diff options
Diffstat (limited to 'gcc/config/convex/convex.h')
-rwxr-xr-x | gcc/config/convex/convex.h | 1503 |
1 files changed, 0 insertions, 1503 deletions
diff --git a/gcc/config/convex/convex.h b/gcc/config/convex/convex.h deleted file mode 100755 index f455f96..0000000 --- a/gcc/config/convex/convex.h +++ /dev/null @@ -1,1503 +0,0 @@ -/* Definitions of target machine for GNU compiler. Convex version. - Copyright (C) 1988, 1994, 1995, 1996 Free Software Foundation, Inc. - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - - -/* Standard GCC variables that we reference. */ - -extern int target_flags; - -/* Convex machine-specific flags - -mc1 target instruction set, libraries, scheduling - -mc2 - -mc32 - -mc34 - -mc38 - -margcount use standard calling sequence, with arg count word - -mno-argcount don't push arg count, depend on symbol table - -margcount-nop place arg count in a nop instruction (faster than push) - -mvolatile-cache use data cache for volatile mem refs (default) - -mvolatile-nocache bypass data cache for volatile mem refs - -mlong32 cc- and libc-compatible 32-bit longs - -mlong64 64-bit longs -*/ - -/* Macro to define tables used to set -mXXX flags. - This is a list in braces of pairs in braces, - each pair being { "NAME", VALUE } - where VALUE is the bits to set or minus the bits to clear. - An empty string NAME is used to identify the default VALUE. */ - -#ifndef TARGET_DEFAULT -#define TARGET_DEFAULT 0 -#endif - -#define TARGET_SWITCHES \ - { { "c1", 001 }, \ - { "c2", 002 }, \ - { "c32", 004 }, \ - { "c34", 010 }, \ - { "c38", 020 }, \ - { "argcount", 0100 }, \ - { "argcount-nop", 0200 }, \ - { "no-argcount", -0300 }, \ - { "volatile-cache", -0400 }, \ - { "no-volatile-cache", 0400 }, \ - { "volatile-nocache", 0400 }, \ - { "long64", 01000 }, \ - { "long32", -01000 }, \ - { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT}} - -/* Macros used in the machine description to test the flags. */ - -#define TARGET_C1 (target_cpu == 0) -#define TARGET_C2 (target_cpu == 1) -#define TARGET_C34 (target_cpu == 2) -#define TARGET_C38 (target_cpu == 3) -#define TARGET_ARGCOUNT (target_flags & 0100) -#define TARGET_ARGCOUNT_NOP (target_flags & 0200) -#define TARGET_LONG64 (target_flags & 01000) -#define TARGET_VOLATILE_NOCACHE (target_flags & 0400) - -#define OVERRIDE_OPTIONS \ -{ \ - init_convex (); \ - if ((target_flags & 077) != ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 077)) \ - target_flags &= ~ (TARGET_DEFAULT | TARGET_CPU_DEFAULT); \ - if (target_flags & 001) \ - target_cpu = 0; \ - else if (target_flags & 006) \ - target_cpu = 1; \ - else if (target_flags & 010) \ - target_cpu = 2; \ - else if (target_flags & 020) \ - target_cpu = 3; \ -} - -/* Names to predefine in the preprocessor for this target machine. */ - -#define CPP_PREDEFINES "-Dconvex -Dunix -Asystem(unix) -Acpu(convex) -Amachine(convex)" - -/* Print subsidiary information on the compiler version in use. */ - -#define TARGET_VERSION fprintf (stderr, " (convex)"); - -/* Target-dependent specs. - Some libraries come in c1 and c2+ versions; use the appropriate ones. - Make a target-dependent __convex_cxx__ define to relay the target cpu - to the program being compiled. */ - -#if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 1 - -/* C1 default */ - -#if _IEEE_FLOAT_ - -#define CPP_SPEC \ -"%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \ - %{mc2:-D__convex_c2__} \ - %{mc32:-D__convex_c32__} \ - %{mc34:-D__convex_c34__} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_IEEE_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#else - -#define CPP_SPEC \ -"%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \ - %{mc2:-D__convex_c2__} \ - %{mc32:-D__convex_c32__} \ - %{mc34:-D__convex_c34__} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_CONVEX_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#endif - -#define LIB_SPEC \ -"%{!mc2:%{!mc32:%{!mc34:%{!mc38:-lC1%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ - %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - -lc%{traditional:_old}%{p:_p}%{pg:_p}" - -#endif - -#if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 2 - -/* C2 default */ - -#if _IEEE_FLOAT_ - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \ - %{mc32:-D__convex_c32__} \ - %{mc34:-D__convex_c34__} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_IEEE_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#else - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \ - %{mc32:-D__convex_c32__} \ - %{mc34:-D__convex_c34__} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_CONVEX_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#endif - -#define LIB_SPEC \ -"%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{!mc1:%{!mc32:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ - %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - -lc%{traditional:_old}%{p:_p}%{pg:_p}" - -#endif - -#if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 4 - -/* C32 default */ - -#if _IEEE_FLOAT_ - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{mc2:-D__convex_c2__} \ - %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \ - %{mc34:-D__convex_c34__} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_IEEE_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#else - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{mc2:-D__convex_c2__} \ - %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \ - %{mc34:-D__convex_c34__} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_CONVEX_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#endif - -#define LIB_SPEC \ -"%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{!mc1:%{!mc2:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ - %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - -lc%{traditional:_old}%{p:_p}%{pg:_p}" - -#endif - -#if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 010 - -/* C34 default */ - -#if _IEEE_FLOAT_ - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{mc2:-D__convex_c2__} \ - %{mc32:-D__convex_c32__} \ - %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_IEEE_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#else - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{mc2:-D__convex_c2__} \ - %{mc32:-D__convex_c32__} \ - %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \ - %{mc38:-D__convex_c38__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_CONVEX_FLOAT_ \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#endif - -#define LIB_SPEC \ -"%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{!mc1:%{!mc2:%{!mc32:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ - %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - -lc%{traditional:_old}%{p:_p}%{pg:_p}" - -#endif - -#if (TARGET_DEFAULT | TARGET_CPU_DEFAULT) & 020 - -/* C38 default */ - -#if _IEEE_FLOAT_ - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{mc2:-D__convex_c2__} \ - %{mc32:-D__convex_c32__} \ - %{mc34:-D__convex_c34__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_IEEE_FLOAT_ \ - %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#else - -#define CPP_SPEC \ -"%{mc1:-D__convex_c1__} \ - %{mc2:-D__convex_c2__} \ - %{mc32:-D__convex_c32__} \ - %{mc34:-D__convex_c34__} \ - %{fno-builtin:-D__NO_INLINE} \ - -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \ - -D_CONVEX_FLOAT_ \ - %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \ - %{.S:-P} \ - %{!traditional:-D__stdc__} \ - %{!traditional:-D_LONGLONG} \ - %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \ - %{!ansi:-D_POSIX_SOURCE} \ - %{!ansi:-D_CONVEX_SOURCE}" - -#endif - -#define LIB_SPEC \ -"%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \ - %{!mc1:%{!mc2:%{!mc32:%{!mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \ - -lc%{traditional:_old}%{p:_p}%{pg:_p}" - -#endif - -#if _IEEE_FLOAT_ - -/* ieee default */ - -#define ASM_SPEC "-fi" - -#define LINK_SPEC \ -"-E%{traditional:no}posix \ - -X \ - %{F} %{M*} %{y*} \ - -fi \ - -A__iob=___ap$iob \ - -A_use_libc_sema=___ap$use_libc_sema \ - %{traditional:-A___gcc_cleanup=__cleanup} \ - %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \ - -L/usr/lib" - -#define STARTFILE_SPEC \ -"%{!pg:%{!p:/usr/lib/crt/crt0.o}} \ - %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \ - %{pg:/usr/lib/crt/gcrt0.o} \ - /usr/lib/crt/fpmode_i.o" - -#else - -/* native default */ - -#define ASM_SPEC "-fn" - -#define LINK_SPEC \ -"-E%{traditional:no}posix \ - -X \ - %{F} %{M*} %{y*} \ - -fn \ - -A__iob=___ap$iob \ - -A_use_libc_sema=___ap$use_libc_sema \ - %{traditional:-A___gcc_cleanup=__cleanup} \ - %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \ - -L/usr/lib" - -#define STARTFILE_SPEC \ -"%{!pg:%{!p:/usr/lib/crt/crt0.o}} \ - %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \ - %{pg:/usr/lib/crt/gcrt0.o}" - -#endif - -/* Use /path/libgcc.a instead of -lgcc, makes bootstrap work more smoothly. */ - -#define LINK_LIBGCC_SPECIAL_1 - -/* Since IEEE support was added to gcc, most things seem to like it - better if we disable exceptions and check afterward for infinity. */ - -#if __convex__ -#if _IEEE_FLOAT_ -#define REAL_VALUE_ISNAN(x) 0 -#define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0x7ff0) == 0x7ff0) -#else -#define REAL_VALUE_ISNAN(x) 0 -#define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0xfff0) == 0x8000) -#endif -#endif - -/* Target machine storage layout */ - -/* Define this if most significant bit is lowest numbered - in instructions that operate on numbered bit-fields. */ -#define BITS_BIG_ENDIAN 1 - -/* Define this if most significant byte of a word is the lowest numbered. */ -#define BYTES_BIG_ENDIAN 1 - -/* Define this if most significant word of a multiword number is numbered. */ -#define WORDS_BIG_ENDIAN 1 - -/* Number of bits in an addressable storage unit */ -#define BITS_PER_UNIT 8 - -/* Width in bits of a "word", which is the contents of a machine register. - Note that this is not necessarily the width of data type `int'; - if using 16-bit ints on a 68000, this would still be 32. - But on a machine with 16-bit registers, this would be 16. */ -#define BITS_PER_WORD 64 - -/* Width of a word, in units (bytes). */ -#define UNITS_PER_WORD 8 - -/* Width in bits of a pointer. - See also the macro `Pmode' defined below. */ -#define POINTER_SIZE 32 - -/* Allocation boundary (in *bits*) for storing arguments in argument list. */ -#define PARM_BOUNDARY 32 - -/* Boundary (in *bits*) on which stack pointer should be aligned. */ -#define STACK_BOUNDARY 64 - -/* Allocation boundary (in *bits*) for the code of a function. */ -#define FUNCTION_BOUNDARY 16 - -/* Alignment of field after `int : 0' in a structure. */ -#define EMPTY_FIELD_BOUNDARY 32 - -/* Every structure's size must be a multiple of this. */ -#define STRUCTURE_SIZE_BOUNDARY 8 - -/* A bitfield declared as `int' forces `int' alignment for the struct. */ -#define PCC_BITFIELD_TYPE_MATTERS 1 - -/* No data type wants to be aligned rounder than this. */ -/* beware of doubles in structs -- 64 is incompatible with cc */ -#define BIGGEST_ALIGNMENT 32 - -/* Set this nonzero if move instructions will actually fail to work - when given unaligned data. */ -#define STRICT_ALIGNMENT 0 - -/* Define sizes of basic C types to conform to ordinary usage -- these - types depend on BITS_PER_WORD otherwise. */ -#define CHAR_TYPE_SIZE 8 -#define SHORT_TYPE_SIZE 16 -#define INT_TYPE_SIZE 32 -#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32) -#define LONG_LONG_TYPE_SIZE 64 -#define FLOAT_TYPE_SIZE 32 -#define DOUBLE_TYPE_SIZE 64 -#define LONG_DOUBLE_TYPE_SIZE 64 -/* This prevents cexp.c from depending on LONG_TYPE_SIZE. */ -#define MAX_LONG_TYPE_SIZE 64 - -/* Declare the standard types used by builtins to match convex stddef.h -- - with int rather than long. */ - -#define SIZE_TYPE "unsigned int" -#define PTRDIFF_TYPE "int" - -/* Standard register usage. */ - -/* Number of actual hardware registers. - The hardware registers are assigned numbers for the compiler - from 0 to just below FIRST_PSEUDO_REGISTER. - All registers that the compiler knows about must be given numbers, - even those that are not normally considered general registers. */ -#define FIRST_PSEUDO_REGISTER 16 - -/* 1 for registers that have pervasive standard uses - and are not available for the register allocator. - For Convex, these are AP, FP, and SP. */ -#define FIXED_REGISTERS \ - { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 } - -/* 1 for registers not available across function calls. - These must include the FIXED_REGISTERS and also any - registers that can be used without being saved. - The latter must include the registers where values are returned - and the register where structure-value addresses are passed. - Aside from that, you can include as many other registers as you like. */ -#define CALL_USED_REGISTERS \ - { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } - -/* List the order in which to allocate registers. Each register must be - listed once, even those in FIXED_REGISTERS. - For Convex, put S0 (the return register) last. */ -#define REG_ALLOC_ORDER \ - { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 0, 8, 14, 15 } - -/* Return number of consecutive hard regs needed starting at reg REGNO - to hold something of mode MODE. - This is ordinarily the length in words of a value of mode MODE - but can be less for certain modes in special long registers. */ -#define HARD_REGNO_NREGS(REGNO, MODE) \ - ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) - -/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. - On Convex, S registers can hold any type, A registers any nonfloat. */ -#define HARD_REGNO_MODE_OK(REGNO, MODE) \ - (S_REGNO_P (REGNO) \ - || (GET_MODE_SIZE (MODE) <= 4 && (MODE) != SFmode)) - -/* Value is 1 if it is a good idea to tie two pseudo registers - when one has mode MODE1 and one has mode MODE2. - If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, - for any hard reg, then this must be 0 for correct output. */ -#define MODES_TIEABLE_P(MODE1, MODE2) \ - ((GET_MODE_SIZE (MODE1) <= 4 && (MODE1) != SFmode) \ - == (GET_MODE_SIZE (MODE2) <= 4 && (MODE2) != SFmode)) - -/* Specify the registers used for certain standard purposes. - The values of these macros are register numbers. */ - -#define S0_REGNUM 0 -#define A0_REGNUM 8 - -/* Register to use for pushing function arguments. */ -#define STACK_POINTER_REGNUM A0_REGNUM - -/* Base register for access to local variables of the function. */ -#define FRAME_POINTER_REGNUM (A0_REGNUM + 7) - -/* Value should be nonzero if functions must have frame pointers. - Zero means the frame pointer need not be set up (and parms - may be accessed via the stack pointer) in functions that seem suitable. - This is computed in `reload', in reload1.c. */ -#define FRAME_POINTER_REQUIRED 1 - -/* Base register for access to arguments of the function. */ -#define ARG_POINTER_REGNUM (A0_REGNUM + 6) - -/* Register in which static-chain is passed to a function. - Use S0, not an A reg, because this rare use would otherwise prevent - an A reg from being available to global-alloc across calls. */ -#define STATIC_CHAIN_REGNUM S0_REGNUM - -/* Register in which address to store a structure value - is passed to a function. */ -#define STRUCT_VALUE_REGNUM (A0_REGNUM + 1) - -/* Define the classes of registers for register constraints in the - machine description. Also define ranges of constants. - - One of the classes must always be named ALL_REGS and include all hard regs. - If there is more than one class, another class must be named NO_REGS - and contain no registers. - - The name GENERAL_REGS must be the name of a class (or an alias for - another name such as ALL_REGS). This is the class of registers - that is allowed by "g" or "r" in a register constraint. - Also, registers outside this class are allocated only when - instructions express preferences for them. - - The classes must be numbered in nondecreasing order; that is, - a larger-numbered class must never be contained completely - in a smaller-numbered class. - - For any two classes, it is very desirable that there be another - class that represents their union. */ - -/* Convex has classes A (address) and S (scalar). - A is further divided into SP_REGS (stack pointer) and INDEX_REGS. - SI_REGS is S_REGS + INDEX_REGS -- all the regs except SP. */ - -enum reg_class { - NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, SI_REGS, - ALL_REGS, LIM_REG_CLASSES -}; - -#define N_REG_CLASSES (int) LIM_REG_CLASSES - -/* Since GENERAL_REGS is the same class as ALL_REGS, - don't give it a different class number; just make it an alias. */ - -#define GENERAL_REGS ALL_REGS - -/* Give names of register classes as strings for dump file. */ - -#define REG_CLASS_NAMES \ - {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "SI_REGS", \ - "ALL_REGS" } - -/* Define which registers fit in which classes. - This is an initializer for a vector of HARD_REG_SET - of length N_REG_CLASSES. */ - -#define REG_CLASS_CONTENTS \ - { 0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xfeff, 0xffff } - -/* The same information, inverted: - Return the class number of the smallest class containing - reg number REGNO. This could be a conditional expression - or could index an array. */ - -#define REGNO_REG_CLASS(REGNO) (regno_reg_class[REGNO]) - -#define S_REGNO_P(REGNO) (((REGNO) - S0_REGNUM) < (unsigned) 8) -#define A_REGNO_P(REGNO) (((REGNO) - A0_REGNUM) < (unsigned) 8) - -#define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X))) -#define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X))) - -/* The class value for index registers, and the one for base regs. */ - -#define INDEX_REG_CLASS INDEX_REGS -#define BASE_REG_CLASS INDEX_REGS - -/* Get reg_class from a letter such as appears in the machine description. */ -/* a => A_REGS - d => S_REGS ('s' is taken) - A => INDEX_REGS (i.e., A_REGS except sp) */ - -#define REG_CLASS_FROM_LETTER(C) \ - reg_class_from_letter[(unsigned char) (C)] - -/* The letters I, J, K, L and M in a register constraint string - can be used to stand for particular ranges of immediate operands. - This macro defines what the ranges are. - C is the letter, and VALUE is a constant value. - Return 1 if VALUE is in the range specified by C. */ -/* 'I' is used to pass any CONST_INT and reject any CONST_DOUBLE. - CONST_DOUBLE integers are handled by G and H constraint chars. */ - -#define CONST_OK_FOR_LETTER_P(VALUE, C) 1 - -/* Similar, but for floating constants, and defining letters G and H. - Here VALUE is the CONST_DOUBLE rtx itself. */ -/* Convex uses G, H: - value usable in ld.d (low word 0) or ld.l (high word all sign) */ - -#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ - (((C) == 'G' && LD_D_P (VALUE)) || \ - ((C) == 'H' && LD_L_P (VALUE)) || \ - 0) - -#define LD_D_P(X) (const_double_low_int (X) == 0) - -#define LD_L_P(X) (const_double_low_int (X) >= 0 \ - ? const_double_high_int (X) == 0 \ - : const_double_high_int (X) == -1) - -/* Optional extra constraints for this machine. - For Convex, 'Q' means that OP is a volatile MEM. - For volatile scalars, we use instructions that bypass the data cache. */ - -#define EXTRA_CONSTRAINT(OP, C) \ - ((C) == 'Q' ? (GET_CODE (OP) == MEM && MEM_VOLATILE_P (OP) \ - && ! TARGET_C1 && TARGET_VOLATILE_NOCACHE) \ - : 0) - -/* Given an rtx X being reloaded into a reg required to be - in class CLASS, return the class of reg to actually use. - In general this is just CLASS; but on some machines - in some cases it is preferable to use a more restrictive class. */ - -/* Put 2-word constants that can't be immediate operands into memory. */ - -#define PREFERRED_RELOAD_CLASS(X,CLASS) \ - ((GET_CODE (X) != CONST_DOUBLE \ - || GET_MODE (X) == SFmode \ - || LD_L_P (X) || LD_D_P (X)) ? (CLASS) : NO_REGS) - -/* Return the maximum number of consecutive registers - needed to represent mode MODE in a register of class CLASS. */ -#define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8) - -/* Stack layout; function entry, exit and calling. */ - -/* Define this if pushing a word on the stack - makes the stack pointer a smaller address. */ -#define STACK_GROWS_DOWNWARD - -/* Define this if the nominal address of the stack frame - is at the high-address end of the local variables; - that is, each additional local variable allocated - goes at a more negative offset in the frame. */ -#define FRAME_GROWS_DOWNWARD - -/* Define this if should default to -fcaller-saves. */ -#define DEFAULT_CALLER_SAVES - -/* Offset within stack frame to start allocating local variables at. - If FRAME_GROWS_DOWNWARD, this is the offset to the END of the - first local allocated. Otherwise, it is the offset to the BEGINNING - of the first local allocated. */ -#define STARTING_FRAME_OFFSET 0 - -/* If we generate an insn to push BYTES bytes, - this says how many the stack pointer really advances by. */ -#define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3) - -/* Offset of first parameter from the argument pointer register value. */ -#define FIRST_PARM_OFFSET(FNDECL) 0 - -/* Value is the number of bytes of arguments automatically - popped when returning from a subroutine call. - FUNDECL is the declaration node of the function (as a tree), - FUNTYPE is the data type of the function (as a tree), - or for a library call it is an identifier node for the subroutine name. - SIZE is the number of bytes of arguments passed on the stack. */ - -#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE) - -/* Define how to find the value returned by a function. - VALTYPE is the data type of the value (as a tree). - If the precise function being called is known, FUNC is its FUNCTION_DECL; - otherwise, FUNC is 0. */ - -#define FUNCTION_VALUE(VALTYPE, FUNC) \ - gen_rtx (REG, TYPE_MODE (VALTYPE), S0_REGNUM) - -/* Define how to find the value returned by a library function - assuming the value has mode MODE. */ - -#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, S0_REGNUM) - -/* Define this if PCC uses the nonreentrant convention for returning - structure and union values. */ - -#define PCC_STATIC_STRUCT_RETURN - -/* 1 if N is a possible register number for a function value. - On the Convex, S0 is the only register thus used. */ - -#define FUNCTION_VALUE_REGNO_P(N) ((N) == S0_REGNUM) - -/* 1 if N is a possible register number for function argument passing. */ - -#define FUNCTION_ARG_REGNO_P(N) 0 - -/* Define a data type for recording info about an argument list - during the scan of that argument list. This data type should - hold all necessary information about the function itself - and about the args processed so far, enough to enable macros - such as FUNCTION_ARG to determine where the next arg should go. */ -/* On convex, simply count the arguments in case TARGET_ARGCOUNT is set. */ - -#define CUMULATIVE_ARGS int - -/* Initialize a variable CUM of type CUMULATIVE_ARGS - for a call to a function whose data type is FNTYPE. - For a library call, FNTYPE is 0. */ - -#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ - ((CUM) = 0) - -/* Update the data in CUM to advance over an argument - of mode MODE and data type TYPE. - (TYPE is null for libcalls where that information may not be available.) */ - -#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ - ((CUM) += 1) - -/* Define where to put the arguments to a function. - Value is zero to push the argument on the stack, - or a hard register in which to store the argument. - - MODE is the argument's machine mode. - TYPE is the data type of the argument (as a tree). - This is null for libcalls where that information may - not be available. - CUM is a variable of type CUMULATIVE_ARGS which gives info about - the preceding args and about the function being called. - NAMED is nonzero if this argument is a named parameter - (otherwise it is an extra parameter matching an ellipsis). - - Convex: all args go on the stack. But return the arg count - as the "next arg register" to be passed to gen_call. */ - -#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ - ((MODE) == VOIDmode ? GEN_INT ((CUM)) : 0) - -/* This macro generates the assembly code for function entry. - FILE is a stdio stream to output the code to. - SIZE is an int: how many units of temporary storage to allocate. - Refer to the array `regs_ever_live' to determine which registers - to save; `regs_ever_live[I]' is nonzero if register number I - is ever used in the function. This macro is responsible for - knowing which registers should not be saved even if used. */ - -#define FUNCTION_PROLOGUE(FILE, SIZE) \ -{ \ - int size = ((SIZE) + 7) & -8; \ - if (size != 0) \ - fprintf (FILE, "\tsub.w #%d,sp\n", size); \ -} - -/* This macro generates the assembly code for function exit, - on machines that need it. If FUNCTION_EPILOGUE is not defined - then individual return instructions are generated for each - return statement. Args are same as for FUNCTION_PROLOGUE. */ - -#define FUNCTION_EPILOGUE(FILE, SIZE) \ -{ \ - /* Follow function with a zero to stop c34 icache prefetching. */ \ - fprintf (FILE, "\tds.h 0\n"); \ -} - -/* Output assembler code for a block containing the constant parts - of a trampoline, leaving space for the variable parts. */ - -/* On convex, the code for a trampoline is - ld.w #<link>,s0 - jmp <func> */ - -#define TRAMPOLINE_TEMPLATE(FILE) \ -{ \ - fprintf (FILE, "\tld.w #69696969,s0\n"); \ - fprintf (FILE, "\tjmp 52525252\n"); \ -} - -/* Length in units of the trampoline for entering a nested function. */ - -#define TRAMPOLINE_SIZE 12 - -/* Emit RTL insns to initialize the variable parts of a trampoline. - FNADDR is an RTX for the address of the function's pure code. - CXT is an RTX for the static chain value for the function. */ - -#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ -{ \ - emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \ - emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \ - emit_call_insn (gen_call_pop (gen_rtx (MEM, QImode, \ - gen_rtx (SYMBOL_REF, Pmode, \ - "__enable_execute_stack")), \ - const0_rtx, const0_rtx, const0_rtx)); \ -} - -/* Output assembler code to FILE to increment profiler label # LABELNO - for profiling a function entry. */ - -#define FUNCTION_PROFILER(FILE, LABELNO) \ - fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO)); - -/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, - the stack pointer does not matter. The value is tested only in - functions that have frame pointers. - No definition is equivalent to always zero. */ - -#define EXIT_IGNORE_STACK 1 - -/* Store in the variable DEPTH the initial difference between the - frame pointer reg contents and the stack pointer reg contents, - as of the start of the function body. This depends on the layout - of the fixed parts of the stack frame and on how registers are saved. */ -#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \ -{ (DEPTH) = (get_frame_size () + 7) & -8; } - -/* Addressing modes, and classification of registers for them. */ - -/* #define HAVE_POST_INCREMENT 0 */ -/* #define HAVE_POST_DECREMENT 0 */ - -/* #define HAVE_PRE_DECREMENT 0 */ -/* #define HAVE_PRE_INCREMENT 0 */ - -/* Macros to check register numbers against specific register classes. */ - -/* These assume that REGNO is a hard or pseudo reg number. - They give nonzero only if REGNO is a hard reg of the suitable class - or a pseudo reg currently allocated to a suitable hard reg. - Since they use reg_renumber, they are safe only once reg_renumber - has been allocated, which happens in local-alloc.c. */ - -#define REGNO_OK_FOR_INDEX_P(regno) \ - ((regno) <= LAST_VIRTUAL_REGISTER \ - ? regno_ok_for_index_p[regno] \ - : regno_ok_for_index_p[reg_renumber[regno]]) - -#define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno) - -/* Maximum number of registers that can appear in a valid memory address. */ - -#define MAX_REGS_PER_ADDRESS 1 - -/* 1 if X is an rtx for a constant that is a valid address. */ - -#define CONSTANT_ADDRESS_P(X) \ - (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ - || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ - || GET_CODE (X) == HIGH) - -/* Nonzero if the constant value X is a legitimate general operand. - It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ - -/* For convex, bounce 2-word constants that can't be immediate operands. */ - -#define LEGITIMATE_CONSTANT_P(X) \ - (GET_CODE (X) != CONST_DOUBLE \ - || GET_MODE (X) == SFmode \ - || LD_L_P (X) || LD_D_P (X)) - -/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx - and check its validity for a certain class. - We have two alternate definitions for each of them. - The usual definition accepts all pseudo regs; the other rejects - them unless they have been allocated suitable hard regs. - The symbol REG_OK_STRICT causes the latter definition to be used. - - Most source files want to accept pseudo regs in the hope that - they will get allocated to the class that the insn wants them to be in. - Source files for reload pass need to be strict. - After reload, it makes no difference, since pseudo regs have - been eliminated by then. */ - -#ifndef REG_OK_STRICT - -/* Nonzero if X is a hard reg that can be used as an index - or if it is a pseudo reg. */ -#define REG_OK_FOR_INDEX_P(X) \ - (REGNO (X) > LAST_VIRTUAL_REGISTER || regno_ok_for_index_p[REGNO (X)]) - -/* Nonzero if X is a hard reg that can be used as a base reg - or if it is a pseudo reg. */ -#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X) - -#else - -/* Nonzero if X is a hard reg that can be used as an index. */ -#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) - -/* Nonzero if X is a hard reg that can be used as a base reg. */ -#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) - -#endif - -/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression - that is a valid memory address for an instruction. - The MODE argument is the machine mode for the MEM expression - that wants to use this address. - - For Convex, valid addresses are - indirectable or (MEM indirectable) - where indirectable is - const, reg, (PLUS reg const) - - We don't use indirection since with insn scheduling, load + indexing - is better. */ - -/* 1 if X is an address that we could indirect through. */ -#define INDIRECTABLE_ADDRESS_P(X) \ - (CONSTANT_ADDRESS_P (X) \ - || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ - || (GET_CODE (X) == PLUS \ - && GET_CODE (XEXP (X, 0)) == REG \ - && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ - && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ - || (GET_CODE (X) == PLUS \ - && GET_CODE (XEXP (X, 1)) == REG \ - && REG_OK_FOR_BASE_P (XEXP (X, 1)) \ - && CONSTANT_ADDRESS_P (XEXP (X, 0)))) - -/* Go to ADDR if X is a valid address. */ -#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -{ register rtx xfoob = (X); \ - if (INDIRECTABLE_ADDRESS_P (xfoob)) \ - goto ADDR; \ - if (GET_CODE (xfoob) == PRE_DEC && XEXP (xfoob, 0) == stack_pointer_rtx) \ - goto ADDR; \ -} - -/* Try machine-dependent ways of modifying an illegitimate address - to be legitimate. If we find one, return the new, valid address. - This macro is used in only one place: `memory_address' in explow.c. - - OLDX is the address as it was before break_out_memory_refs was called. - In some cases it is useful to look at this to decide what needs to be done. - - MODE and WIN are passed so that this macro can use - GO_IF_LEGITIMATE_ADDRESS. - - It is always safe for this macro to do nothing. It exists to recognize - opportunities to optimize the output. - - For Convex, nothing needs to be done. */ - -#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {} - -/* Go to LABEL if ADDR (a legitimate address expression) - has an effect that depends on the machine mode it is used for. */ - -#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {} - -/* Specify the machine mode that this machine uses - for the index in the tablejump instruction. */ -#define CASE_VECTOR_MODE SImode - -/* Define as C expression which evaluates to nonzero if the tablejump - instruction expects the table to contain offsets from the address of the - table. - Do not define this if the table should contain absolute addresses. */ -/* #define CASE_VECTOR_PC_RELATIVE 1 */ - -/* Define this if the case instruction drops through after the table - when the index is out of range. Don't define it if the case insn - jumps to the default label instead. */ -/* #define CASE_DROPS_THROUGH */ - -/* Specify the tree operation to be used to convert reals to integers. */ -#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR - -/* This is the kind of divide that is easiest to do in the general case. */ -#define EASY_DIV_EXPR TRUNC_DIV_EXPR - -/* Define this as 1 if `char' should by default be signed; else as 0. */ -#define DEFAULT_SIGNED_CHAR 1 - -/* This flag, if defined, says the same insns that convert to a signed fixnum - also convert validly to an unsigned one. */ -#define FIXUNS_TRUNC_LIKE_FIX_TRUNC - -/* Max number of bytes we can move from memory to memory - in one reasonably fast instruction. */ -#define MOVE_MAX 8 - -/* Define this if zero-extension is slow (more than one real instruction). */ -/* #define SLOW_ZERO_EXTEND */ - -/* Nonzero if access to memory by bytes is slow and undesirable. */ -#define SLOW_BYTE_ACCESS (! TARGET_C2) - -/* Define if shifts truncate the shift count - which implies one can omit a sign-extension or zero-extension - of a shift count. */ -/* #define SHIFT_COUNT_TRUNCATED */ - -/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits - is done just by pretending it is already truncated. */ -#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 - -/* On Convex, it is as good to call a constant function address as to - call an address kept in a register. */ -#define NO_FUNCTION_CSE - -/* When a prototype says `char' or `short', really pass an `int'. */ -#define PROMOTE_PROTOTYPES - -/* Specify the machine mode that pointers have. - After generation of rtl, the compiler makes no further distinction - between pointers and any other objects of this machine mode. */ -#define Pmode SImode - -/* A function address in a call instruction - is a byte address (for indexing purposes) - so give the MEM rtx a byte's mode. */ -#define FUNCTION_MODE QImode - -/* Compute the cost of computing a constant rtl expression RTX - whose rtx-code is CODE. The body of this macro is a portion - of a switch statement. If the code is computed here, - return it with a return statement. Otherwise, break from the switch. */ - -#define CONST_COSTS(RTX,CODE,OUTER_CODE) \ - case CONST: \ - case LABEL_REF: \ - case SYMBOL_REF: \ - case CONST_INT: \ - case CONST_DOUBLE: \ - return 0; - -/* Provide the costs of a rtl expression. This is in the body of a - switch on CODE. */ - -#define RTX_COSTS(RTX,CODE,OUTER_CODE) \ - case PLUS: \ - if (regno_pointer_flag != 0 \ - && GET_CODE (XEXP (RTX, 0)) == REG \ - && REGNO_POINTER_FLAG (REGNO (XEXP (RTX, 0))) \ - && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \ - return 0; \ - else break; \ - case MULT: \ - return 4 * (char) (0x03060403 >> target_cpu * 8); \ - case ASHIFT: \ - case LSHIFTRT: \ - case ASHIFTRT: \ - return 4 * (char) (0x03010403 >> target_cpu * 8); \ - case MEM: \ - return 5; - -/* Compute the cost of an address. This is meant to approximate the size - and/or execution delay of an insn using that address. If the cost is - approximated by the RTL complexity, including CONST_COSTS above, as - is usually the case for CISC machines, this macro should not be defined. - For aggressively RISCy machines, only one insn format is allowed, so - this macro should be a constant. The value of this macro only matters - for valid addresses. */ - -#define ADDRESS_COST(RTX) 0 - -/* Specify the cost of a branch insn; roughly the number of extra insns that - should be added to avoid a branch. */ - -#define BRANCH_COST 0 - -/* Adjust the cost of dependences. */ - -#define ADJUST_COST(INSN,LINK,DEP,COST) \ -{ \ - /* Antidependencies don't block issue. */ \ - if (REG_NOTE_KIND (LINK) != 0) \ - (COST) = 0; \ - /* C38 situations where delay depends on context */ \ - else if (TARGET_C38 \ - && GET_CODE (PATTERN (INSN)) == SET \ - && GET_CODE (PATTERN (DEP)) == SET) \ - { \ - enum attr_type insn_type = get_attr_type (INSN); \ - enum attr_type dep_type = get_attr_type (DEP); \ - /* index register must be ready one cycle early */ \ - if (insn_type == TYPE_MLDW || insn_type == TYPE_MLDL \ - || (insn_type == TYPE_MST \ - && reg_mentioned_p (SET_DEST (PATTERN (DEP)), \ - SET_SRC (PATTERN (INSN))))) \ - (COST) += 1; \ - /* alu forwarding off alu takes two */ \ - if (dep_type == TYPE_ALU \ - && insn_type != TYPE_ALU \ - && ! (insn_type == TYPE_MST \ - && SET_DEST (PATTERN (DEP)) == SET_SRC (PATTERN (INSN)))) \ - (COST) += 1; \ - } \ -} - -/* Convex uses Vax or IEEE floats. - Follow the host format. */ -#define TARGET_FLOAT_FORMAT HOST_FLOAT_FORMAT - -/* But must prevent real.c from constructing Vax dfloats */ -#define REAL_VALUE_ATOF(X,S) atof (X) -extern double atof(); - -/* Check a `double' value for validity for a particular machine mode. */ -#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \ - OVERFLOW = check_float_value (MODE, &D, OVERFLOW) - -/* Tell final.c how to eliminate redundant test instructions. */ - -/* Here we define machine-dependent flags and fields in cc_status - (see `conditions.h'). No extra ones are needed for convex. */ - -/* Store in cc_status the expressions - that the condition codes will describe - after execution of an instruction whose pattern is EXP. - Do not alter them if the instruction would not alter the cc's. */ - -#define NOTICE_UPDATE_CC(EXP,INSN) {} - -/* Control the assembler format that we output. */ - -/* Output at beginning of assembler file. */ - -#if _IEEE_FLOAT_ -#define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode ieee\n") -#else -#define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode native\n") -#endif - -/* Output to assembler file text saying following lines - may contain character constants, extra white space, comments, etc. */ - -#define ASM_APP_ON ";APP\n" - -/* Output to assembler file text saying following lines - no longer contain unusual constructs. */ - -#define ASM_APP_OFF ";NO_APP\n" - -/* Alignment with Convex's assembler goes like this: - .text can be .aligned up to a halfword. - .data and .bss can be .aligned up to a longword. - .lcomm is not supported, explicit declarations in .bss must be used instead. - We get alignment for word and longword .text data by conventionally - using .text 2 for word-aligned data and .text 3 for longword-aligned - data. This requires that the data's size be a multiple of its alignment, - which seems to be always true. */ - -/* Output before read-only data. */ - -#define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text") - -/* Output before writable data. */ - -#define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data") - -/* Output before uninitialized data. */ - -#define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss") - -/* This is how to output an assembler line - that says to advance the location counter - to a multiple of 2**LOG bytes. */ - -#define ASM_OUTPUT_ALIGN(FILE,LOG) \ - if (current_section_is_text && (LOG) > 1) \ - fprintf (FILE, ".text %d\n", LOG); \ - else if (current_section_is_text) \ - fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \ - else \ - fprintf (FILE, ".align %d\n", 1 << (LOG)) - -/* How to refer to registers in assembler output. - This sequence is indexed by compiler's hard-register-number (see above). */ - -#define REGISTER_NAMES \ -{ \ - "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \ - "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp", \ -} - -/* This is BSD, so it wants DBX format. */ - -#define DBX_DEBUGGING_INFO - -/* How to renumber registers for dbx and gdb. */ - -#define DBX_REGISTER_NUMBER(REGNO) (REGNO) - -/* Do not break .stabs pseudos into continuations. */ - -#define DBX_CONTIN_LENGTH 0 - -/* This is the char to use for continuation (in case we need to turn - continuation back on). */ - -#define DBX_CONTIN_CHAR '?' - -/* Don't use stab extensions until GDB v4 port is available for convex. */ - -#define DEFAULT_GDB_EXTENSIONS 0 -#define DBX_NO_XREFS - -/* This is how to output the definition of a user-level label named NAME, - such as the label on a static function or variable NAME. */ - -#define ASM_OUTPUT_LABEL(FILE,NAME) \ - do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) - -/* This is how to output a command to make the user-level label named NAME - defined for reference from other files. */ - -#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ - do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) - -/* The prefix to add to user-visible assembler symbols. */ - -#define USER_LABEL_PREFIX "_" - -/* This is how to output an internal numbered label where - PREFIX is the class of label and NUM is the number within the class. */ - -#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ - fprintf (FILE, "%s%d:\n", PREFIX, NUM) - -/* Put case tables in .text 2, where they will be word-aligned */ - -#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \ - ASM_OUTPUT_ALIGN (FILE, 2); \ - ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM) - -#define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \ - ASM_OUTPUT_ALIGN (FILE, 1) - -/* This is how to store into the string LABEL - the symbol_ref name of an internal numbered label where - PREFIX is the class of label and NUM is the number within the class. - This is suitable for output with `assemble_name'. */ - -#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ - sprintf (LABEL, "*%s%d", PREFIX, NUM) - -/* This is how to output an assembler line defining a `double' constant. */ - -#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ - outfloat (FILE, VALUE, "%.17e", "\tds.d ", "\n") - -/* This is how to output an assembler line defining a `float' constant. */ - -#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ - outfloat (FILE, VALUE, "%.9e", "\tds.s ", "\n") - -/* This is how to output an assembler line defining an `int' constant. */ - -#define ASM_OUTPUT_INT(FILE,VALUE) \ -{ \ - fprintf (FILE, "\tds.w "); \ - output_addr_const (FILE, simplify_for_convex (VALUE)); \ - fprintf (FILE, "\n"); \ -} - -/* Likewise for a `long long int' constant. */ - -#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \ -{ \ - if (GET_CODE (VALUE) == CONST_DOUBLE) \ - fprintf (FILE, "\tds.w %d,%d\n", \ - const_double_high_int (VALUE), const_double_low_int (VALUE)); \ - else if (GET_CODE (VALUE) == CONST_INT) \ - { \ - int val = INTVAL (VALUE); \ - fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \ - } \ - else \ - abort (); \ -} - -/* Likewise for `char' and `short' constants. */ - -#define ASM_OUTPUT_SHORT(FILE,VALUE) \ -( fprintf (FILE, "\tds.h "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -#define ASM_OUTPUT_CHAR(FILE,VALUE) \ -( fprintf (FILE, "\tds.b "), \ - output_addr_const (FILE, (VALUE)), \ - fprintf (FILE, "\n")) - -/* This is how to output an assembler line for a numeric constant byte. */ - -#define ASM_OUTPUT_BYTE(FILE,VALUE) \ - fprintf (FILE, "\tds.b %#x\n", (VALUE)) - -/* This is how to output a string */ - -#define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \ - int i; \ - fprintf ((FILE), "\tds.b \""); \ - for (i = 0; i < (SIZE); i++) { \ - register int c = (STR)[i] & 0377; \ - if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \ - putc (c, (FILE)); \ - else \ - fprintf ((FILE), "\\%03o", c);} \ - fprintf ((FILE), "\"\n");} while (0) - -/* This is how to output an insn to push a register on the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ - fprintf (FILE, "\tpsh.%c %s\n", \ - S_REGNO_P (REGNO) ? 'l' : 'w', \ - reg_names[REGNO]) - -/* This is how to output an insn to pop a register from the stack. - It need not be very fast code. */ - -#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ - fprintf (FILE, "\tpop.%c %s\n", \ - S_REGNO_P (REGNO) ? 'l' : 'w', \ - reg_names[REGNO]) - -/* This is how to output an element of a case-vector that is absolute. */ - -#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ - fprintf (FILE, "\tds.w L%d\n", VALUE) - -/* This is how to output an element of a case-vector that is relative. - (not used on Convex) */ - -#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ - fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL) - -/* This is how to output an assembler line - that says to advance the location counter by SIZE bytes. */ - -#define ASM_OUTPUT_SKIP(FILE,SIZE) \ - fprintf (FILE, "\tds.b %u(0)\n", (SIZE)) - -/* This says how to output an assembler line - to define a global common symbol. */ - -#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ -( fputs (".comm ", (FILE)), \ - assemble_name ((FILE), (NAME)), \ - fprintf ((FILE), ",%u\n", (ROUNDED))) - -/* This says how to output an assembler line - to define a local common symbol. */ - -#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ -( bss_section (), \ - assemble_name ((FILE), (NAME)), \ - fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED))) - -/* Store in OUTPUT a string (made with alloca) containing - an assembler-name for a local static variable named NAME. - LABELNO is an integer which is different for each call. */ - -#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ -( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ - sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) - -/* Output an arg count before function entries. */ - -#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ - asm_declare_function_name (FILE, NAME, DECL) - -/* Define the parentheses used to group arithmetic operations - in assembler code. */ - -#define ASM_OPEN_PAREN "(" -#define ASM_CLOSE_PAREN ")" - -/* Define results of standard character escape sequences. */ -#define TARGET_BELL 007 -#define TARGET_BS 010 -#define TARGET_TAB 011 -#define TARGET_NEWLINE 012 -#define TARGET_VT 013 -#define TARGET_FF 014 -#define TARGET_CR 015 - -/* Print an instruction operand X on file FILE. - CODE is the code from the %-spec that requested printing this operand; - if `%z3' was used to print operand 3, then CODE is 'z'. */ - -#define PRINT_OPERAND(FILE, X, CODE) \ - print_operand (FILE, X, CODE) - -/* Print a memory operand whose address is X, on file FILE. */ - -#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ - print_operand_address (FILE, ADDR) - -/* Do not put out GNU stabs for constructors and destructors. - ld bounces them. */ - -#define FASCIST_ASSEMBLER - -/* __gcc_cleanup is loader-aliased to __ap$do_registered_functions if we - are linking against standard libc, 0 if old (-traditional) libc. */ - -#define EXIT_BODY \ -{ \ - extern void __gcc_cleanup (); \ - if (__gcc_cleanup != _cleanup) \ - __gcc_cleanup (); \ - _cleanup (); \ -} - -/* Header for convex.c. - Here at the end so we can use types defined above. */ - -extern int target_cpu; -extern int current_section_is_text; -extern enum reg_class regno_reg_class[]; -extern enum reg_class reg_class_from_letter[]; -extern char regno_ok_for_index_p_base[]; -#define regno_ok_for_index_p (regno_ok_for_index_p_base + 1) - -extern int const_double_low_int (); -extern int const_double_high_int (); -extern char *output_cmp (); -extern char *output_condjump (); -extern char *output_call (); -extern void gen_ap_for_call (); -extern int check_float_value (); -extern void asm_declare_function_name (); |