-In multiple-processor systems, there are many ARC variants with different
-instruction and register set characteristics. This flag prevents code
-compiled for one cpu to be linked with code compiled for another.
-No facility exists for handling variants that are "almost identical".
-This is an all or nothing option.
-
-@item -mcpu=@var{cpu}
-Compile code for ARC variant @var{cpu}.
-Which variants are supported depend on the configuration.
-All variants support @samp{-mcpu=base}, this is the default.
-
-@item -mtext=@var{text section}
-@item -mdata=@var{data section}
-@item -mrodata=@var{readonly data section}
-Put functions, data, and readonly data in @var{text section},
-@var{data section}, and @var{readonly data section} respectively
-by default. This can be overridden with the @code{section} attribute.
-@xref{Variable Attributes}
-
-@end table
-
-@c CYGNUS LOCAL -- meissner/d10v
-@node D10V Options
-@subsection D10V Options
-@cindex D10V Options
-
-These @samp{-m} options are defined for D10V implementations:
-
-@table @code
-@item -mint32
-@itemx -mint16
-Make @code{int} data 32 (or 16) bits by default. The default is
-@samp{-mint16}.
-
-@item -mdouble64
-@itemx -mdouble32
-Make @code{double} data 64 (or 32) bits by default. The default is
-@samp{-mdouble32}.
-
-@item -maddac3
-@itemx -mno-addac3
-Enable (disable) the use of @code{addac3} and @code{subac3}
-instructions. The @samp{-maddac3} instruction also enables the
-@samp{-maccum} instruction.
-
-@item -maccum
-@itemx -mno-accum
-Enable (disable) the use of the 32-bit accumulators in compiler generated
-code.
-
-@item -mno-asm-optimize
-@itemx -masm-optimize
-Disable (enable) passing @samp{-O} to the assembler when optimizing.
-The assembler uses the @samp{-O} option to automatically parallelize
-adjacent short instructions where possible.
-
-@item -mno-small-insns
-@itemx -msmall-insns
-Disable (enable) converting some long instructions into two short
-instructions, which can eliminate some nops and enable more code to be
-conditionally executed.
-
-@item -mno-cond-move
-@itemx -mcond-move
-Disable (enable) conditional move instructions, which eliminates short
-branches.
-
-@item -mbranch-cost=@var{n}
-Increase the internal costs of branches to @var{n}. Higher costs means
-that the compiler will issue more instructions to avoid doing a branch.
-The default is 1.
-
-@item -mcond-exec=@var{n}
-Specify the maximum number of conditionally executed instructions that
-replace a branch. The default is 4.
-@end table
-@c END CYGNUS LOCAL -- meissner/d10v
-
-@c CYGNUS LOCAL d30v
-@node D30V Options
-@subsection D30V Options
-@cindex D30V Options
-
-These @samp{-m} options are defined for D30V implementations:
-
-@table @code
-@item -mextmem
-Link the @samp{.text}, @samp{.data}, @samp{.bss}, @samp{.strings},
-@samp{.rodata}, @samp{.rodata1}, @samp{.data1} sections into external
-memory, which starts at location @code{0x80000000}.
-
-@item -mextmemory
-Same as the @samp{-mextmem} switch.
-
-@item -monchip
-Link the @samp{.text} section into onchip text memory, which starts at
-location @code{0x0}. Also link @samp{.data}, @samp{.bss},
-@samp{.strings}, @samp{.rodata}, @samp{.rodata1}, @samp{.data1} sections
-into onchip data memory, which starts at location @code{0x20000000}.
-
-@item -mno-asm-optimize
-@itemx -masm-optimize
-Disable (enable) passing @samp{-O} to the assembler when optimizing.
-The assembler uses the @samp{-O} option to automatically parallelize
-adjacent short instructions where possible.
-
-@item -mbranch-cost=@var{n}
-Increase the internal costs of branches to @var{n}. Higher costs means
-that the compiler will issue more instructions to avoid doing a branch.
-The default is 2.
-
-@item -mcond-exec=@var{n}
-Specify the maximum number of conditionally executed instructions that
-replace a branch. The default is 4.
-@end table
-@c END CYGNUS LOCAL d30v
-
-@node NS32K Options
-@subsection NS32K Options
-@cindex NS32K options
-
-These are the @samp{-m} options defined for the 32000 series. The default
-values for these options depends on which style of 32000 was selected when
-the compiler was configured; the defaults for the most common choices are
-given below.
-
-@table @code
-@item -m32032
-@itemx -m32032
-Generate output for a 32032. This is the default
-when the compiler is configured for 32032 and 32016 based systems.
-
-@item -m32332
-@itemx -m32332
-Generate output for a 32332. This is the default
-when the compiler is configured for 32332-based systems.
-
-@item -m32532
-@itemx -m32532
-Generate output for a 32532. This is the default
-when the compiler is configured for 32532-based systems.
-
-@item -m32081
-Generate output containing 32081 instructions for floating point.
-This is the default for all systems.
-
-@item -m32381
-Generate output containing 32381 instructions for floating point. This
-also implies @samp{-m32081}. The 32381 is only compatible with the 32332
-and 32532 cpus. This is the default for the pc532-netbsd configuration.
-
-@item -mmulti-add
-Try and generate multiply-add floating point instructions @code{polyF}
-and @code{dotF}. This option is only available if the @samp{-m32381}
-option is in effect. Using these instructions requires changes to to
-register allocation which generally has a negative impact on
-performance. This option should only be enabled when compiling code
-particularly likely to make heavy use of multiply-add instructions.
-
-@item -mnomulti-add
-Do not try and generate multiply-add floating point instructions
-@code{polyF} and @code{dotF}. This is the default on all platforms.
-
-@item -msoft-float
-Generate output containing library calls for floating point.
-@strong{Warning:} the requisite libraries may not be available.
-
-@item -mnobitfield
-Do not use the bit-field instructions. On some machines it is faster to
-use shifting and masking operations. This is the default for the pc532.
-
-@item -mbitfield
-Do use the bit-field instructions. This is the default for all platforms
-except the pc532.
-
-@item -mrtd
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return pop their
-arguments on return with the @code{ret} instruction.
-
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including @code{printf});
-otherwise incorrect code will be generated for calls to those
-functions.
-
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-
-This option takes its name from the 680x0 @code{rtd} instruction.
-
-
-@item -mregparam
-Use a different function-calling convention where the first two arguments
-are passed in registers.
-
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-
-@item -mnoregparam
-Do not pass any arguments in registers. This is the default for all
-targets.
-
-@item -msb
-It is OK to use the sb as an index register which is always loaded with
-zero. This is the default for the pc532-netbsd target.
-
-@item -mnosb
-The sb register is not available for use or has not been initialized to
-zero by the run time system. This is the default for all targets except
-the pc532-netbsd. It is also implied whenever @samp{-mhimem} or
-@samp{-fpic} is set.
-
-@item -mhimem
-Many ns32000 series addressing modes use displacements of up to 512MB.
-If an address is above 512MB then displacements from zero can not be used.
-This option causes code to be generated which can be loaded above 512MB.
-This may be useful for operating systems or ROM code.
-
-@item -mnohimem
-Assume code will be loaded in the first 512MB of virtual address space.
-This is the default for all platforms.
-
-
-@end table
-
-
-
-@node Code Gen Options
-@section Options for Code Generation Conventions
-@cindex code generation conventions
-@cindex options, code generation
-@cindex run-time options
-
-These machine-independent options control the interface conventions
-used in code generation.
-
-Most of them have both positive and negative forms; the negative form
-of @samp{-ffoo} would be @samp{-fno-foo}. In the table below, only
-one of the forms is listed---the one which is not the default. You
-can figure out the other form by either removing @samp{no-} or adding
-it.
-
-@table @code
-@item -fexceptions
-Enable exception handling. Generates extra code needed to propagate
-exceptions. For some targets, this implies generation of frame unwind
-information for all functions. This can produce significant data size
-overhead, although it does not affect execution.
-If you do not specify this option, it is enabled by
-default for languages like C++ which normally require exception handling,
-and disabled for languages like C that do not normally require it.
-However, when compiling C code that needs to interoperate properly with
-exception handlers written in C++, you may need to enable this option.
-You may also wish to disable this option is you are compiling older C++
-programs that don't use exception handling.
-
-@item -fpcc-struct-return
-Return ``short'' @code{struct} and @code{union} values in memory like
-longer ones, rather than in registers. This convention is less
-efficient, but it has the advantage of allowing intercallability between
-GNU CC-compiled files and files compiled with other compilers.
-
-The precise convention for returning structures in memory depends
-on the target configuration macros.
-
-Short structures and unions are those whose size and alignment match
-that of some integer type.
-
-@item -freg-struct-return
-Use the convention that @code{struct} and @code{union} values are
-returned in registers when possible. This is more efficient for small
-structures than @samp{-fpcc-struct-return}.
-
-If you specify neither @samp{-fpcc-struct-return} nor its contrary
-@samp{-freg-struct-return}, GNU CC defaults to whichever convention is
-standard for the target. If there is no standard convention, GNU CC
-defaults to @samp{-fpcc-struct-return}, except on targets where GNU CC
-is the principal compiler. In those cases, we can choose the standard,
-and we chose the more efficient register return alternative.
-
-@item -fshort-enums
-Allocate to an @code{enum} type only as many bytes as it needs for the
-declared range of possible values. Specifically, the @code{enum} type
-will be equivalent to the smallest integer type which has enough room.
-
-@item -fshort-double
-Use the same size for @code{double} as for @code{float}.
-
-@item -fshared-data
-Requests that the data and non-@code{const} variables of this
-compilation be shared data rather than private data. The distinction
-makes sense only on certain operating systems, where shared data is
-shared between processes running the same program, while private data
-exists in one copy per process.
-
-@item -fno-common
-Allocate even uninitialized global variables in the bss section of the
-object file, rather than generating them as common blocks. This has the
-effect that if the same variable is declared (without @code{extern}) in
-two different compilations, you will get an error when you link them.
-The only reason this might be useful is if you wish to verify that the
-program will work on other systems which always work this way.
-
-@item -fno-ident
-Ignore the @samp{#ident} directive.
-
-@item -fno-gnu-linker
-Do not output global initializations (such as C++ constructors and
-destructors) in the form used by the GNU linker (on systems where the GNU
-linker is the standard method of handling them). Use this option when
-you want to use a non-GNU linker, which also requires using the
-@code{collect2} program to make sure the system linker includes
-constructors and destructors. (@code{collect2} is included in the GNU CC
-distribution.) For systems which @emph{must} use @code{collect2}, the
-compiler driver @code{gcc} is configured to do this automatically.
-
-@item -finhibit-size-directive
-Don't output a @code{.size} assembler directive, or anything else that
-would cause trouble if the function is split in the middle, and the
-two halves are placed at locations far apart in memory. This option is
-used when compiling @file{crtstuff.c}; you should not need to use it
-for anything else.
-
-@item -fverbose-asm
-Put extra commentary information in the generated assembly code to
-make it more readable. This option is generally only of use to those
-who actually need to read the generated assembly code (perhaps while
-debugging the compiler itself).
-
-@samp{-fno-verbose-asm}, the default, causes the
-extra information to be omitted and is useful when comparing two assembler
-files.
-
-@item -fvolatile
-Consider all memory references through pointers to be volatile.
-
-@item -fvolatile-global
-Consider all memory references to extern and global data items to
-be volatile.
-
-@item -fpic
-@cindex global offset table
-@cindex PIC
-Generate position-independent code (PIC) suitable for use in a shared
-library, if supported for the target machine. Such code accesses all
-constant addresses through a global offset table (GOT). The dynamic
-loader resolves the GOT entries when the program starts (the dynamic
-loader is not part of GNU CC; it is part of the operating system). If
-the GOT size for the linked executable exceeds a machine-specific
-maximum size, you get an error message from the linker indicating that
-@samp{-fpic} does not work; in that case, recompile with @samp{-fPIC}
-instead. (These maximums are 16k on the m88k, 8k on the Sparc, and 32k
-on the m68k and RS/6000. The 386 has no such limit.)
-
-Position-independent code requires special support, and therefore works
-only on certain machines. For the 386, GNU CC supports PIC for System V
-but not for the Sun 386i. Code generated for the IBM RS/6000 is always
-position-independent.
-
-@item -fPIC
-If supported for the target machine, emit position-independent code,
-suitable for dynamic linking and avoiding any limit on the size of the
-global offset table. This option makes a difference on the m68k, m88k,
-and the Sparc.
-
-Position-independent code requires special support, and therefore works
-only on certain machines.
-
-@item -ffixed-@var{reg}
-Treat the register named @var{reg} as a fixed register; generated code
-should never refer to it (except perhaps as a stack pointer, frame
-pointer or in some other fixed role).
-
-@var{reg} must be the name of a register. The register names accepted
-are machine-specific and are defined in the @code{REGISTER_NAMES}
-macro in the machine description macro file.
-
-This flag does not have a negative form, because it specifies a
-three-way choice.
-
-@item -fcall-used-@var{reg}
-Treat the register named @var{reg} as an allocable register that is
-clobbered by function calls. It may be allocated for temporaries or
-variables that do not live across a call. Functions compiled this way
-will not save and restore the register @var{reg}.
-
-It is an error to used this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model will produce disastrous results.
-
-This flag does not have a negative form, because it specifies a
-three-way choice.
-
-@item -fcall-saved-@var{reg}
-Treat the register named @var{reg} as an allocable register saved by
-functions. It may be allocated even for temporaries or variables that
-live across a call. Functions compiled this way will save and restore
-the register @var{reg} if they use it.
-
-It is an error to used this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model will produce disastrous results.
-
-A different sort of disaster will result from the use of this flag for
-a register in which function values may be returned.
-
-This flag does not have a negative form, because it specifies a
-three-way choice.
-
-@item -fpack-struct
-Pack all structure members together without holes. Usually you would
-not want to use this option, since it makes the code suboptimal, and
-the offsets of structure members won't agree with system libraries.
-
-@item -fcheck-memory-usage
-Generate extra code to check each memory access. GNU CC will generate
-code that is suitable for a detector of bad memory accesses such as
-@file{Checker}.
-
-You must also specify this option when you compile functions you call that
-have side effects. If you do not, you may get erroneous messages from
-the detector. Normally, you should compile all your code with this option.
-If you use functions from a library that have side-effects (such as
-@code{read}), you may not be able to recompile the library and
-specify this option. In that case, you can enable the
-@samp{-fprefix-function-name} option, which requests GNU CC to encapsulate
-your code and make other functions look as if they were compiled with
-@samp{-fcheck-memory-usage}. This is done by calling ``stubs'',
-which are provided by the detector. If you cannot find or build
-stubs for every function you call, you may have to specify
-@samp{-fcheck-memory-usage} without @samp{-fprefix-function-name}.
-
-If you specify this option, you can not use the @code{asm} or
-@code{__asm__} keywords in functions with memory checking enabled. The
-compiler cannot understand what the @code{asm} statement will do, and
-therefore cannot generate the appropriate code, so it is rejected.
-However, the function attribute @code{no_check_memory_usage} will
-disable memory checking within a function, and @code{asm} statements can
-be put inside such functions. Inline expansion of a non-checked
-function within a checked function is permitted; the inline function's
-memory accesses won't be checked, but the rest will.
-
-If you move your @code{asm} statements to non-checked inline functions,
-but they do access memory, you can add calls to the support code in your
-inline function, to indicate any reads, writes, or copies being done.
-These calls would be similar to those done in the stubs described above.
-
-@c FIXME: The support-routine interface is defined by the compiler and
-@c should be documented!
-
-@item -fprefix-function-name
-Request GNU CC to add a prefix to the symbols generated for function names.
-GNU CC adds a prefix to the names of functions defined as well as
-functions called. Code compiled with this option and code compiled
-without the option can't be linked together, unless or stubs are used.
-
-If you compile the following code with @samp{-fprefix-function-name}
-@example
-extern void bar (int);
-void
-foo (int a)
-@{
- return bar (a + 5);
-
-@}
-@end example
-
-@noindent
-GNU CC will compile the code as if it was written:
-@example
-extern void prefix_bar (int);
-void
-prefix_foo (int a)
-@{
- return prefix_bar (a + 5);
-@}
-@end example
-This option is designed to be used with @samp{-fcheck-memory-usage}.
-
-@item -finstrument-functions
-Generate instrumentation calls for entry and exit to functions. Just
-after function entry and just before function exit, the following
-profiling functions will be called with the address of the current
-function and its call site. (On some platforms,
-@code{__builtin_return_address} does not work beyond the current
-function, so the call site information may not be available to the
-profiling functions otherwise.)
-
-@example
-void __cyg_profile_func_enter (void *this_fn, void *call_site);
-void __cyg_profile_func_exit (void *this_fn, void *call_site);
-@end example
-
-The first argument is the address of the start of the current function,
-which may be looked up exactly in the symbol table.
-
-This instrumentation is also done for functions expanded inline in other
-functions. The profiling calls will indicate where, conceptually, the
-inline function is entered and exited. This means that addressable
-versions of such functions must be available. If all your uses of a
-function are expanded inline, this may mean an additional expansion of
-code size. If you use @samp{extern inline} in your C code, an
-addressable version of such functions must be provided. (This is
-normally the case anyways, but if you get lucky and the optimizer always
-expands the functions inline, you might have gotten away without
-providing static copies.)
-
-A function may be given the attribute @code{no_instrument_function}, in
-which case this instrumentation will not be done. This can be used, for
-example, for the profiling functions listed above, high-priority
-interrupt routines, and any functions from which the profiling functions
-cannot safely be called (perhaps signal handlers, if the profiling
-routines generate output or allocate memory).
-
-@item -fstack-check
-Generate code to verify that you do not go beyond the boundary of the
-stack. You should specify this flag if you are running in an
-environment with multiple threads, but only rarely need to specify it in
-a single-threaded environment since stack overflow is automatically
-detected on nearly all systems if there is only one stack.
-
-@c CYGNUS LOCAL unaligned-pointers
-@item -funaligned-pointers
-Assume that all pointers contain unaligned addresses. On machines where
-unaligned memory accesses trap, this will result in much larger and slower
-code for all pointer dereferences, but the code will work even if addresses
-are unaligned.
-@c END CYGNUS LOCAL
-
-@c CYGNUS LOCAL unaligned-struct-hack
-@item -funaligned-struct-hack
-Always access structure fields using loads and stores of the declared size.
-This option is useful for code that derefences pointers to unaligned
-structures, but only accesses fields that are themselves aligned. Without
-this option, gcc may try to use a memory access larger than the field.
-This might give an unaligned access fault on some hardware.
-
-This option makes some invalid code work at the expense of disabling
-some optimizations. It is strongly recommended that this option not be
-used.
-@c END CYGNUS LOCAL
-
-@c CYGNUS LOCAL -- meissner/nortel
-@item -foptimize-comparisons
-Optimize multiple comparisons better within @code{&&} and @code{||}
-expressions. This is an experimental option. In some cases it can
-result in worse code. It depends on many factors. Now it is known
-only that the optimization works well for PPC740 and PPC750. This
-option switches on the following transformations:
-@example
- (a != 0 || b != 0) => ((a | b) != 0)
- (a == 0 && b == 0) => ((a | b) == 0)
- (a != b || c != d) => (((a ^ b) | (c ^ d)) != 0)
- (a == b && c == d) => (((a ^ b) | (c ^ d)) == 0)
- (a != 0 && b != 0) => (((a | -a) & (b | -b)) < 0)
- (a != b && c != d) => x = a ^ b; y = c ^ d; (((x | -x) & (y | -y)) < 0)
- (a < 0 || b < 0) => ((a | b) < 0)
- (a < 0 && b < 0) => ((a & b) < 0)
- (a >= 0 || b >= 0) => ((a & b) >= 0)
- (a >= 0 && b >= 0) => ((a | b) >= 0)
- (a < 0 || b >= 0) => ((a | ~b) < 0)
- (a < 0 && b >= 0) => ((a & ~b) < 0)
- (a >= 0 || b < 0) => ((~a | b) < 0)
- (a >= 0 && b < 0) => ((~a & b) < 0)
- (a != 0 && b < 0) => (((a | -a) & b) < 0)
- (a != 0 && b >= 0) => (((a | -a) & ~b) < 0)
- (a < 0 && b != 0) => (((b | -b) & a) < 0)
- (a >= 0 && b != 0) => (((b | -b) & ~a) < 0)
-@end example
-@c END CYGNUS LOCAL -- meissner/nortel
-@end table
-
-@c CYGNUS LOCAL v850/law
-@node Offset info Option
-@section Offset info Option
-
-@code{-offset-info output-file}
-
-This option simplifys access to C struct's from assembler.
-For each member of each structure the compiler
-will output a @code{.equ} directive to associate a symbol
-with the member's offset in bytes into the structure. The
-symbol itself is the concatenation of the structure's tag name and
-the member's name, separated by an underscore.
-
-This option will output to the specified @code{output-file} an
-assembler @code{.equ} directive for each member of each structure
-found in each compilation. The @code{.equ} directives for the
-structures in a single header file can be obtained as follows:
-
-@example
-gcc -fsyntax-only -offset-info m.s -x c m.h
-@end example
-
-@noindent
-Where @code{m.h} is the header containing the structures, and
-@code{m.s} is where the directives are output.
-
-The following is a short example of output produced by
-@code{-offset-info}.
-
-@example
-input file (for example m.h):
-
- struct W @{
- double d;
- int i;
- @};
-
- struct X @{
- int a;
- int b;
-
- struct Y @{
- int a;
- int b;
- @};
-
- struct Y y;
- struct Y yy[10];
- struct Y* p;
- @};
-
-output file (for example m.s):
- .equ W_d,0
- .equ W_i,8
- .equ Y_a,0
- .equ Y_b,4
- .equ X_a,0
- .equ X_b,4
- .equ X_y,8
- .equ X_yy,16
- .equ X_p,96
-@end example
-
-@noindent
-The @code{-offset-info} option has the following caveats:
-
-@table @bullet
-@item
-No directives are output for bit-field members.
-
-@item
-No directives are output for members who's offsets
-(as measured in bits) is greater than the word size of the host.
-
-@item
-No directives are output for members who's offsets are not
-constants. This can happened only in structures which use some
-gcc specific extensions which allow for variable sized members.
-
-@end table
-@c END CYGNUS LOCAL
-
-@cindex aliasing of parameters
-@cindex parameters, aliased
-@table @code
-@item -fargument-alias
-@itemx -fargument-noalias
-@itemx -fargument-noalias-global
-Specify the possible relationships among parameters and between
-parameters and global data.
-
-@samp{-fargument-alias} specifies that arguments (parameters) may
-alias each other and may alias global storage.
-@samp{-fargument-noalias} specifies that arguments do not alias
-each other, but may alias global storage.
-@samp{-fargument-noalias-global} specifies that arguments do not
-alias each other and do not alias global storage.
-
-Each language will automatically use whatever option is required by
-the language standard. You should not need to use these options yourself.
-
-@item -fleading-underscore
-This option and its counterpart, -fno-leading-underscore, forcibly
-change the way C symbols are represented in the object file. One use
-is to help link with legacy assembly code.
-
-Be warned that you should know what you are doing when invoking this
-option, and that not all targets provide complete support for it.
-@end table
-
-@node Environment Variables
-@section Environment Variables Affecting GNU CC
-@cindex environment variables
-
-This section describes several environment variables that affect how GNU
-CC operates. Some of them work by specifying directories or prefixes to use
-when searching for various kinds of files. Some are used to specify other
-aspects of the compilation environment.
-
-@ifclear INTERNALS
-Note that you can also specify places to search using options such as
-@samp{-B}, @samp{-I} and @samp{-L} (@pxref{Directory Options}). These
-take precedence over places specified using environment variables, which
-in turn take precedence over those specified by the configuration of GNU
-CC.
-@end ifclear
-@ifset INTERNALS
-Note that you can also specify places to search using options such as
-@samp{-B}, @samp{-I} and @samp{-L} (@pxref{Directory Options}). These
-take precedence over places specified using environment variables, which
-in turn take precedence over those specified by the configuration of GNU
-CC. @xref{Driver}.
-@end ifset
-
-@table @code
-@item TMPDIR
-@findex TMPDIR
-If @code{TMPDIR} is set, it specifies the directory to use for temporary
-files. GNU CC uses temporary files to hold the output of one stage of
-compilation which is to be used as input to the next stage: for example,
-the output of the preprocessor, which is the input to the compiler
-proper.
-
-@item GCC_EXEC_PREFIX
-@findex GCC_EXEC_PREFIX
-If @code{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
-names of the subprograms executed by the compiler. No slash is added
-when this prefix is combined with the name of a subprogram, but you can
-specify a prefix that ends with a slash if you wish.
-
-@c CYGNUS LOCAL -- meissner/relative pathnames
-If @code{GCC_EXEC_PREFIX} is not set, GNU CC will attempt to figure out
-an appropriate prefix to use based on the pathname it was invoked with.
-@c END CYGNUS LOCAL -- meissner/relative pathnames
-
-If GNU CC cannot find the subprogram using the specified prefix, it
-tries looking in the usual places for the subprogram.
-
-The default value of @code{GCC_EXEC_PREFIX} is
-@file{@var{prefix}/lib/gcc-lib/} where @var{prefix} is the value
-of @code{prefix} when you ran the @file{configure} script.
-
-Other prefixes specified with @samp{-B} take precedence over this prefix.
-
-This prefix is also used for finding files such as @file{crt0.o} that are
-used for linking.
-
-In addition, the prefix is used in an unusual way in finding the
-directories to search for header files. For each of the standard
-directories whose name normally begins with @samp{/usr/local/lib/gcc-lib}
-(more precisely, with the value of @code{GCC_INCLUDE_DIR}), GNU CC tries
-replacing that beginning with the specified prefix to produce an
-alternate directory name. Thus, with @samp{-Bfoo/}, GNU CC will search
-@file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
-These alternate directories are searched first; the standard directories
-come next.
-
-@item COMPILER_PATH
-@findex COMPILER_PATH
-The value of @code{COMPILER_PATH} is a colon-separated list of
-directories, much like @code{PATH}. GNU CC tries the directories thus
-specified when searching for subprograms, if it can't find the
-subprograms using @code{GCC_EXEC_PREFIX}.
-
-@item LIBRARY_PATH
-@findex LIBRARY_PATH
-The value of @code{LIBRARY_PATH} is a colon-separated list of
-directories, much like @code{PATH}. When configured as a native compiler,
-GNU CC tries the directories thus specified when searching for special
-linker files, if it can't find them using @code{GCC_EXEC_PREFIX}. Linking
-using GNU CC also uses these directories when searching for ordinary
-libraries for the @samp{-l} option (but directories specified with
-@samp{-L} come first).
-
-@item C_INCLUDE_PATH
-@itemx CPLUS_INCLUDE_PATH
-@itemx OBJC_INCLUDE_PATH
-@findex C_INCLUDE_PATH
-@findex CPLUS_INCLUDE_PATH
-@findex OBJC_INCLUDE_PATH
-@c @itemx OBJCPLUS_INCLUDE_PATH
-These environment variables pertain to particular languages. Each
-variable's value is a colon-separated list of directories, much like
-@code{PATH}. When GNU CC searches for header files, it tries the
-directories listed in the variable for the language you are using, after
-the directories specified with @samp{-I} but before the standard header
-file directories.
-
-@item DEPENDENCIES_OUTPUT
-@findex DEPENDENCIES_OUTPUT
-@cindex dependencies for make as output
-If this variable is set, its value specifies how to output dependencies
-for Make based on the header files processed by the compiler. This
-output looks much like the output from the @samp{-M} option
-(@pxref{Preprocessor Options}), but it goes to a separate file, and is
-in addition to the usual results of compilation.
-
-The value of @code{DEPENDENCIES_OUTPUT} can be just a file name, in
-which case the Make rules are written to that file, guessing the target
-name from the source file name. Or the value can have the form
-@samp{@var{file} @var{target}}, in which case the rules are written to
-file @var{file} using @var{target} as the target name.
-
-@item LANG
-@findex LANG
-@cindex locale definition
-This variable is used to pass locale information to the compiler. One way in
-which this information is used is to determine the character set to be used
-when character literals, string literals and comments are parsed in C and C++.
-When the compiler is configured to allow multibyte characters,
-the following values for @code{LANG} are recognized:
-
-@table @code
-@item C-JIS
-Recognize JIS characters.
-@item C-SJIS
-Recognize SJIS characters.
-@item C-EUCJP
-Recognize EUCJP characters.
-@end table
-
-If @code{LANG} is not defined, or if it has some other value, then the
-compiler will use mblen and mbtowc as defined by the default locale to
-recognize and translate multibyte characters.
-@end table
-
-@node Running Protoize
-@section Running Protoize
-
-The program @code{protoize} is an optional part of GNU C. You can use
-it to add prototypes to a program, thus converting the program to ANSI
-C in one respect. The companion program @code{unprotoize} does the
-reverse: it removes argument types from any prototypes that are found.
-
-When you run these programs, you must specify a set of source files as
-command line arguments. The conversion programs start out by compiling
-these files to see what functions they define. The information gathered
-about a file @var{foo} is saved in a file named @file{@var{foo}.X}.
-
-After scanning comes actual conversion. The specified files are all
-eligible to be converted; any files they include (whether sources or
-just headers) are eligible as well.
-
-But not all the eligible files are converted. By default,
-@code{protoize} and @code{unprotoize} convert only source and header
-files in the current directory. You can specify additional directories
-whose files should be converted with the @samp{-d @var{directory}}
-option. You can also specify particular files to exclude with the
-@samp{-x @var{file}} option. A file is converted if it is eligible, its
-directory name matches one of the specified directory names, and its
-name within the directory has not been excluded.
-
-Basic conversion with @code{protoize} consists of rewriting most
-function definitions and function declarations to specify the types of
-the arguments. The only ones not rewritten are those for varargs
-functions.
-
-@code{protoize} optionally inserts prototype declarations at the
-beginning of the source file, to make them available for any calls that
-precede the function's definition. Or it can insert prototype
-declarations with block scope in the blocks where undeclared functions
-are called.
-
-Basic conversion with @code{unprotoize} consists of rewriting most
-function declarations to remove any argument types, and rewriting
-function definitions to the old-style pre-ANSI form.
-
-Both conversion programs print a warning for any function declaration or
-definition that they can't convert. You can suppress these warnings
-with @samp{-q}.
-
-The output from @code{protoize} or @code{unprotoize} replaces the
-original source file. The original file is renamed to a name ending
-with @samp{.save}. If the @samp{.save} file already exists, then
-the source file is simply discarded.
-
-@code{protoize} and @code{unprotoize} both depend on GNU CC itself to
-scan the program and collect information about the functions it uses.
-So neither of these programs will work until GNU CC is installed.
-
-Here is a table of the options you can use with @code{protoize} and
-@code{unprotoize}. Each option works with both programs unless
-otherwise stated.
-
-@table @code
-@item -B @var{directory}
-Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
-usual directory (normally @file{/usr/local/lib}). This file contains
-prototype information about standard system functions. This option
-applies only to @code{protoize}.
-
-@item -c @var{compilation-options}
-Use @var{compilation-options} as the options when running @code{gcc} to
-produce the @samp{.X} files. The special option @samp{-aux-info} is
-always passed in addition, to tell @code{gcc} to write a @samp{.X} file.
-
-Note that the compilation options must be given as a single argument to
-@code{protoize} or @code{unprotoize}. If you want to specify several
-@code{gcc} options, you must quote the entire set of compilation options
-to make them a single word in the shell.
-
-There are certain @code{gcc} arguments that you cannot use, because they
-would produce the wrong kind of output. These include @samp{-g},
-@samp{-O}, @samp{-c}, @samp{-S}, and @samp{-o} If you include these in
-the @var{compilation-options}, they are ignored.
-
-@item -C
-Rename files to end in @samp{.C} instead of @samp{.c}.
-This is convenient if you are converting a C program to C++.
-This option applies only to @code{protoize}.
-
-@item -g
-Add explicit global declarations. This means inserting explicit
-declarations at the beginning of each source file for each function
-that is called in the file and was not declared. These declarations
-precede the first function definition that contains a call to an
-undeclared function. This option applies only to @code{protoize}.
-
-@item -i @var{string}
-Indent old-style parameter declarations with the string @var{string}.
-This option applies only to @code{protoize}.
-
-@code{unprotoize} converts prototyped function definitions to old-style
-function definitions, where the arguments are declared between the
-argument list and the initial @samp{@{}. By default, @code{unprotoize}
-uses five spaces as the indentation. If you want to indent with just
-one space instead, use @samp{-i " "}.
-
-@item -k
-Keep the @samp{.X} files. Normally, they are deleted after conversion
-is finished.
-
-@item -l
-Add explicit local declarations. @code{protoize} with @samp{-l} inserts
-a prototype declaration for each function in each block which calls the
-function without any declaration. This option applies only to
-@code{protoize}.
-
-@item -n
-Make no real changes. This mode just prints information about the conversions
-that would have been done without @samp{-n}.
-
-@item -N
-Make no @samp{.save} files. The original files are simply deleted.
-Use this option with caution.
-
-@item -p @var{program}
-Use the program @var{program} as the compiler. Normally, the name
-@file{gcc} is used.
-
-@item -q
-Work quietly. Most warnings are suppressed.
-
-@item -v
-Print the version number, just like @samp{-v} for @code{gcc}.
-@end table
-
-If you need special compiler options to compile one of your program's
-source files, then you should generate that file's @samp{.X} file
-specially, by running @code{gcc} on that source file with the
-appropriate options and the option @samp{-aux-info}. Then run
-@code{protoize} on the entire set of files. @code{protoize} will use
-the existing @samp{.X} file because it is newer than the source file.
-For example:
-
-@example
-gcc -Dfoo=bar file1.c -aux-info
-protoize *.c
-@end example
-
-@noindent
-You need to include the special files along with the rest in the
-@code{protoize} command, even though their @samp{.X} files already
-exist, because otherwise they won't get converted.
-
-@xref{Protoize Caveats}, for more information on how to use
-@code{protoize} successfully.
-