summaryrefslogtreecommitdiff
path: root/gcc/config/m32r/m32r.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/m32r/m32r.c')
-rwxr-xr-xgcc/config/m32r/m32r.c3323
1 files changed, 3323 insertions, 0 deletions
diff --git a/gcc/config/m32r/m32r.c b/gcc/config/m32r/m32r.c
new file mode 100755
index 0000000..c7717b1
--- /dev/null
+++ b/gcc/config/m32r/m32r.c
@@ -0,0 +1,3323 @@
+/* CYGNUS LOCAL -- meissner/m32r work */
+/* Subroutines used for code generation on the Mitsubishi M32R cpu.
+ Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "tree.h"
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "expr.h"
+#include "recog.h"
+
+/* Save the operands last given to a compare for use when we
+ generate a scc or bcc insn. */
+rtx m32r_compare_op0, m32r_compare_op1;
+
+/* Array of valid operand punctuation characters. */
+char m32r_punct_chars[256];
+
+/* Selected code model. */
+char *m32r_model_string = M32R_MODEL_DEFAULT;
+enum m32r_model m32r_model;
+
+/* Selected SDA support. */
+char *m32r_sdata_string = M32R_SDATA_DEFAULT;
+enum m32r_sdata m32r_sdata;
+
+/* Scheduler support */
+int m32r_sched_odd_word_p;
+
+/* Values of the -mcond-exec=n string. */
+int m32rx_cond_exec = 4;
+char * m32rx_cond_exec_string = NULL;
+
+/* Forward declaration. */
+static void init_reg_tables PROTO((void));
+static void emit_S_clause PROTO((rtx, rtx, char *));
+static int generate_comparison PROTO((rtx, char *));
+
+static int internal_reg_or_eq_int16_operand PROTO ((rtx, enum machine_mode));
+static int internal_reg_or_cmp_int16_operand PROTO ((rtx, enum machine_mode));
+static int internal_reg_or_uint16_operand PROTO ((rtx, enum machine_mode));
+static int internal_reg_or_zero_operand PROTO ((rtx, enum machine_mode));
+
+/* Called by OVERRIDE_OPTIONS to initialize various things. */
+
+void
+m32r_init ()
+{
+ init_reg_tables ();
+
+ /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
+ memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
+ m32r_punct_chars['#'] = 1;
+ m32r_punct_chars['@'] = 1; /* ??? no longer used */
+
+ /* Provide default value if not specified. */
+ if (!g_switch_set)
+ g_switch_value = SDATA_DEFAULT_SIZE;
+
+ if (strcmp (m32r_model_string, "small") == 0)
+ m32r_model = M32R_MODEL_SMALL;
+ else if (strcmp (m32r_model_string, "medium") == 0)
+ m32r_model = M32R_MODEL_MEDIUM;
+ else if (strcmp (m32r_model_string, "large") == 0)
+ m32r_model = M32R_MODEL_LARGE;
+ else
+ error ("bad value (%s) for -mmodel switch", m32r_model_string);
+
+ if (strcmp (m32r_sdata_string, "none") == 0)
+ m32r_sdata = M32R_SDATA_NONE;
+ else if (strcmp (m32r_sdata_string, "sdata") == 0)
+ m32r_sdata = M32R_SDATA_SDATA;
+ else if (strcmp (m32r_sdata_string, "use") == 0)
+ m32r_sdata = M32R_SDATA_USE;
+ else
+ error ("bad value (%s) for -msdata switch", m32r_sdata_string);
+
+ /* Set up max # instructions to use with conditional execution */
+ if (m32rx_cond_exec_string)
+ m32rx_cond_exec = atoi (m32rx_cond_exec_string);
+}
+
+/* Vectors to keep interesting information about registers where it can easily
+ be got. We use to use the actual mode value as the bit number, but there
+ is (or may be) more than 32 modes now. Instead we use two tables: one
+ indexed by hard register number, and one indexed by mode. */
+
+/* The purpose of m32r_mode_class is to shrink the range of modes so that
+ they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
+ mapped into one m32r_mode_class mode. */
+
+enum m32r_mode_class
+{
+ C_MODE,
+ S_MODE, D_MODE, T_MODE, O_MODE,
+ SF_MODE, DF_MODE, TF_MODE, OF_MODE
+ , A_MODE
+};
+
+/* Modes for condition codes. */
+#define C_MODES (1 << (int) C_MODE)
+
+/* Modes for single-word and smaller quantities. */
+#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
+
+/* Modes for double-word and smaller quantities. */
+#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
+
+/* Modes for quad-word and smaller quantities. */
+#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
+
+/* Modes for accumulators. */
+#define A_MODES (1 << (int) A_MODE)
+
+/* Value is 1 if register/mode pair is acceptable on arc. */
+
+unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
+{
+ T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
+ T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
+ S_MODES, C_MODES
+ , A_MODES, A_MODES
+};
+
+unsigned int m32r_mode_class [NUM_MACHINE_MODES];
+
+enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
+
+static void
+init_reg_tables ()
+{
+ int i;
+
+ for (i = 0; i < NUM_MACHINE_MODES; i++)
+ {
+ switch (GET_MODE_CLASS (i))
+ {
+ case MODE_INT:
+ case MODE_PARTIAL_INT:
+ case MODE_COMPLEX_INT:
+ if (GET_MODE_SIZE (i) <= 4)
+ m32r_mode_class[i] = 1 << (int) S_MODE;
+ else if (GET_MODE_SIZE (i) == 8)
+ m32r_mode_class[i] = 1 << (int) D_MODE;
+ else if (GET_MODE_SIZE (i) == 16)
+ m32r_mode_class[i] = 1 << (int) T_MODE;
+ else if (GET_MODE_SIZE (i) == 32)
+ m32r_mode_class[i] = 1 << (int) O_MODE;
+ else
+ m32r_mode_class[i] = 0;
+ break;
+ case MODE_FLOAT:
+ case MODE_COMPLEX_FLOAT:
+ if (GET_MODE_SIZE (i) <= 4)
+ m32r_mode_class[i] = 1 << (int) SF_MODE;
+ else if (GET_MODE_SIZE (i) == 8)
+ m32r_mode_class[i] = 1 << (int) DF_MODE;
+ else if (GET_MODE_SIZE (i) == 16)
+ m32r_mode_class[i] = 1 << (int) TF_MODE;
+ else if (GET_MODE_SIZE (i) == 32)
+ m32r_mode_class[i] = 1 << (int) OF_MODE;
+ else
+ m32r_mode_class[i] = 0;
+ break;
+ case MODE_CC:
+ default:
+ /* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
+ we must explicitly check for them here. */
+ if (i == (int) CCmode)
+ m32r_mode_class[i] = 1 << (int) C_MODE;
+ else
+ m32r_mode_class[i] = 0;
+ break;
+ }
+ }
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (GPR_P (i))
+ m32r_regno_reg_class[i] = GENERAL_REGS;
+ else if (i == ARG_POINTER_REGNUM)
+ m32r_regno_reg_class[i] = GENERAL_REGS;
+ else
+ m32r_regno_reg_class[i] = NO_REGS;
+ }
+}
+
+static tree interrupt_ident;
+static tree model_ident;
+static tree small_ident;
+static tree medium_ident;
+static tree large_ident;
+
+static void
+init_idents ()
+{
+ if (interrupt_ident == 0)
+ {
+ interrupt_ident = get_identifier ("interrupt");
+ model_ident = get_identifier ("model");
+ small_ident = get_identifier ("small");
+ medium_ident = get_identifier ("medium");
+ large_ident = get_identifier ("large");
+ }
+}
+
+/* M32R specific attribute support.
+
+ interrupt - for interrupt functions
+
+ model - select code model used to access object
+
+ small: addresses use 24 bits, use bl to make calls
+ medium: addresses use 32 bits, use bl to make calls
+ large: addresses use 32 bits, use seth/add3/jl to make calls
+
+ Grep for MODEL in m32r.h for more info.
+*/
+
+/* Return nonzero if IDENTIFIER is a valid decl attribute. */
+
+int
+m32r_valid_machine_decl_attribute (type, attributes, identifier, args)
+ tree type;
+ tree attributes;
+ tree identifier;
+ tree args;
+ {
+ init_idents ();
+
+ if (identifier == interrupt_ident
+ && list_length (args) == 0)
+ return 1;
+
+ if (identifier == model_ident
+ && list_length (args) == 1
+ && (TREE_VALUE (args) == small_ident
+ || TREE_VALUE (args) == medium_ident
+ || TREE_VALUE (args) == large_ident))
+ return 1;
+
+ return 0;
+}
+
+/* Return zero if TYPE1 and TYPE are incompatible, one if they are compatible,
+ and two if they are nearly compatible (which causes a warning to be
+ generated). */
+
+int
+m32r_comp_type_attributes (type1, type2)
+ tree type1, type2;
+{
+ return 1;
+}
+
+/* Set the default attributes for TYPE. */
+
+void
+m32r_set_default_type_attributes (type)
+ tree type;
+{
+}
+
+/* A C statement or statements to switch to the appropriate
+ section for output of DECL. DECL is either a `VAR_DECL' node
+ or a constant of some sort. RELOC indicates whether forming
+ the initial value of DECL requires link-time relocations. */
+
+void
+m32r_select_section (decl, reloc)
+ tree decl;
+ int reloc;
+{
+ if (TREE_CODE (decl) == STRING_CST)
+ {
+ if (! flag_writable_strings)
+ const_section ();
+ else
+ data_section ();
+ }
+ else if (TREE_CODE (decl) == VAR_DECL)
+ {
+ if (SDATA_NAME_P (XSTR (XEXP (DECL_RTL (decl), 0), 0)))
+ sdata_section ();
+ else if ((flag_pic && reloc)
+ || !TREE_READONLY (decl)
+ || TREE_SIDE_EFFECTS (decl)
+ || !DECL_INITIAL (decl)
+ || (DECL_INITIAL (decl) != error_mark_node
+ && !TREE_CONSTANT (DECL_INITIAL (decl))))
+ data_section ();
+ else
+ const_section ();
+ }
+ else
+ const_section ();
+}
+
+/* Encode section information of DECL, which is either a VAR_DECL,
+ FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
+
+ For the M32R we want to record:
+
+ - whether the object lives in .sdata/.sbss.
+ objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR
+
+ - what code model should be used to access the object
+ small: recorded with no flag - for space efficiency since they'll
+ be the most common
+ medium: prefixed with MEDIUM_FLAG_CHAR
+ large: prefixed with LARGE_FLAG_CHAR
+*/
+
+void
+m32r_encode_section_info (decl)
+ tree decl;
+{
+ char prefix = 0;
+ tree model = 0;
+
+ switch (TREE_CODE (decl))
+ {
+ case VAR_DECL :
+ case FUNCTION_DECL :
+ model = lookup_attribute ("model", DECL_MACHINE_ATTRIBUTES (decl));
+ break;
+ case STRING_CST :
+ case CONSTRUCTOR :
+ /* ??? document all others that can appear here */
+ default :
+ return;
+ }
+
+ /* Only mark the object as being small data area addressable if
+ it hasn't been explicitly marked with a code model.
+
+ The user can explicitly put an object in the small data area with the
+ section attribute. If the object is in sdata/sbss and marked with a
+ code model do both [put the object in .sdata and mark it as being
+ addressed with a specific code model - don't mark it as being addressed
+ with an SDA reloc though]. This is ok and might be useful at times. If
+ the object doesn't fit the linker will give an error. */
+
+ if (! model)
+ {
+ if (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd'
+ && DECL_SECTION_NAME (decl) != NULL_TREE)
+ {
+ char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
+ if (! strcmp (name, ".sdata") || ! strcmp (name, ".sbss"))
+ {
+#if 0 /* ??? There's no reason to disallow this, is there? */
+ if (TREE_READONLY (decl))
+ error_with_decl (decl, "const objects cannot go in .sdata/.sbss");
+#endif
+ prefix = SDATA_FLAG_CHAR;
+ }
+ }
+ else
+ {
+ if (TREE_CODE (decl) == VAR_DECL
+ && ! TREE_READONLY (decl)
+ && ! TARGET_SDATA_NONE)
+ {
+ int size = int_size_in_bytes (TREE_TYPE (decl));
+
+ if (size > 0 && size <= g_switch_value)
+ prefix = SDATA_FLAG_CHAR;
+ }
+ }
+ }
+
+ /* If data area not decided yet, check for a code model. */
+ if (prefix == 0)
+ {
+ if (model)
+ {
+ init_idents ();
+
+ if (TREE_VALUE (TREE_VALUE (model)) == small_ident)
+ ; /* don't mark the symbol specially */
+ else if (TREE_VALUE (TREE_VALUE (model)) == medium_ident)
+ prefix = MEDIUM_FLAG_CHAR;
+ else if (TREE_VALUE (TREE_VALUE (model)) == large_ident)
+ prefix = LARGE_FLAG_CHAR;
+ else
+ abort (); /* shouldn't happen */
+ }
+ else
+ {
+ if (TARGET_MODEL_SMALL)
+ ; /* don't mark the symbol specially */
+ else if (TARGET_MODEL_MEDIUM)
+ prefix = MEDIUM_FLAG_CHAR;
+ else if (TARGET_MODEL_LARGE)
+ prefix = LARGE_FLAG_CHAR;
+ else
+ abort (); /* shouldn't happen */
+ }
+ }
+
+ if (prefix != 0)
+ {
+ rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd'
+ ? TREE_CST_RTL (decl) : DECL_RTL (decl));
+ char *str = XSTR (XEXP (rtl, 0), 0);
+ int len = strlen (str);
+ char *newstr = savealloc (len + 2);
+ strcpy (newstr + 1, str);
+ *newstr = prefix;
+ XSTR (XEXP (rtl, 0), 0) = newstr;
+ }
+}
+
+/* Do anything needed before RTL is emitted for each function. */
+
+void
+m32r_init_expanders ()
+{
+ /* ??? At one point there was code here. The function is left in
+ to make it easy to experiment. */
+}
+
+/* Acceptable arguments to the call insn. */
+
+int
+call_address_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ return symbolic_operand (op, int_mode);
+
+/* The following xxx_operand functions all take an integer for the machine_mode
+ argument. This is to allow them to be prototyped in m32r.h which is
+ included before rtl.h is included. Not every function includes rtl.h, so we
+ can't assume it will be included. */
+
+/* Constants and values in registers are not OK, because
+ the m32r BL instruction can only support PC relative branching. */
+}
+
+int
+call_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ if (GET_CODE (op) != MEM)
+ return 0;
+ op = XEXP (op, 0);
+ return call_address_operand (op, mode);
+}
+
+/* Returns 1 if OP is a symbol reference. */
+
+int
+symbolic_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ switch (GET_CODE (op))
+ {
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST :
+ return 1;
+
+ default:
+ return 0;
+ }
+}
+
+/* Return 1 if OP is a reference to an object in .sdata/.sbss. */
+
+int
+small_data_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (! TARGET_SDATA_USE)
+ return 0;
+
+ if (GET_CODE (op) == SYMBOL_REF)
+ return SDATA_NAME_P (XSTR (op, 0));
+
+ if (GET_CODE (op) == CONST
+ && GET_CODE (XEXP (op, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
+ && INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
+ return SDATA_NAME_P (XSTR (XEXP (XEXP (op, 0), 0), 0));
+
+ return 0;
+}
+
+/* Return 1 if OP is a symbol that can use 24 bit addressing. */
+
+int
+addr24_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) == LABEL_REF)
+ return TARGET_ADDR24;
+
+ if (GET_CODE (op) == SYMBOL_REF)
+ return (SMALL_NAME_P (XSTR (op, 0))
+ || (TARGET_ADDR24
+ && (CONSTANT_POOL_ADDRESS_P (op)
+ || LIT_NAME_P (XSTR (op, 0)))));
+
+ if (GET_CODE (op) == CONST
+ && GET_CODE (XEXP (op, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
+ && UINT24_P (INTVAL (XEXP (XEXP (op, 0), 1))))
+ {
+ rtx sym = XEXP (XEXP (op, 0), 0);
+ return (SMALL_NAME_P (XSTR (sym, 0))
+ || (TARGET_ADDR24
+ && (CONSTANT_POOL_ADDRESS_P (op)
+ || LIT_NAME_P (XSTR (op, 0)))));
+ }
+
+ return 0;
+}
+
+/* Return 1 if OP is a symbol that needs 32 bit addressing. */
+
+int
+addr32_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) == LABEL_REF)
+ return TARGET_ADDR32;
+
+ if (GET_CODE (op) == SYMBOL_REF)
+ return (! addr24_operand (op, int_mode)
+ && ! small_data_operand (op, int_mode));
+
+ if (GET_CODE (op) == CONST
+ && GET_CODE (XEXP (op, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
+ {
+ return (! addr24_operand (op, int_mode)
+ && ! small_data_operand (op, int_mode));
+ }
+
+ return 0;
+}
+
+/* Return 1 if OP is a function that can be called with the `bl' insn. */
+
+int
+call26_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) == SYMBOL_REF)
+ return ! LARGE_NAME_P (XSTR (op, 0));
+
+ return TARGET_CALL26;
+}
+
+/* Returns 1 if OP is an acceptable operand for seth/add3. */
+
+int
+seth_add3_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) == SYMBOL_REF
+ || GET_CODE (op) == LABEL_REF)
+ return 1;
+
+ if (GET_CODE (op) == CONST
+ && GET_CODE (XEXP (op, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
+ && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
+ && INT16_P (INTVAL (XEXP (XEXP (op, 0), 1))))
+ return 1;
+
+ return 0;
+}
+
+/* Return true if OP is a signed 8 bit immediate value. */
+
+int
+int8_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return INT8_P (INTVAL (op));
+}
+
+/* Return true if OP is a signed 16 bit immediate value
+ useful in comparisons. */
+
+int
+cmp_int16_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return CMP_INT16_P (INTVAL (op));
+}
+
+/* Return true if OP is an unsigned 16 bit immediate value. */
+int
+uint16_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return UINT16_P (INTVAL (op));
+}
+
+/* Return true if OP is a register or signed 16 bit value. */
+int
+reg_or_int16_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return INT16_P (INTVAL (op));
+}
+
+/* Return true if OP is a register or an unsigned 16 bit value. */
+int
+reg_or_uint16_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return UINT16_P (INTVAL (op));
+}
+
+/* Return true if OP is a register or an integer value that can be
+ used is SEQ/SNE. We can use either XOR of the value or ADD of
+ the negative of the value for the constant. Don't allow 0,
+ because that is special cased. */
+int
+reg_or_eq_int16_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ HOST_WIDE_INT value;
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ value = INTVAL (op);
+ return (value != 0) && (UINT16_P (value) || CMP_INT16_P (-value));
+}
+
+/* Same as eqne_int16_operand, except the mode argument is an enum. */
+int
+internal_reg_or_eq_int16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ HOST_WIDE_INT value;
+
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ value = INTVAL (op);
+ return (value != 0) && (UINT16_P (value) || CMP_INT16_P (-value));
+}
+
+/* Same as reg_or_int16_operand, except the mode argument is an enum. */
+static int
+internal_reg_or_uint16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return UINT16_P (INTVAL (op));
+}
+
+/* Return true if OP is a register or signed 16 bit value for compares. */
+int
+reg_or_cmp_int16_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return CMP_INT16_P (INTVAL (op));
+}
+
+/* Same as reg_or_cmp_int16_operand, but uses machine_mode as an
+ operand. */
+static int
+internal_reg_or_cmp_int16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ return CMP_INT16_P (INTVAL (op));
+}
+
+/* Return true if OP is a register or the constant 0. */
+int
+reg_or_zero_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ return INTVAL (op) == 0;
+}
+
+/* Like reg_or_zero_operand, except mode argument is an enum. */
+static int
+internal_reg_or_zero_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
+ return register_operand (op, mode);
+
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+
+ return INTVAL (op) == 0;
+}
+
+/* Return true if OP is a const_int requiring two instructions to load. */
+
+int
+two_insn_const_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return 0;
+ if (INT16_P (INTVAL (op))
+ || UINT24_P (INTVAL (op))
+ || UPPER16_P (INTVAL (op)))
+ return 0;
+ return 1;
+}
+
+/* Return true if OP is an acceptable argument for a single word
+ move source. */
+
+int
+move_src_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+ switch (GET_CODE (op))
+ {
+ case SYMBOL_REF :
+ case CONST :
+ return addr24_operand (op, int_mode);
+ case CONST_INT :
+ /* ??? We allow more cse opportunities if we only allow constants
+ loadable with one insn, and split the rest into two. The instances
+ where this would help should be rare and the current way is
+ simpler. */
+ return INT32_P (INTVAL (op));
+ case LABEL_REF :
+ return TARGET_ADDR24;
+ case CONST_DOUBLE :
+ if (mode == SFmode)
+ return 1;
+ else if (mode == SImode)
+ {
+ /* Large unsigned constants are represented as const_double's. */
+ unsigned HOST_WIDE_INT low, high;
+
+ low = CONST_DOUBLE_LOW (op);
+ high = CONST_DOUBLE_HIGH (op);
+ return high == 0 && low <= 0xffffffff;
+ }
+ else
+ return 0;
+ case REG :
+ return register_operand (op, mode);
+ case SUBREG :
+ /* (subreg (mem ...) ...) can occur here if the inner part was once a
+ pseudo-reg and is now a stack slot. */
+ if (GET_CODE (SUBREG_REG (op)) == MEM)
+ return address_operand (XEXP (SUBREG_REG (op), 0), mode);
+ else
+ return register_operand (op, mode);
+ case MEM :
+ if (GET_CODE (XEXP (op, 0)) == PRE_INC
+ || GET_CODE (XEXP (op, 0)) == PRE_DEC)
+ return 0; /* loads can't do pre-{inc,dec} */
+ return address_operand (XEXP (op, 0), mode);
+ default :
+ return 0;
+ }
+}
+
+/* Return true if OP is an acceptable argument for a double word
+ move source. */
+
+int
+move_double_src_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+ switch (GET_CODE (op))
+ {
+ case CONST_INT :
+ case CONST_DOUBLE :
+ return 1;
+ case REG :
+ return register_operand (op, mode);
+ case SUBREG :
+ /* (subreg (mem ...) ...) can occur here if the inner part was once a
+ pseudo-reg and is now a stack slot. */
+ if (GET_CODE (SUBREG_REG (op)) == MEM)
+ return move_double_src_operand (SUBREG_REG (op), int_mode);
+ else
+ return register_operand (op, mode);
+ case MEM :
+ /* Disallow auto inc/dec for now. */
+ if (GET_CODE (XEXP (op, 0)) == PRE_DEC
+ || GET_CODE (XEXP (op, 0)) == PRE_INC)
+ return 0;
+ return address_operand (XEXP (op, 0), mode);
+ default :
+ return 0;
+ }
+}
+
+/* Return true if OP is an acceptable argument for a move destination. */
+
+int
+move_dest_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+ switch (GET_CODE (op))
+ {
+ case REG :
+ return register_operand (op, mode);
+ case SUBREG :
+ /* (subreg (mem ...) ...) can occur here if the inner part was once a
+ pseudo-reg and is now a stack slot. */
+ if (GET_CODE (SUBREG_REG (op)) == MEM)
+ return address_operand (XEXP (SUBREG_REG (op), 0), mode);
+ else
+ return register_operand (op, mode);
+ case MEM :
+ if (GET_CODE (XEXP (op, 0)) == POST_INC)
+ return 0; /* stores can't do post inc */
+ return address_operand (XEXP (op, 0), mode);
+ default :
+ return 0;
+ }
+}
+
+/* Return 1 if OP is a DImode const we want to handle inline.
+ This must match the code in the movdi pattern.
+ It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
+
+int
+easy_di_const (op)
+ rtx op;
+{
+ rtx high_rtx, low_rtx;
+ HOST_WIDE_INT high, low;
+
+ split_double (op, &high_rtx, &low_rtx);
+ high = INTVAL (high_rtx);
+ low = INTVAL (low_rtx);
+ /* Pick constants loadable with 2 16 bit `ldi' insns. */
+ if (high >= -128 && high <= 127
+ && low >= -128 && low <= 127)
+ return 1;
+ return 0;
+}
+
+/* Return 1 if OP is a DFmode const we want to handle inline.
+ This must match the code in the movdf pattern.
+ It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
+
+int
+easy_df_const (op)
+ rtx op;
+{
+ REAL_VALUE_TYPE r;
+ long l[2];
+
+ REAL_VALUE_FROM_CONST_DOUBLE (r, op);
+ REAL_VALUE_TO_TARGET_DOUBLE (r, l);
+ if (l[0] == 0 && l[1] == 0)
+ return 1;
+ if ((l[0] & 0xffff) == 0 && l[1] == 0)
+ return 1;
+ return 0;
+}
+
+/* Return 1 if OP is an EQ or NE comparison operator. */
+
+int
+eqne_comparison_operator (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum rtx_code code = GET_CODE (op);
+
+ if (GET_RTX_CLASS (code) != '<')
+ return 0;
+ return (code == EQ || code == NE);
+}
+
+/* Return 1 if OP is a signed comparison operator. */
+
+int
+signed_comparison_operator (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum rtx_code code = GET_CODE (op);
+
+ if (GET_RTX_CLASS (code) != '<')
+ return 0;
+ return (code == EQ || code == NE
+ || code == LT || code == LE || code == GT || code == GE);
+}
+
+/* Return 1 if OP is (mem (reg ...)).
+ This is used in insn length calcs. */
+
+int
+memreg_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
+}
+
+/* Return true if OP is an acceptable input argument for a zero/sign extend
+ operation. */
+
+int
+extend_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+ rtx addr;
+
+ switch (GET_CODE (op))
+ {
+ case REG :
+ case SUBREG :
+ return register_operand (op, mode);
+
+ case MEM :
+ addr = XEXP (op, 0);
+ if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
+ return 0; /* loads can't do pre inc/pre dec */
+
+ return address_operand (addr, mode);
+
+ default :
+ return 0;
+ }
+}
+
+/* Return non-zero if the operand is an insn that is a small insn.
+ Allow const_int 0 as well, which is a placeholder for NOP slots. */
+
+int
+small_insn_p (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
+ return 1;
+
+ if (GET_RTX_CLASS (GET_CODE (op)) != 'i')
+ return 0;
+
+ return get_attr_length (op) == 2;
+}
+
+/* Return non-zero if the operand is an insn that is a large insn. */
+
+int
+large_insn_p (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ if (GET_RTX_CLASS (GET_CODE (op)) != 'i')
+ return 0;
+
+ return get_attr_length (op) != 2;
+}
+
+
+/* Comparisons. */
+
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
+ return the mode to be used for the comparison. */
+
+int
+m32r_select_cc_mode (op, x, y)
+ int op;
+ rtx x, y;
+{
+ return (int)CCmode;
+}
+
+/* X and Y are two things to compare using CODE. Emit the compare insn and
+ return the rtx for compare [arg0 of the if_then_else].
+ If need_compare is true then the comparison insn must be generated, rather
+ than being susummed into the following branch instruction. */
+
+rtx
+gen_compare (int_code, label, x, y)
+ int int_code;
+ rtx label;
+ rtx x;
+ rtx y;
+{
+ enum rtx_code code = (enum rtx_code)int_code;
+ enum rtx_code branch_code;
+ enum machine_mode mode = SELECT_CC_MODE (code, x, y);
+ rtx cc_reg = gen_rtx (REG, mode, CARRY_REGNUM);
+ int must_swap = FALSE;
+ int int_p = (GET_CODE (y) == CONST_INT);
+ HOST_WIDE_INT value = (int_p) ? INTVAL (y) : 0;
+ int signed_p = 0;
+ rtx arg1;
+ rtx arg2;
+ rtx ret;
+ rtx (*gen_func) PROTO ((rtx, rtx))
+ = (rtx (*) PROTO ((rtx, rtx))) abort;
+ int (*constrain_func) PROTO ((rtx, enum machine_mode))
+ = (int (*) PROTO ((rtx, enum machine_mode))) abort;
+
+ start_sequence ();
+ if (GET_CODE (x) != REG && GET_CODE (x) != SUBREG)
+ x = force_reg (GET_MODE (x), x);
+
+ if (GET_CODE (y) != REG && GET_CODE (y) != SUBREG && !int_p)
+ y = force_reg (GET_MODE (x), y);
+
+ /* If we have a LE, GT, etc. of a constant, see if we can tranform it to the
+ appropriate LT, GE, etc. to use the cmpi or cmpui instruction. */
+ if (int_p)
+ {
+ if ((code == LE || code == GT) && (value >= -32768 && value < 32767))
+ {
+ ++value;
+ y = GEN_INT (value);
+ code = (code == LE) ? LT : GE;
+ }
+
+ else if ((code == LEU || code == GTU) && (value >= 0 && value < 32767))
+ {
+ ++value;
+ y = GEN_INT (value);
+ code = (code == LEU) ? LTU : GEU;
+ }
+ }
+
+ switch (code)
+ {
+ default:
+ abort ();
+
+ case EQ:
+ gen_func = gen_cmp_eqsi_insn;
+ constrain_func = internal_reg_or_uint16_operand;
+ branch_code = NE;
+ signed_p = TRUE;
+ if (TARGET_M32RX)
+ {
+ gen_func = gen_cmp_eqsi_zero_insn;
+ constrain_func = internal_reg_or_zero_operand;
+ }
+ break;
+
+ case NE:
+ gen_func = gen_cmp_eqsi_insn;
+ constrain_func = internal_reg_or_uint16_operand;
+ branch_code = EQ;
+ signed_p = TRUE;
+ if (TARGET_M32RX)
+ {
+ gen_func = gen_cmp_eqsi_zero_insn;
+ constrain_func = internal_reg_or_zero_operand;
+ }
+ break;
+
+ case LT:
+ gen_func = gen_cmp_ltsi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = NE;
+ signed_p = TRUE;
+ break;
+
+ case LE:
+ gen_func = gen_cmp_ltsi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = EQ;
+ signed_p = TRUE;
+ must_swap = TRUE;
+ break;
+
+ case GT:
+ gen_func = gen_cmp_ltsi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = NE;
+ signed_p = TRUE;
+ must_swap = TRUE;
+ break;
+
+ case GE:
+ gen_func = gen_cmp_ltsi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = EQ;
+ signed_p = TRUE;
+ break;
+
+ case LTU:
+ gen_func = gen_cmp_ltusi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = NE;
+ signed_p = FALSE;
+ break;
+
+ case LEU:
+ gen_func = gen_cmp_ltusi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = EQ;
+ signed_p = FALSE;
+ must_swap = TRUE;
+ break;
+
+ case GTU:
+ gen_func = gen_cmp_ltusi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = NE;
+ signed_p = FALSE;
+ must_swap = TRUE;
+ break;
+
+ case GEU:
+ gen_func = gen_cmp_ltusi_insn;
+ constrain_func = internal_reg_or_cmp_int16_operand;
+ branch_code = EQ;
+ signed_p = FALSE;
+ break;
+ }
+
+ /* Is this a branch comparison against 0? */
+ if (int_p && value == 0 && signed_p)
+ {
+ emit_jump_insn (gen_rtx_SET (VOIDmode,
+ pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode,
+ gen_rtx (code,
+ VOIDmode,
+ x,
+ CONST0_RTX (mode)),
+ gen_rtx_LABEL_REF (VOIDmode,
+ label),
+ pc_rtx)));
+ }
+
+ /* Is this a branch comparison comparing two registers for == or !=? */
+ else if (code == EQ || code == NE)
+ {
+ if (int_p)
+ y = force_reg (GET_MODE (x), y);
+
+ emit_jump_insn (gen_rtx_SET (VOIDmode,
+ pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode,
+ gen_rtx (code,
+ VOIDmode,
+ x, y),
+ gen_rtx_LABEL_REF (VOIDmode,
+ label),
+ pc_rtx)));
+ }
+
+ /* If not, set c bit and then do jump */
+ else
+ {
+ if (int_p && (must_swap || ! (*constrain_func) (y, GET_MODE (y))))
+ y = force_reg (GET_MODE (x), y);
+
+ if (must_swap)
+ {
+ arg1 = y;
+ arg2 = x;
+ }
+ else
+ {
+ arg1 = x;
+ arg2 = y;
+ }
+
+ emit_insn ((*gen_func) (arg1, arg2));
+ emit_jump_insn (gen_rtx_SET (VOIDmode,
+ pc_rtx,
+ gen_rtx_IF_THEN_ELSE (VOIDmode,
+ gen_rtx (branch_code,
+ VOIDmode,
+ cc_reg,
+ CONST0_RTX (mode)),
+ gen_rtx_LABEL_REF (VOIDmode,
+ label),
+ pc_rtx)));
+ }
+
+ ret = gen_sequence ();
+ end_sequence ();
+ return ret;
+}
+
+/* Split a 2 word move (DI or DF) into component parts. */
+
+rtx
+gen_split_move_double (operands)
+ rtx operands[];
+{
+ enum machine_mode mode = GET_MODE (operands[0]);
+ rtx dest = operands[0];
+ rtx src = operands[1];
+ rtx val;
+
+ /* We might have (SUBREG (MEM)) here, so just get rid of the
+ subregs to make this code simpler. It is safe to call
+ alter_subreg any time after reload. */
+ if (GET_CODE (dest) == SUBREG)
+ dest = alter_subreg (dest);
+ if (GET_CODE (src) == SUBREG)
+ src = alter_subreg (src);
+
+ start_sequence ();
+ if (GET_CODE (dest) == REG)
+ {
+ int dregno = REGNO (dest);
+
+ /* reg = reg */
+ if (GET_CODE (src) == REG)
+ {
+ int sregno = REGNO (src);
+
+ int reverse = (dregno == sregno + 1);
+
+ /* We normally copy the low-numbered register first. However, if
+ the first register operand 0 is the same as the second register of
+ operand 1, we must copy in the opposite order. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ operand_subword (dest, reverse, TRUE, mode),
+ operand_subword (src, reverse, TRUE, mode)));
+
+ emit_insn (gen_rtx_SET (VOIDmode,
+ operand_subword (dest, !reverse, TRUE, mode),
+ operand_subword (src, !reverse, TRUE, mode)));
+ }
+
+ /* reg = constant */
+ else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
+ {
+ rtx words[2];
+ split_double (src, &words[0], &words[1]);
+ emit_insn (gen_rtx_SET (VOIDmode,
+ operand_subword (dest, 0, TRUE, mode),
+ words[0]));
+
+ emit_insn (gen_rtx_SET (VOIDmode,
+ operand_subword (dest, 1, TRUE, mode),
+ words[1]));
+ }
+
+ /* reg = mem */
+ else if (GET_CODE (src) == MEM)
+ {
+ /* If the high-address word is used in the address, we must load it
+ last. Otherwise, load it first. */
+ rtx addr = XEXP (src, 0);
+ int reverse = (refers_to_regno_p (dregno, dregno+1, addr, 0) != 0);
+
+ /* We used to optimize loads from single registers as
+
+ ld r1,r3+; ld r2,r3
+
+ if r3 were not used subsequently. However, the REG_NOTES aren't
+ propigated correctly by the reload phase, and it can cause bad
+ code to be generated. We could still try:
+
+ ld r1,r3+; ld r2,r3; addi r3,-4
+
+ which saves 2 bytes and doesn't force longword alignment. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ operand_subword (dest, reverse, TRUE, mode),
+ change_address (src, SImode,
+ plus_constant (addr,
+ reverse * UNITS_PER_WORD))));
+
+ emit_insn (gen_rtx_SET (VOIDmode,
+ operand_subword (dest, !reverse, TRUE, mode),
+ change_address (src, SImode,
+ plus_constant (addr,
+ (!reverse) * UNITS_PER_WORD))));
+ }
+
+ else
+ abort ();
+ }
+
+ /* mem = reg */
+ /* We used to optimize loads from single registers as
+
+ st r1,r3; st r2,+r3
+
+ if r3 were not used subsequently. However, the REG_NOTES aren't
+ propigated correctly by the reload phase, and it can cause bad
+ code to be generated. We could still try:
+
+ st r1,r3; st r2,+r3; addi r3,-4
+
+ which saves 2 bytes and doesn't force longword alignment. */
+ else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
+ {
+ rtx addr = XEXP (dest, 0);
+
+ emit_insn (gen_rtx_SET (VOIDmode,
+ change_address (dest, SImode, addr),
+ operand_subword (src, 0, TRUE, mode)));
+
+ emit_insn (gen_rtx_SET (VOIDmode,
+ change_address (dest, SImode,
+ plus_constant (addr, UNITS_PER_WORD)),
+ operand_subword (src, 1, TRUE, mode)));
+ }
+
+ else
+ abort ();
+
+ val = gen_sequence ();
+ end_sequence ();
+ return val;
+}
+
+
+/* Implements the FUNCTION_ARG_PARTIAL_NREGS macro. */
+
+int
+function_arg_partial_nregs (cum, int_mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ int int_mode;
+ tree type;
+ int named;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+ int ret;
+ int size = (((mode == BLKmode && type)
+ ? int_size_in_bytes (type)
+ : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+
+ if (*cum >= M32R_MAX_PARM_REGS)
+ ret = 0;
+ else if (*cum + size > M32R_MAX_PARM_REGS)
+ ret = (*cum + size) - M32R_MAX_PARM_REGS;
+ else
+ ret = 0;
+
+ return ret;
+}
+
+/* Do any needed setup for a variadic function. For the M32R, we must
+ create a register parameter block, and then copy any anonymous arguments
+ in registers to memory.
+
+ CUM has not been updated for the last named argument which has type TYPE
+ and mode MODE, and we rely on this fact. */
+
+void
+m32r_setup_incoming_varargs (cum, int_mode, type, pretend_size, no_rtl)
+ CUMULATIVE_ARGS *cum;
+ int int_mode;
+ tree type;
+ int *pretend_size;
+ int no_rtl;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+ int first_anon_arg;
+
+ if (no_rtl)
+ return;
+
+ /* All BLKmode values are passed by reference. */
+ if (mode == BLKmode)
+ abort ();
+
+ /* We must treat `__builtin_va_alist' as an anonymous arg. */
+ if (current_function_varargs)
+ first_anon_arg = *cum;
+ else
+ first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
+ + ROUND_ADVANCE_ARG (mode, type));
+
+ if (first_anon_arg < M32R_MAX_PARM_REGS)
+ {
+ /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
+ int first_reg_offset = first_anon_arg;
+ /* Size in words to "pretend" allocate. */
+ int size = M32R_MAX_PARM_REGS - first_reg_offset;
+ rtx regblock;
+
+ regblock = gen_rtx (MEM, BLKmode,
+ plus_constant (arg_pointer_rtx,
+ FIRST_PARM_OFFSET (0)));
+ move_block_from_reg (first_reg_offset, regblock,
+ size, size * UNITS_PER_WORD);
+
+ *pretend_size = (size * UNITS_PER_WORD);
+ }
+}
+
+/* Cost functions. */
+
+/* Provide the costs of an addressing mode that contains ADDR.
+ If ADDR is not a valid address, its cost is irrelevant.
+
+ This function is trivial at the moment. This code doesn't live
+ in m32r.h so it's easy to experiment. */
+
+int
+m32r_address_cost (addr)
+ rtx addr;
+{
+ return 1;
+}
+
+
+/* A C statement (sans semicolon) to update the integer variable COST based on
+ the relationship between INSN that is dependent on DEP_INSN through the
+ dependence LINK. The default is to make no adjustment to COST. This can be
+ used for example to specify to the scheduler that an output- or
+ anti-dependence does not incur the same cost as a data-dependence. */
+
+int
+m32r_adjust_cost (insn, link, dep_insn, cost)
+ rtx insn;
+ rtx link;
+ rtx dep_insn;
+ int cost;
+{
+ return cost;
+}
+
+
+/* A C statement (sans semicolon) to update the integer scheduling
+ priority `INSN_PRIORITY(INSN)'. Reduce the priority to execute
+ the INSN earlier, increase the priority to execute INSN later.
+ Do not define this macro if you do not need to adjust the
+ scheduling priorities of insns.
+
+ On the m32r, increase the priority of long instructions so that
+ the short instructions are scheduled ahead of the long ones. */
+
+int
+m32r_adjust_priority (insn, priority)
+ rtx insn;
+ int priority;
+{
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ enum rtx_code code = GET_CODE (PATTERN (insn));
+ if (code != USE && code != CLOBBER && code != ADDR_VEC
+ && get_attr_insn_size (insn) != INSN_SIZE_SHORT)
+ priority <<= 3;
+ }
+
+ return priority;
+}
+
+
+/* Initialize for scheduling a group of instructions. */
+
+void
+m32r_sched_init (stream, verbose)
+ FILE *stream;
+ int verbose;
+{
+ m32r_sched_odd_word_p = FALSE;
+}
+
+
+/* Reorder the schedulers priority list if needed */
+
+void
+m32r_sched_reorder (stream, verbose, ready, n_ready)
+ FILE *stream;
+ int verbose;
+ rtx *ready;
+ int n_ready;
+{
+ if (TARGET_DEBUG)
+ return;
+
+ if (verbose <= 7)
+ stream = (FILE *)0;
+
+ if (stream)
+ fprintf (stream,
+ ";;\t\t::: Looking at %d insn(s) on ready list, boundary is %s word\n",
+ n_ready,
+ (m32r_sched_odd_word_p) ? "odd" : "even");
+
+ if (n_ready > 1)
+ {
+ rtx *long_head = (rtx *) alloca (sizeof (rtx) * n_ready);
+ rtx *long_tail = long_head;
+ rtx *short_head = (rtx *) alloca (sizeof (rtx) * n_ready);
+ rtx *short_tail = short_head;
+ rtx *new_head = (rtx *) alloca (sizeof (rtx) * n_ready);
+ rtx *new_tail = new_head + (n_ready - 1);
+ int i;
+
+ /* Loop through the instructions, classifing them as short/long. Try
+ to keep 2 short together and/or 1 long. Note, the ready list is
+ actually ordered backwards, so keep it in that manner. */
+ for (i = n_ready-1; i >= 0; i--)
+ {
+ rtx insn = ready[i];
+ enum rtx_code code;
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i'
+ || (code = GET_CODE (PATTERN (insn))) == USE
+ || code == CLOBBER || code == ADDR_VEC)
+ {
+ /* Dump all current short/long insns just in case */
+ while (long_head != long_tail)
+ *new_tail-- = *long_head++;
+
+ while (short_head != short_tail)
+ *new_tail-- = *short_head++;
+
+ *new_tail-- = insn;
+ if (stream)
+ fprintf (stream,
+ ";;\t\t::: Skipping non instruction %d\n",
+ INSN_UID (insn));
+
+ }
+
+ else
+ {
+ if (get_attr_insn_size (insn) != INSN_SIZE_SHORT)
+ *long_tail++ = insn;
+
+ else
+ *short_tail++ = insn;
+ }
+ }
+
+ /* If we are on an odd word, emit a single short instruction if
+ we can */
+ if (m32r_sched_odd_word_p && short_head != short_tail)
+ *new_tail-- = *short_head++;
+
+ /* Now dump out all of the long instructions */
+ while (long_head != long_tail)
+ *new_tail-- = *long_head++;
+
+ /* Now dump out all of the short instructions */
+ while (short_head != short_tail)
+ *new_tail-- = *short_head++;
+
+ if (new_tail+1 != new_head)
+ abort ();
+
+ bcopy ((char *) new_head, (char *) ready, sizeof (rtx) * n_ready);
+ if (stream)
+ {
+#ifdef HAIFA
+ fprintf (stream, ";;\t\t::: New ready list: ");
+ debug_ready_list (ready, n_ready);
+#else
+ int i;
+ for (i = 0; i < n_ready; i++)
+ {
+ rtx insn = ready[i];
+ enum rtx_code code;
+
+ fprintf (stream, " %d", INSN_UID (ready[i]));
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i'
+ || (code = GET_CODE (PATTERN (insn))) == USE
+ || code == CLOBBER || code == ADDR_VEC)
+ fputs ("(?)", stream);
+
+ else if (get_attr_insn_size (insn) != INSN_SIZE_SHORT)
+ fputs ("(l)", stream);
+
+ else
+ fputs ("(s)", stream);
+ }
+
+ fprintf (stream, "\n");
+#endif
+ }
+ }
+}
+
+
+/* if we have a machine that can issue a variable # of instructions
+ per cycle, indicate how many more instructions can be issued
+ after the current one. */
+int
+m32r_sched_variable_issue (stream, verbose, insn, how_many)
+ FILE *stream;
+ int verbose;
+ rtx insn;
+ int how_many;
+{
+ int orig_odd_word_p = m32r_sched_odd_word_p;
+ int short_p = FALSE;
+
+ how_many--;
+ if (how_many > 0 && !TARGET_DEBUG)
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
+ how_many++;
+
+ else if (GET_CODE (PATTERN (insn)) == USE
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || GET_CODE (PATTERN (insn)) == ADDR_VEC)
+ how_many++;
+
+ else if (get_attr_insn_size (insn) != INSN_SIZE_SHORT)
+ {
+ how_many = 0;
+ m32r_sched_odd_word_p = 0;
+ }
+
+ else
+ {
+ m32r_sched_odd_word_p = !m32r_sched_odd_word_p;
+ short_p = TRUE;
+ }
+ }
+
+ if (verbose > 7 && stream)
+ fprintf (stream,
+ ";;\t\t::: %s insn %d starts on an %s word, can emit %d more instruction(s)\n",
+ short_p ? "short" : "long",
+ INSN_UID (insn),
+ orig_odd_word_p ? "odd" : "even",
+ how_many);
+
+ return how_many;
+}
+
+
+/* Type of function DECL.
+
+ The result is cached. To reset the cache at the end of a function,
+ call with DECL = NULL_TREE. */
+
+enum m32r_function_type
+m32r_compute_function_type (decl)
+ tree decl;
+{
+ /* Cached value. */
+ static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
+ /* Last function we were called for. */
+ static tree last_fn = NULL_TREE;
+
+ /* Resetting the cached value? */
+ if (decl == NULL_TREE)
+ {
+ fn_type = M32R_FUNCTION_UNKNOWN;
+ last_fn = NULL_TREE;
+ return fn_type;
+ }
+
+ if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
+ return fn_type;
+
+ /* Compute function type. */
+ fn_type = (lookup_attribute ("interrupt", DECL_MACHINE_ATTRIBUTES (current_function_decl)) != NULL_TREE
+ ? M32R_FUNCTION_INTERRUPT
+ : M32R_FUNCTION_NORMAL);
+
+ last_fn = decl;
+ return fn_type;
+}
+ /* Function prologue/epilogue handlers. */
+
+/* M32R stack frames look like:
+
+ Before call After call
+ +-----------------------+ +-----------------------+
+ | | | |
+ high | local variables, | | local variables, |
+ mem | reg save area, etc. | | reg save area, etc. |
+ | | | |
+ +-----------------------+ +-----------------------+
+ | | | |
+ | arguments on stack. | | arguments on stack. |
+ | | | |
+ SP+0->+-----------------------+ +-----------------------+
+ | reg parm save area, |
+ | only created for |
+ | variable argument |
+ | functions |
+ +-----------------------+
+ | previous frame ptr |
+ +-----------------------+
+ | |
+ | register save area |
+ | |
+ +-----------------------+
+ | return address |
+ +-----------------------+
+ | |
+ | local variables |
+ | |
+ +-----------------------+
+ | |
+ | alloca allocations |
+ | |
+ +-----------------------+
+ | |
+ low | arguments on stack |
+ memory | |
+ SP+0->+-----------------------+
+
+Notes:
+1) The "reg parm save area" does not exist for non variable argument fns.
+2) The "reg parm save area" can be eliminated completely if we saved regs
+ containing anonymous args separately but that complicates things too
+ much (so it's not done).
+3) The return address is saved after the register save area so as to have as
+ many insns as possible between the restoration of `lr' and the `jmp lr'.
+*/
+
+/* Structure to be filled in by m32r_compute_frame_size with register
+ save masks, and offsets for the current function. */
+struct m32r_frame_info
+{
+ unsigned int total_size; /* # bytes that the entire frame takes up */
+ unsigned int extra_size; /* # bytes of extra stuff */
+ unsigned int pretend_size; /* # bytes we push and pretend caller did */
+ unsigned int args_size; /* # bytes that outgoing arguments take up */
+ unsigned int reg_size; /* # bytes needed to store regs */
+ unsigned int var_size; /* # bytes that variables take up */
+ unsigned int gmask; /* mask of saved gp registers */
+ unsigned int save_fp; /* nonzero if fp must be saved */
+ unsigned int save_lr; /* nonzero if lr (return addr) must be saved */
+ int initialized; /* nonzero if frame size already calculated */
+};
+
+/* Current frame information calculated by m32r_compute_frame_size. */
+static struct m32r_frame_info current_frame_info;
+
+/* Zero structure to initialize current_frame_info. */
+static struct m32r_frame_info zero_frame_info;
+
+#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
+#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
+
+/* Tell prologue and epilogue if register REGNO should be saved / restored.
+ The return address and frame pointer are treated separately.
+ Don't consider them here. */
+#define MUST_SAVE_REGISTER(regno, interrupt_p) \
+((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
+ && (regs_ever_live[regno] && (!call_used_regs[regno] || interrupt_p)))
+
+#define MUST_SAVE_FRAME_POINTER (regs_ever_live[FRAME_POINTER_REGNUM])
+#define MUST_SAVE_RETURN_ADDR (regs_ever_live[RETURN_ADDR_REGNUM] || profile_flag)
+
+#define SHORT_INSN_SIZE 2 /* size of small instructions */
+#define LONG_INSN_SIZE 4 /* size of long instructions */
+
+/* Return the bytes needed to compute the frame pointer from the current
+ stack pointer.
+
+ SIZE is the size needed for local variables. */
+
+unsigned int
+m32r_compute_frame_size (size)
+ int size; /* # of var. bytes allocated. */
+{
+ int regno;
+ unsigned int total_size, var_size, args_size, pretend_size, extra_size;
+ unsigned int reg_size, frame_size;
+ unsigned int gmask;
+ enum m32r_function_type fn_type;
+ int interrupt_p;
+
+ var_size = M32R_STACK_ALIGN (size);
+ args_size = M32R_STACK_ALIGN (current_function_outgoing_args_size);
+ pretend_size = current_function_pretend_args_size;
+ extra_size = FIRST_PARM_OFFSET (0);
+ total_size = extra_size + pretend_size + args_size + var_size;
+ reg_size = 0;
+ gmask = 0;
+
+ /* See if this is an interrupt handler. Call used registers must be saved
+ for them too. */
+ fn_type = m32r_compute_function_type (current_function_decl);
+ interrupt_p = M32R_INTERRUPT_P (fn_type);
+
+ /* Calculate space needed for registers. */
+
+ for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
+ {
+ if (MUST_SAVE_REGISTER (regno, interrupt_p))
+ {
+ reg_size += UNITS_PER_WORD;
+ gmask |= 1 << regno;
+ }
+ }
+
+ current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
+ current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR;
+
+ reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
+ * UNITS_PER_WORD);
+ total_size += reg_size;
+
+ /* ??? Not sure this is necessary, and I don't think the epilogue
+ handler will do the right thing if this changes total_size. */
+ total_size = M32R_STACK_ALIGN (total_size);
+
+ frame_size = total_size - (pretend_size + reg_size);
+
+ /* Save computed information. */
+ current_frame_info.total_size = total_size;
+ current_frame_info.extra_size = extra_size;
+ current_frame_info.pretend_size = pretend_size;
+ current_frame_info.var_size = var_size;
+ current_frame_info.args_size = args_size;
+ current_frame_info.reg_size = reg_size;
+ current_frame_info.gmask = gmask;
+ current_frame_info.initialized = reload_completed;
+
+ /* Ok, we're done. */
+ return total_size;
+}
+
+/* When the `length' insn attribute is used, this macro specifies the
+ value to be assigned to the address of the first insn in a
+ function. If not specified, 0 is used. */
+
+int
+m32r_first_insn_address ()
+{
+ if (! current_frame_info.initialized)
+ m32r_compute_frame_size (get_frame_size ());
+
+ return 0;
+}
+
+/* Expand the m32r prologue as a series of insns. */
+
+void
+m32r_expand_prologue ()
+{
+ int regno;
+ int frame_size;
+ unsigned int gmask;
+
+ if (! current_frame_info.initialized)
+ m32r_compute_frame_size (get_frame_size ());
+
+ gmask = current_frame_info.gmask;
+
+ /* These cases shouldn't happen. Catch them now. */
+ if (current_frame_info.total_size == 0 && gmask)
+ abort ();
+
+ /* Allocate space for register arguments if this is a variadic function. */
+ if (current_frame_info.pretend_size != 0)
+ {
+ /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
+ the wrong result on a 64-bit host. */
+ HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
+ emit_insn (gen_addsi3 (stack_pointer_rtx,
+ stack_pointer_rtx,
+ GEN_INT (-pretend_size)));
+ }
+
+ /* Save any registers we need to and set up fp. */
+
+ if (current_frame_info.save_fp)
+ emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
+
+ gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
+
+ /* Save any needed call-saved regs (and call-used if this is an
+ interrupt handler). */
+ for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
+ {
+ if ((gmask & (1 << regno)) != 0)
+ emit_insn (gen_movsi_push (stack_pointer_rtx,
+ gen_rtx_REG (Pmode, regno)));
+ }
+
+ if (current_frame_info.save_lr)
+ emit_insn (gen_movsi_push (stack_pointer_rtx,
+ gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
+
+ /* Allocate the stack frame. */
+ frame_size = (current_frame_info.total_size
+ - (current_frame_info.pretend_size
+ + current_frame_info.reg_size));
+
+ if (frame_size == 0)
+ ; /* nothing to do */
+ else if (frame_size <= 32768)
+ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-frame_size)));
+ else
+ {
+ rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
+ emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
+ emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
+ }
+
+ if (frame_pointer_needed)
+ emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
+
+ if (profile_flag || profile_block_flag)
+ emit_insn (gen_blockage ());
+}
+
+
+/* Set up the stack and frame pointer (if desired) for the function.
+ Note, if this is changed, you need to mirror the changes in
+ m32r_compute_frame_size which calculates the prolog size. */
+
+void
+m32r_output_function_prologue (file, size)
+ FILE * file;
+ int size;
+{
+ enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
+
+ /* If this is an interrupt handler, mark it as such. */
+ if (M32R_INTERRUPT_P (fn_type))
+ {
+ fprintf (file, "\t%s interrupt handler\n",
+ ASM_COMMENT_START);
+ }
+
+ if (! current_frame_info.initialized)
+ m32r_compute_frame_size (size);
+
+ /* This is only for the human reader. */
+ fprintf (file,
+ "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
+ ASM_COMMENT_START,
+ current_frame_info.var_size,
+ current_frame_info.reg_size / 4,
+ current_frame_info.args_size,
+ current_frame_info.extra_size);
+}
+
+/* Do any necessary cleanup after a function to restore stack, frame,
+ and regs. */
+
+void
+m32r_output_function_epilogue (file, size)
+ FILE * file;
+ int size;
+{
+ int regno;
+ int noepilogue = FALSE;
+ int total_size;
+ enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
+
+ /* This is only for the human reader. */
+ fprintf (file, "\t%s EPILOGUE\n", ASM_COMMENT_START);
+
+ if (!current_frame_info.initialized)
+ abort ();
+ total_size = current_frame_info.total_size;
+
+ if (total_size == 0)
+ {
+ rtx insn = get_last_insn ();
+
+ /* If the last insn was a BARRIER, we don't have to write any code
+ because a jump (aka return) was put there. */
+ if (GET_CODE (insn) == NOTE)
+ insn = prev_nonnote_insn (insn);
+ if (insn && GET_CODE (insn) == BARRIER)
+ noepilogue = TRUE;
+ }
+
+ if (!noepilogue)
+ {
+ unsigned int pretend_size = current_frame_info.pretend_size;
+ unsigned int frame_size = total_size - pretend_size;
+ unsigned int var_size = current_frame_info.var_size;
+ unsigned int args_size = current_frame_info.args_size;
+ unsigned int gmask = current_frame_info.gmask;
+ int can_trust_sp_p = !current_function_calls_alloca;
+ char * sp_str = reg_names[STACK_POINTER_REGNUM];
+ char * fp_str = reg_names[FRAME_POINTER_REGNUM];
+
+ /* The first thing to do is point the sp at the bottom of the register
+ save area. */
+ if (can_trust_sp_p)
+ {
+ unsigned int reg_offset = var_size + args_size;
+ if (reg_offset == 0)
+ ; /* nothing to do */
+ else if (reg_offset < 128)
+ fprintf (file, "\taddi %s,%s%d\n",
+ sp_str, IMMEDIATE_PREFIX, reg_offset);
+ else if (reg_offset < 32768)
+ fprintf (file, "\tadd3 %s,%s,%s%d\n",
+ sp_str, sp_str, IMMEDIATE_PREFIX, reg_offset);
+ else
+ fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
+ reg_names[PROLOGUE_TMP_REGNUM],
+ IMMEDIATE_PREFIX, reg_offset,
+ sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
+ }
+ else if (frame_pointer_needed)
+ {
+ unsigned int reg_offset = var_size + args_size;
+ if (reg_offset == 0)
+ fprintf (file, "\tmv %s,%s\n", sp_str, fp_str);
+ else if (reg_offset < 32768)
+ fprintf (file, "\tadd3 %s,%s,%s%d\n",
+ sp_str, fp_str, IMMEDIATE_PREFIX, reg_offset);
+ else
+ fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n",
+ reg_names[PROLOGUE_TMP_REGNUM],
+ IMMEDIATE_PREFIX, reg_offset,
+ sp_str, reg_names[PROLOGUE_TMP_REGNUM]);
+ }
+ else
+ abort ();
+
+ if (current_frame_info.save_lr)
+ fprintf (file, "\tpop %s\n", reg_names[RETURN_ADDR_REGNUM]);
+
+ /* Restore any saved registers, in reverse order of course. */
+ gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
+ for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
+ {
+ if ((gmask & (1L << regno)) != 0)
+ fprintf (file, "\tpop %s\n", reg_names[regno]);
+ }
+
+ if (current_frame_info.save_fp)
+ fprintf (file, "\tpop %s\n", fp_str);
+
+ /* Remove varargs area if present. */
+ if (current_frame_info.pretend_size != 0)
+ fprintf (file, "\taddi %s,%s%d\n",
+ sp_str, IMMEDIATE_PREFIX, current_frame_info.pretend_size);
+
+ /* Emit the return instruction. */
+ if (M32R_INTERRUPT_P (fn_type))
+ fprintf (file, "\trte\n");
+ else
+ fprintf (file, "\tjmp %s\n", reg_names[RETURN_ADDR_REGNUM]);
+ }
+
+#if 0 /* no longer needed */
+ /* Ensure the function cleanly ends on a 32 bit boundary. */
+ fprintf (file, "\t.fillinsn\n");
+#endif
+
+ /* Reset state info for each function. */
+ current_frame_info = zero_frame_info;
+ m32r_compute_function_type (NULL_TREE);
+}
+
+/* Return non-zero if this function is known to have a null or 1 instruction
+ epilogue. */
+
+int
+direct_return ()
+{
+ if (!reload_completed)
+ return FALSE;
+
+ if (! current_frame_info.initialized)
+ m32r_compute_frame_size (get_frame_size ());
+
+ return current_frame_info.total_size == 0;
+}
+
+
+/* PIC */
+
+/* Emit special PIC prologues and epilogues. */
+
+void
+m32r_finalize_pic ()
+{
+ /* nothing to do */
+}
+
+/* Nested function support. */
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNADDR is an RTX for the address of the function's pure code.
+ CXT is an RTX for the static chain value for the function. */
+
+void
+m32r_initialize_trampoline (tramp, fnaddr, cxt)
+ rtx tramp, fnaddr, cxt;
+{
+}
+
+/* Set the cpu type and print out other fancy things,
+ at the top of the file. */
+
+void
+m32r_asm_file_start (file)
+ FILE * file;
+{
+ if (flag_verbose_asm)
+ fprintf (file, "%s M32R/D special options: -G %d\n",
+ ASM_COMMENT_START, g_switch_value);
+}
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null. */
+
+void
+m32r_print_operand (file, x, code)
+ FILE * file;
+ rtx x;
+ int code;
+{
+ rtx addr;
+
+ switch (code)
+ {
+ /* The 's' and 'p' codes are used by output_block_move() to
+ indicate post-increment 's'tores and 'p're-increment loads. */
+ case 's':
+ if (GET_CODE (x) == REG)
+ fprintf (file, "@+%s", reg_names [REGNO (x)]);
+ else
+ output_operand_lossage ("invalid operand to %s code");
+ return;
+
+ case 'p':
+ if (GET_CODE (x) == REG)
+ fprintf (file, "@%s+", reg_names [REGNO (x)]);
+ else
+ output_operand_lossage ("invalid operand to %p code");
+ return;
+
+ case 'R' :
+ /* Write second word of DImode or DFmode reference,
+ register or memory. */
+ if (GET_CODE (x) == REG)
+ fputs (reg_names[REGNO (x)+1], file);
+ else if (GET_CODE (x) == MEM)
+ {
+ fprintf (file, "@(");
+ /* Handle possible auto-increment. Since it is pre-increment and
+ we have already done it, we can just use an offset of four. */
+ /* ??? This is taken from rs6000.c I think. I don't think it is
+ currently necessary, but keep it around. */
+ if (GET_CODE (XEXP (x, 0)) == PRE_INC
+ || GET_CODE (XEXP (x, 0)) == PRE_DEC)
+ output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
+ else
+ output_address (plus_constant (XEXP (x, 0), 4));
+ fputc (')', file);
+ }
+ else
+ output_operand_lossage ("invalid operand to %R code");
+ return;
+
+ case 'H' : /* High word */
+ case 'L' : /* Low word */
+ if (GET_CODE (x) == REG)
+ {
+ /* L = least significant word, H = most significant word */
+ if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
+ fputs (reg_names[REGNO (x)], file);
+ else
+ fputs (reg_names[REGNO (x)+1], file);
+ }
+ else if (GET_CODE (x) == CONST_INT
+ || GET_CODE (x) == CONST_DOUBLE)
+ {
+ rtx first, second;
+
+ split_double (x, &first, &second);
+ fprintf (file, "0x%08lx",
+ code == 'L' ? INTVAL (first) : INTVAL (second));
+ }
+ else
+ output_operand_lossage ("invalid operand to %H/%L code");
+ return;
+
+ case 'A' :
+ {
+ REAL_VALUE_TYPE d;
+ char str[30];
+
+ if (GET_CODE (x) != CONST_DOUBLE
+ || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
+ fatal_insn ("Bad insn for 'A'", x);
+ REAL_VALUE_FROM_CONST_DOUBLE (d, x);
+ REAL_VALUE_TO_DECIMAL (d, "%.20e", str);
+ fprintf (file, "%s", str);
+ return;
+ }
+
+ case 'B' : /* Bottom half */
+ case 'T' : /* Top half */
+ /* Output the argument to a `seth' insn (sets the Top half-word).
+ For constants output arguments to a seth/or3 pair to set Top and
+ Bottom halves. For symbols output arguments to a seth/add3 pair to
+ set Top and Bottom halves. The difference exists because for
+ constants seth/or3 is more readable but for symbols we need to use
+ the same scheme as `ld' and `st' insns (16 bit addend is signed). */
+ switch (GET_CODE (x))
+ {
+ case CONST_INT :
+ case CONST_DOUBLE :
+ {
+ rtx first, second;
+
+ split_double (x, &first, &second);
+ x = WORDS_BIG_ENDIAN ? second : first;
+ fprintf (file,
+#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
+ "0x%x",
+#else
+ "0x%lx",
+#endif
+ (code == 'B'
+ ? INTVAL (x) & 0xffff
+ : (INTVAL (x) >> 16) & 0xffff));
+ }
+ return;
+ case CONST :
+ case SYMBOL_REF :
+ if (code == 'B'
+ && small_data_operand (x, VOIDmode))
+ {
+ fputs ("sda(", file);
+ output_addr_const (file, x);
+ fputc (')', file);
+ return;
+ }
+ /* fall through */
+ case LABEL_REF :
+ fputs (code == 'T' ? "shigh(" : "low(", file);
+ output_addr_const (file, x);
+ fputc (')', file);
+ return;
+ default :
+ output_operand_lossage ("invalid operand to %T/%B code");
+ return;
+ }
+ break;
+
+ case 'U' :
+ /* ??? wip */
+ /* Output a load/store with update indicator if appropriate. */
+ if (GET_CODE (x) == MEM)
+ {
+ if (GET_CODE (XEXP (x, 0)) == PRE_INC
+ || GET_CODE (XEXP (x, 0)) == PRE_DEC)
+ fputs (".a", file);
+ }
+ else
+ output_operand_lossage ("invalid operand to %U code");
+ return;
+
+ case 'N' :
+ /* Print a constant value negated. */
+ if (GET_CODE (x) == CONST_INT)
+ output_addr_const (file, GEN_INT (- INTVAL (x)));
+ else
+ output_operand_lossage ("invalid operand to %N code");
+ return;
+
+ case 'X' :
+ /* Print a const_int in hex. Used in comments. */
+ if (GET_CODE (x) == CONST_INT)
+ fprintf (file,
+#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
+ "0x%x",
+#else
+ "0x%lx",
+#endif
+ INTVAL (x));
+ return;
+
+ case '#' :
+ fputs (IMMEDIATE_PREFIX, file);
+ return;
+
+#if 0 /* ??? no longer used */
+ case '@' :
+ fputs (reg_names[SDA_REGNUM], file);
+ return;
+#endif
+
+ case 0 :
+ /* Do nothing special. */
+ break;
+
+ default :
+ /* Unknown flag. */
+ output_operand_lossage ("invalid operand output code");
+ }
+
+ switch (GET_CODE (x))
+ {
+ case REG :
+ fputs (reg_names[REGNO (x)], file);
+ break;
+
+ case MEM :
+ addr = XEXP (x, 0);
+ if (GET_CODE (addr) == PRE_INC)
+ {
+ if (GET_CODE (XEXP (addr, 0)) != REG)
+ fatal_insn ("Pre-increment address is not a register", x);
+
+ fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
+ }
+ else if (GET_CODE (addr) == PRE_DEC)
+ {
+ if (GET_CODE (XEXP (addr, 0)) != REG)
+ fatal_insn ("Pre-decrement address is not a register", x);
+
+ fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
+ }
+ else if (GET_CODE (addr) == POST_INC)
+ {
+ if (GET_CODE (XEXP (addr, 0)) != REG)
+ fatal_insn ("Post-increment address is not a register", x);
+
+ fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
+ }
+ else
+ {
+ fputs ("@(", file);
+ output_address (XEXP (x, 0));
+ fputc (')', file);
+ }
+ break;
+
+ case CONST_DOUBLE :
+ /* We handle SFmode constants here as output_addr_const doesn't. */
+ if (GET_MODE (x) == SFmode)
+ {
+ REAL_VALUE_TYPE d;
+ long l;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, x);
+ REAL_VALUE_TO_TARGET_SINGLE (d, l);
+ fprintf (file, "0x%08lx", l);
+ break;
+ }
+
+ /* Fall through. Let output_addr_const deal with it. */
+
+ default :
+ output_addr_const (file, x);
+ break;
+ }
+}
+
+/* Print a memory address as an operand to reference that memory location. */
+
+void
+m32r_print_operand_address (file, addr)
+ FILE * file;
+ rtx addr;
+{
+ register rtx base;
+ register rtx index = 0;
+ int offset = 0;
+
+ switch (GET_CODE (addr))
+ {
+ case REG :
+ fputs (reg_names[REGNO (addr)], file);
+ break;
+
+ case PLUS :
+ if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
+ offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
+ else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
+ offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
+ else
+ base = XEXP (addr, 0), index = XEXP (addr, 1);
+ if (GET_CODE (base) == REG)
+ {
+ /* Print the offset first (if present) to conform to the manual. */
+ if (index == 0)
+ {
+ if (offset != 0)
+ fprintf (file, "%d,", offset);
+ fputs (reg_names[REGNO (base)], file);
+ }
+ /* The chip doesn't support this, but left in for generality. */
+ else if (GET_CODE (index) == REG)
+ fprintf (file, "%s,%s",
+ reg_names[REGNO (base)], reg_names[REGNO (index)]);
+ /* Not sure this can happen, but leave in for now. */
+ else if (GET_CODE (index) == SYMBOL_REF)
+ {
+ output_addr_const (file, index);
+ fputc (',', file);
+ fputs (reg_names[REGNO (base)], file);
+ }
+ else
+ fatal_insn ("Bad address", addr);
+ }
+ else if (GET_CODE (base) == LO_SUM)
+ {
+ if (index != 0
+ || GET_CODE (XEXP (base, 0)) != REG)
+ abort ();
+ if (small_data_operand (XEXP (base, 1), VOIDmode))
+ fputs ("sda(", file);
+ else
+ fputs ("low(", file);
+ output_addr_const (file, plus_constant (XEXP (base, 1), offset));
+ fputs ("),", file);
+ fputs (reg_names[REGNO (XEXP (base, 0))], file);
+ }
+ else
+ fatal_insn ("Bad address", addr);
+ break;
+
+ case LO_SUM :
+ if (GET_CODE (XEXP (addr, 0)) != REG)
+ fatal_insn ("Lo_sum not of register", addr);
+ if (small_data_operand (XEXP (addr, 1), VOIDmode))
+ fputs ("sda(", file);
+ else
+ fputs ("low(", file);
+ output_addr_const (file, XEXP (addr, 1));
+ fputs ("),", file);
+ fputs (reg_names[REGNO (XEXP (addr, 0))], file);
+ break;
+
+ case PRE_INC : /* Assume SImode */
+ fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
+ break;
+
+ case PRE_DEC : /* Assume SImode */
+ fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
+ break;
+
+ case POST_INC : /* Assume SImode */
+ fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
+ break;
+
+ default :
+ output_addr_const (file, addr);
+ break;
+ }
+}
+
+/* Return true if the operands are the constants 0 and 1. */
+int
+zero_and_one (operand1, operand2)
+ rtx operand1;
+ rtx operand2;
+{
+ return
+ GET_CODE (operand1) == CONST_INT
+ && GET_CODE (operand2) == CONST_INT
+ && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
+ ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
+}
+
+/* Return non-zero if the operand is suitable for use in a conditional move sequence. */
+int
+conditional_move_operand (operand, int_mode)
+ rtx operand;
+ int int_mode;
+{
+ enum machine_mode mode = (enum machine_mode)int_mode;
+
+ /* Only defined for simple integers so far... */
+ if (mode != SImode && mode != HImode && mode != QImode)
+ return FALSE;
+
+ /* At the moment we can hanndle moving registers and loading constants. */
+ /* To be added: Addition/subtraction/bitops/multiplication of registers. */
+
+ switch (GET_CODE (operand))
+ {
+ case REG:
+ return 1;
+
+ case CONST_INT:
+ return INT8_P (INTVAL (operand));
+
+ default:
+#if 0
+ fprintf (stderr, "Test for cond move op of type: %s\n",
+ GET_RTX_NAME (GET_CODE (operand)));
+#endif
+ return 0;
+ }
+}
+
+/* Return true if the code is a test of the carry bit */
+int
+carry_compare_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ rtx x;
+
+ if (GET_MODE (op) != CCmode && GET_MODE (op) != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != NE && GET_CODE (op) != EQ)
+ return FALSE;
+
+ x = XEXP (op, 0);
+ if (GET_CODE (x) != REG || REGNO (x) != CARRY_REGNUM)
+ return FALSE;
+
+ x = XEXP (op, 1);
+ if (GET_CODE (x) != CONST_INT || INTVAL (x) != 0)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Place into the buffer an assembler instruction which can be executed in the S pipe. */
+static void
+emit_S_clause (dest, source, buffer)
+ rtx dest;
+ rtx source;
+ char * buffer;
+{
+ char * dest_reg;
+
+
+ dest_reg = reg_names [REGNO (dest)];
+
+ switch (GET_CODE (source))
+ {
+ case REG:
+ sprintf (buffer, "mv %s, %s", dest_reg, reg_names [REGNO (source)]);
+ break;
+
+ case CONST_INT:
+ sprintf (buffer, "ldi %s, #%d", dest_reg, INTVAL (source));
+ break;
+
+ /* Todo: other S pipe instructions. */
+ default:
+ abort();
+ }
+
+ return;
+}
+
+
+/* Generate the correct assembler code to handle the conditional loading of a
+ value into a register. It is known that the operands satisfy the
+ conditional_move_operand() function above. The destination is operand[0].
+ The condition is operand [1]. The 'true' value is operand [2] and the
+ 'false' value is operand [3]. */
+char *
+emit_cond_move (operands, insn)
+ rtx * operands;
+ rtx insn;
+{
+ static char buffer [100];
+
+ buffer [0] = 0;
+
+ /* Destination must be a register. */
+ if (GET_CODE (operands [0]) != REG)
+ abort();
+ if (! conditional_move_operand (operands [2], SImode))
+ abort();
+ if (! conditional_move_operand (operands [3], SImode))
+ abort();
+
+
+ /* Check to see if the test is reversed. */
+ if (GET_CODE (operands [1]) == NE)
+ {
+ rtx tmp = operands [2];
+ operands [2] = operands [3];
+ operands [3] = tmp;
+ }
+
+ /* Catch a special case where 0 or 1 is being loaded into the destination.
+ Since we already have these values in the C bit we can use a special
+ instruction. */
+ if (zero_and_one (operands [2], operands [3]))
+ {
+ char * dest = reg_names [REGNO (operands [0])];
+
+ sprintf (buffer, "mvfc %s, cbr", dest);
+
+ /* If the true value was '0' then we need to invert the results of the move. */
+ if (INTVAL (operands [2]) == 0)
+ sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
+ dest, dest);
+
+ return buffer;
+ }
+
+
+ /* Test to see if the then clause is redundant. */
+ if (GET_CODE (operands [2]) == REG
+ && REGNO (operands [2]) == REGNO (operands [0]))
+ /* Do not do anything for the then clause. */
+ ;
+ else
+ {
+ /* Generate the then clause. */
+ sprintf (buffer, "snc || ");
+ emit_S_clause (operands [0], operands [2], buffer + strlen (buffer));
+ }
+
+ /* Test to see if the else clause is redundant. */
+ if (GET_CODE (operands [3]) == REG
+ && REGNO (operands [3]) == REGNO (operands [0]))
+ /* Do not do anything for the else clause. */
+ ;
+ else
+ {
+ /* Generate the else clause. */
+
+ if (* buffer != 0)
+ strcat (buffer, "\n\t");
+
+ strcat (buffer, "sc || ");
+ emit_S_clause (operands [0], operands [3], buffer + strlen (buffer));
+ }
+
+
+ return buffer;
+}
+
+
+/* Return true if the code is a test of the carry bit that can be used
+ to start a conditional execution sequence. This function is very
+ similar to carry_compare_operand() except that it allows a test
+ for 'register == register' and 'register == 0' as well as the
+ normal 'carry flag set'. */
+int
+conditional_compare_operand (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ rtx x;
+
+ if (GET_MODE (op) != CCmode && GET_MODE (op) != VOIDmode)
+ return FALSE;
+
+ if ( GET_CODE (op) != NE
+ && GET_CODE (op) != EQ
+ && GET_CODE (op) != LE
+ && GET_CODE (op) != GE
+ && GET_CODE (op) != LT
+ && GET_CODE (op) != GT)
+ return FALSE;
+
+ x = XEXP (op, 0);
+ if (GET_CODE (x) != REG)
+ return FALSE;
+
+ /* Allow a test of 'reg eq/ne reg' or 'Carry flag set/not set'. */
+ x = XEXP (op, 1);
+ if (GET_CODE (x) == CONST_INT)
+ {
+ if (INTVAL (x) != 0)
+ return FALSE;
+
+ return TRUE;
+ }
+ else if (GET_CODE (x) != REG)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if the binary operator can go inside of a s{n}c || operation. */
+int
+binary_parallel_operator (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ rtx op0, op1;
+
+ /* Can only handle integer operations. */
+ if ( GET_MODE (op) != SImode
+ && GET_MODE (op) != HImode
+ && GET_MODE (op) != QImode)
+ return FALSE;
+
+ /* Can only handle simple binary operations. */
+ if ( GET_CODE (op) != PLUS
+ && GET_CODE (op) != MINUS
+ && GET_CODE (op) != MULT
+ && GET_CODE (op) != AND
+ && GET_CODE (op) != IOR
+ && GET_CODE (op) != XOR)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ op1 = XEXP (op, 1);
+
+ while (GET_CODE (op0) == SUBREG)
+ op0 = SUBREG_REG (op0);
+
+ while (GET_CODE (op1) == SUBREG)
+ op1 = SUBREG_REG (op1);
+
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ /* Allowable opreations are entirely register based
+ or the addition of a small constant to a register. */
+ if (GET_CODE (op1) == REG)
+ {
+ return TRUE;
+ }
+ else if (GET_CODE (op1) == CONST_INT)
+ {
+ if (GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
+ return INT8_P (INTVAL (op1));
+ }
+
+ return FALSE;
+}
+
+/* Generate the assembler statement for the given comparison RTL.
+ Returns true if the sense of the comparison is reversed. */
+static int
+generate_comparison (operand, buffer)
+ rtx operand;
+ char * buffer;
+{
+ rtx op1 = XEXP (operand, 0);
+ rtx op2 = XEXP (operand, 1);
+ int reverse_sense = FALSE;
+
+
+ if (GET_CODE (op1) != REG)
+ abort();
+
+ /* If we are testing the carry bit the comparison has already been generated.
+ Since there is only one bit, the only viable tests are NE and EQ. If the
+ test is NE, then we must reverse the sense of the comparision. */
+ if (REGNO (op1) == CARRY_REGNUM)
+ return GET_CODE (operand) == NE;
+
+ /* Handle tests of a value in a register. */
+ switch (GET_CODE (operand))
+ {
+ case NE:
+ reverse_sense = TRUE;
+ /* Fall through. */
+ case EQ:
+ if (GET_CODE (op2) == REG)
+ sprintf (buffer, "cmpeq %s %s\n\t",
+ reg_names [REGNO (op1)], reg_names [REGNO (op2)]);
+ else if (GET_CODE (op2) == CONST_INT && INTVAL (op2) == 0)
+ sprintf (buffer, "cmpz %s\n\t", reg_names [REGNO (op1)]);
+ else
+ abort();
+ break;
+
+ case GE:
+ reverse_sense = TRUE;
+ /* Fall through. */
+ case LT:
+ if (GET_CODE (op2) != CONST_INT || ! INT16_P (INTVAL (op2)))
+ abort();
+
+ sprintf (buffer, "cmpi %s, #%d\n\t", reg_names [REGNO (op1)], INTVAL (op2));
+ break;
+
+ case GT:
+ reverse_sense = TRUE;
+ /* Fall through. */
+ case LE:
+ if (GET_CODE (op2) != CONST_INT || ! INT16_P (INTVAL (op2) + 1))
+ abort();
+
+ sprintf (buffer, "cmpi %s, #%d\n\t", reg_names [REGNO (op1)], INTVAL (op2) + 1);
+ break;
+
+ default:
+ abort();
+ }
+
+ /* These generated comparisons are inverted. */
+ return ! reverse_sense;
+}
+
+
+
+/* Generate the correct assembler code to handle the conditional execution of a
+ simple binary operation. It is known that the operation satisfies
+ binary_parallel_operand() and that the condition satifies
+ conditional_compare_operand(). The operation is in operands [4] and its two
+ arguments are in operands [1] and [2]. The destination of the operation is
+ operands [0], which is the same as operands [1]. The condition is in
+ operands [3], and if 'condition_true' is non-zero then the operation should
+ be performed if the condition is true, otherwise it should be performed if
+ the condition is false. */
+char *
+emit_binary_cond_exec (operands, condition_true)
+ rtx * operands;
+ int condition_true;
+{
+ static char buffer [100];
+
+ buffer [0] = 0;
+
+ /* Destination and first operand must be registers. */
+ if ( GET_CODE (operands [0]) != REG
+ || GET_CODE (operands [1]) != REG)
+ abort();
+
+ /* Destination must be the same as the first opreand. */
+ if (REGNO (operands [0]) != REGNO (operands [1]))
+ abort();
+
+ /* Generate the comparison and if necessary reverse the sense of the test. */
+ if (generate_comparison (operands [3], buffer))
+ condition_true = ! condition_true;
+
+ /* Generate the appropriate abort of the following binary operation. */
+ if (condition_true)
+ strcat (buffer, "snc || ");
+ else
+ strcat (buffer, "sc || ");
+
+ /* Generate the binary operation. */
+ switch (GET_CODE (operands [4]))
+ {
+ case PLUS: strcat (buffer, "add "); break;
+ case MINUS: strcat (buffer, "sub "); break;
+ case MULT: strcat (buffer, "mul "); break;
+ case AND: strcat (buffer, "and "); break;
+ case IOR: strcat (buffer, "or "); break;
+ case XOR: strcat (buffer, "xor "); break;
+ default: abort();
+ }
+
+ /* Generate the arguments for the binary operation. */
+ if (GET_CODE (operands [2]) == REG)
+ sprintf (buffer + strlen (buffer), "%s, %s",
+ reg_names [REGNO (operands [0])],
+ reg_names [REGNO (operands [2])]);
+ else if (GET_CODE (operands [2]) == CONST_INT)
+ sprintf (buffer + strlen (buffer), "%s, %d",
+ reg_names [REGNO (operands [0])],
+ INTVAL (operands [2]));
+ else
+ abort();
+
+ return buffer;
+}
+
+/* Return true if the unary operator can go inside of a s{n}c || operation. */
+int
+unary_parallel_operator (op, int_mode)
+ rtx op;
+ int int_mode;
+{
+ /* Can only handle integer operations. */
+ if ( GET_MODE (op) != SImode
+ && GET_MODE (op) != HImode
+ && GET_MODE (op) != QImode)
+ return FALSE;
+
+ /* Can only handle simple unary operations. */
+ if ( GET_CODE (op) != NEG
+ && GET_CODE (op) != NOT)
+ return FALSE;
+
+ /* Can only handle register based operations. */
+ op = XEXP (op, 0);
+ while (GET_CODE (op) == SUBREG)
+ op = SUBREG_REG (op);
+
+ if (GET_CODE (op) == REG)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Generate the correct assembler code to handle the conditional execution
+ of a simple unary operation. It is known that the operation satisfies
+ unary_parallel_operand() and that the condition satifies
+ conditional_compare_operand(). The operation is in operands [3] and
+ its argument is in operands [1]. The destination of the operation is
+ operands [0]. The condition is in operands [2], and if 'condition_true' is
+ non-zero then the operation should be performed if the condition is true,
+ otherwise it should be performed if the condition is false. */
+char *
+emit_unary_cond_exec (operands, condition_true)
+ rtx * operands;
+ int condition_true;
+{
+ static char buffer [100];
+
+ buffer [0] = 0;
+
+ /* Destination and operand must be registers. */
+ if ( GET_CODE (operands [0]) != REG
+ || GET_CODE (operands [1]) != REG)
+ abort();
+
+ /* Generate the comparison, and if necessary reverse the sense of the test. */
+ if (generate_comparison (operands [2], buffer))
+ condition_true = ! condition_true;
+
+ /* Generate the appropriate abort of the following binary operation. */
+ if (condition_true)
+ strcat (buffer, "snc || ");
+ else
+ strcat (buffer, "sc || ");
+
+ /* Generate the unary operation. */
+ switch (GET_CODE (operands [3]))
+ {
+ case NOT: strcat (buffer, "not "); break;
+ case NEG: strcat (buffer, "neg "); break;
+ default: abort();
+ }
+
+ /* Generate the arguments for the unary operation. */
+ sprintf (buffer + strlen (buffer), "%s, %s",
+ reg_names [REGNO (operands [0])],
+ reg_names [REGNO (operands [1])]);
+
+ return buffer;
+}
+
+/* END CYGNUS LOCAL -- meissner/m32r work */
+
+/* Returns true if the registers contained in the two
+ rtl expressions are different. */
+int
+m32r_not_same_reg (a, b)
+ rtx a;
+ rtx b;
+{
+ int reg_a = -1;
+ int reg_b = -2;
+
+ while (GET_CODE (a) == SUBREG)
+ a = SUBREG_REG (a);
+
+ if (GET_CODE (a) == REG)
+ reg_a = REGNO (a);
+
+ while (GET_CODE (b) == SUBREG)
+ b = SUBREG_REG (b);
+
+ if (GET_CODE (b) == REG)
+ reg_b = REGNO (b);
+
+ return reg_a != reg_b;
+}
+
+
+/* Use a library function to move some bytes. */
+static void
+block_move_call (dest_reg, src_reg, bytes_rtx)
+ rtx dest_reg;
+ rtx src_reg;
+ rtx bytes_rtx;
+{
+ /* We want to pass the size as Pmode, which will normally be SImode
+ but will be DImode if we are using 64 bit longs and pointers. */
+ if (GET_MODE (bytes_rtx) != VOIDmode
+ && GET_MODE (bytes_rtx) != Pmode)
+ bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
+
+#ifdef TARGET_MEM_FUNCTIONS
+ emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcpy"), 0,
+ VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
+ convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
+ TREE_UNSIGNED (sizetype)),
+ TYPE_MODE (sizetype));
+#else
+ emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcopy"), 0,
+ VOIDmode, 3, src_reg, Pmode, dest_reg, Pmode,
+ convert_to_mode (TYPE_MODE (integer_type_node), bytes_rtx,
+ TREE_UNSIGNED (integer_type_node)),
+ TYPE_MODE (integer_type_node));
+#endif
+}
+
+/* The maximum number of bytes to copy using pairs of load/store instructions.
+ If a block is larger than this then a loop will be generated to copy
+ MAX_MOVE_BYTES chunks at a time. The value of 32 is a semi-arbitary choice.
+ A customer uses Dhrystome as their benchmark, and Dhrystone has a 31 byte
+ string copy in it. */
+#define MAX_MOVE_BYTES 32
+
+/* Expand string/block move operations.
+
+ operands[0] is the pointer to the destination.
+ operands[1] is the pointer to the source.
+ operands[2] is the number of bytes to move.
+ operands[3] is the alignment. */
+
+void
+m32r_expand_block_move (operands)
+ rtx operands[];
+{
+ rtx orig_dst = operands[0];
+ rtx orig_src = operands[1];
+ rtx bytes_rtx = operands[2];
+ rtx align_rtx = operands[3];
+ int constp = GET_CODE (bytes_rtx) == CONST_INT;
+ HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
+ int align = INTVAL (align_rtx);
+ int leftover;
+ rtx src_reg;
+ rtx dst_reg;
+
+ if (constp && bytes <= 0)
+ return;
+
+ /* Move the address into scratch registers. */
+ dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
+ src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
+
+ if (align > UNITS_PER_WORD)
+ align = UNITS_PER_WORD;
+
+ /* If we prefer size over speed, always use a function call.
+ If we do not know the size, use a function call.
+ If the blocks are not word aligned, use a function call. */
+ if (optimize_size || ! constp || align != UNITS_PER_WORD)
+ {
+ block_move_call (dst_reg, src_reg, bytes_rtx);
+ return;
+ }
+
+ leftover = bytes % MAX_MOVE_BYTES;
+ bytes -= leftover;
+
+ /* If necessary, generate a loop to handle the bulk of the copy. */
+ if (bytes)
+ {
+ rtx label;
+ rtx final_src;
+ rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
+ rtx rounded_total = GEN_INT (bytes);
+
+ /* If we are going to have to perform this loop more than
+ once, then generate a label and compute the address the
+ source register will contain upon completion of the final
+ itteration. */
+ if (bytes > MAX_MOVE_BYTES)
+ {
+ final_src = gen_reg_rtx (Pmode);
+
+ if (INT16_P(bytes))
+ emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
+ else
+ {
+ emit_insn (gen_movsi (final_src, rounded_total));
+ emit_insn (gen_addsi3 (final_src, final_src, src_reg));
+ }
+
+ label = gen_label_rtx ();
+ emit_label (label);
+ }
+
+ /* It is known that output_block_move() will update src_reg to point
+ to the word after the end of the source block, and dst_reg to point
+ to the last word of the destination block, provided that the block
+ is MAX_MOVE_BYTES long. */
+ emit_insn (gen_movstrsi_internal (dst_reg, src_reg, at_a_time));
+ emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
+
+ if (bytes > MAX_MOVE_BYTES)
+ {
+ emit_insn (gen_cmpsi (src_reg, final_src));
+ emit_jump_insn (gen_bne (label));
+ }
+ }
+
+ if (leftover)
+ emit_insn (gen_movstrsi_internal (dst_reg, src_reg, GEN_INT (leftover)));
+}
+
+
+/* Emit load/stores for a small constant word aligned block_move.
+
+ operands[0] is the memory address of the destination.
+ operands[1] is the memory address of the source.
+ operands[2] is the number of bytes to move.
+ operands[3] is a temp register.
+ operands[4] is a temp register. */
+
+char *
+m32r_output_block_move (insn, operands)
+ rtx insn;
+ rtx operands[];
+{
+ HOST_WIDE_INT bytes = INTVAL (operands[2]);
+ int first_time;
+ int got_extra = 0;
+
+ if (bytes < 1 || bytes > MAX_MOVE_BYTES)
+ abort ();
+
+ /* We do not have a post-increment store available, so the first set of
+ stores are done without any increment, then the remaining ones can use
+ the pre-increment addressing mode.
+
+ Note: expand_block_move() also relies upon this behaviour when building
+ loops to copy large blocks. */
+ first_time = 1;
+
+ while (bytes > 0)
+ {
+ if (bytes >= 8)
+ {
+ if (first_time)
+ {
+ output_asm_insn ("ld\t%3, %p1", operands);
+ output_asm_insn ("ld\t%4, %p1", operands);
+ output_asm_insn ("st\t%3, @%0", operands);
+ output_asm_insn ("st\t%4, %s0", operands);
+ }
+ else
+ {
+ output_asm_insn ("ld\t%3, %p1", operands);
+ output_asm_insn ("ld\t%4, %p1", operands);
+ output_asm_insn ("st\t%3, %s0", operands);
+ output_asm_insn ("st\t%4, %s0", operands);
+ }
+
+ bytes -= 8;
+ }
+ else if (bytes >= 4)
+ {
+ if (bytes > 4)
+ got_extra = 1;
+
+ output_asm_insn ("ld\t%3, %p1", operands);
+
+ if (got_extra)
+ output_asm_insn ("ld\t%4, %p1", operands);
+
+ if (first_time)
+ output_asm_insn ("st\t%3, @%0", operands);
+ else
+ output_asm_insn ("st\t%3, %s0", operands);
+
+ bytes -= 4;
+ }
+ else
+ {
+ /* Get the entire next word, even though we do not want all of it.
+ The saves us from doing several smaller loads, and we assume that
+ we cannot cause a page fault when at least part of the word is in
+ valid memory [since we don't get called if things aren't properly
+ aligned]. */
+ int dst_offset = first_time ? 0 : 4;
+ int last_shift;
+ rtx my_operands[3];
+
+ /* If got_extra is true then we have already loaded
+ the next word as part of loading and storing the previous word. */
+ if (! got_extra)
+ output_asm_insn ("ld\t%4, @%1", operands);
+
+ if (bytes >= 2)
+ {
+ bytes -= 2;
+
+ output_asm_insn ("sra3\t%3, %4, #16", operands);
+ my_operands[0] = operands[3];
+ my_operands[1] = GEN_INT (dst_offset);
+ my_operands[2] = operands[0];
+ output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
+
+ /* If there is a byte left to store then increment the
+ destination address and shift the contents of the source
+ register down by 8 bits. We could not do the address
+ increment in the store half word instruction, because it does
+ not have an auto increment mode. */
+ if (bytes > 0) /* assert (bytes == 1) */
+ {
+ dst_offset += 2;
+ last_shift = 8;
+ }
+ }
+ else
+ last_shift = 24;
+
+ if (bytes > 0)
+ {
+ my_operands[0] = operands[4];
+ my_operands[1] = GEN_INT (last_shift);
+ output_asm_insn ("srai\t%0, #%1", my_operands);
+ my_operands[0] = operands[4];
+ my_operands[1] = GEN_INT (dst_offset);
+ my_operands[2] = operands[0];
+ output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
+ }
+
+ bytes = 0;
+ }
+
+ first_time = 0;
+ }
+
+ return "";
+}
+
+/* Return true if op is an integer constant, less than or equal to
+ MAX_MOVE_BYTES. */
+int
+m32r_block_immediate_operand (op, mode)
+ rtx op;
+ int mode;
+{
+ if (GET_CODE (op) != CONST_INT
+ || INTVAL (op) > MAX_MOVE_BYTES
+ || INTVAL (op) <= 0)
+ return 0;
+
+ return 1;
+}
+