diff options
Diffstat (limited to 'gcc/config/m32r/m32r.c')
-rwxr-xr-x | gcc/config/m32r/m32r.c | 3323 |
1 files changed, 3323 insertions, 0 deletions
diff --git a/gcc/config/m32r/m32r.c b/gcc/config/m32r/m32r.c new file mode 100755 index 0000000..c7717b1 --- /dev/null +++ b/gcc/config/m32r/m32r.c @@ -0,0 +1,3323 @@ +/* CYGNUS LOCAL -- meissner/m32r work */ +/* Subroutines used for code generation on the Mitsubishi M32R cpu. + Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include "system.h" +#include "tree.h" +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "real.h" +#include "insn-config.h" +#include "conditions.h" +#include "insn-flags.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "expr.h" +#include "recog.h" + +/* Save the operands last given to a compare for use when we + generate a scc or bcc insn. */ +rtx m32r_compare_op0, m32r_compare_op1; + +/* Array of valid operand punctuation characters. */ +char m32r_punct_chars[256]; + +/* Selected code model. */ +char *m32r_model_string = M32R_MODEL_DEFAULT; +enum m32r_model m32r_model; + +/* Selected SDA support. */ +char *m32r_sdata_string = M32R_SDATA_DEFAULT; +enum m32r_sdata m32r_sdata; + +/* Scheduler support */ +int m32r_sched_odd_word_p; + +/* Values of the -mcond-exec=n string. */ +int m32rx_cond_exec = 4; +char * m32rx_cond_exec_string = NULL; + +/* Forward declaration. */ +static void init_reg_tables PROTO((void)); +static void emit_S_clause PROTO((rtx, rtx, char *)); +static int generate_comparison PROTO((rtx, char *)); + +static int internal_reg_or_eq_int16_operand PROTO ((rtx, enum machine_mode)); +static int internal_reg_or_cmp_int16_operand PROTO ((rtx, enum machine_mode)); +static int internal_reg_or_uint16_operand PROTO ((rtx, enum machine_mode)); +static int internal_reg_or_zero_operand PROTO ((rtx, enum machine_mode)); + +/* Called by OVERRIDE_OPTIONS to initialize various things. */ + +void +m32r_init () +{ + init_reg_tables (); + + /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */ + memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars)); + m32r_punct_chars['#'] = 1; + m32r_punct_chars['@'] = 1; /* ??? no longer used */ + + /* Provide default value if not specified. */ + if (!g_switch_set) + g_switch_value = SDATA_DEFAULT_SIZE; + + if (strcmp (m32r_model_string, "small") == 0) + m32r_model = M32R_MODEL_SMALL; + else if (strcmp (m32r_model_string, "medium") == 0) + m32r_model = M32R_MODEL_MEDIUM; + else if (strcmp (m32r_model_string, "large") == 0) + m32r_model = M32R_MODEL_LARGE; + else + error ("bad value (%s) for -mmodel switch", m32r_model_string); + + if (strcmp (m32r_sdata_string, "none") == 0) + m32r_sdata = M32R_SDATA_NONE; + else if (strcmp (m32r_sdata_string, "sdata") == 0) + m32r_sdata = M32R_SDATA_SDATA; + else if (strcmp (m32r_sdata_string, "use") == 0) + m32r_sdata = M32R_SDATA_USE; + else + error ("bad value (%s) for -msdata switch", m32r_sdata_string); + + /* Set up max # instructions to use with conditional execution */ + if (m32rx_cond_exec_string) + m32rx_cond_exec = atoi (m32rx_cond_exec_string); +} + +/* Vectors to keep interesting information about registers where it can easily + be got. We use to use the actual mode value as the bit number, but there + is (or may be) more than 32 modes now. Instead we use two tables: one + indexed by hard register number, and one indexed by mode. */ + +/* The purpose of m32r_mode_class is to shrink the range of modes so that + they all fit (as bit numbers) in a 32 bit word (again). Each real mode is + mapped into one m32r_mode_class mode. */ + +enum m32r_mode_class +{ + C_MODE, + S_MODE, D_MODE, T_MODE, O_MODE, + SF_MODE, DF_MODE, TF_MODE, OF_MODE + , A_MODE +}; + +/* Modes for condition codes. */ +#define C_MODES (1 << (int) C_MODE) + +/* Modes for single-word and smaller quantities. */ +#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) + +/* Modes for double-word and smaller quantities. */ +#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)) + +/* Modes for quad-word and smaller quantities. */ +#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) + +/* Modes for accumulators. */ +#define A_MODES (1 << (int) A_MODE) + +/* Value is 1 if register/mode pair is acceptable on arc. */ + +unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] = +{ + T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, + T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES, + S_MODES, C_MODES + , A_MODES, A_MODES +}; + +unsigned int m32r_mode_class [NUM_MACHINE_MODES]; + +enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER]; + +static void +init_reg_tables () +{ + int i; + + for (i = 0; i < NUM_MACHINE_MODES; i++) + { + switch (GET_MODE_CLASS (i)) + { + case MODE_INT: + case MODE_PARTIAL_INT: + case MODE_COMPLEX_INT: + if (GET_MODE_SIZE (i) <= 4) + m32r_mode_class[i] = 1 << (int) S_MODE; + else if (GET_MODE_SIZE (i) == 8) + m32r_mode_class[i] = 1 << (int) D_MODE; + else if (GET_MODE_SIZE (i) == 16) + m32r_mode_class[i] = 1 << (int) T_MODE; + else if (GET_MODE_SIZE (i) == 32) + m32r_mode_class[i] = 1 << (int) O_MODE; + else + m32r_mode_class[i] = 0; + break; + case MODE_FLOAT: + case MODE_COMPLEX_FLOAT: + if (GET_MODE_SIZE (i) <= 4) + m32r_mode_class[i] = 1 << (int) SF_MODE; + else if (GET_MODE_SIZE (i) == 8) + m32r_mode_class[i] = 1 << (int) DF_MODE; + else if (GET_MODE_SIZE (i) == 16) + m32r_mode_class[i] = 1 << (int) TF_MODE; + else if (GET_MODE_SIZE (i) == 32) + m32r_mode_class[i] = 1 << (int) OF_MODE; + else + m32r_mode_class[i] = 0; + break; + case MODE_CC: + default: + /* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so + we must explicitly check for them here. */ + if (i == (int) CCmode) + m32r_mode_class[i] = 1 << (int) C_MODE; + else + m32r_mode_class[i] = 0; + break; + } + } + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + if (GPR_P (i)) + m32r_regno_reg_class[i] = GENERAL_REGS; + else if (i == ARG_POINTER_REGNUM) + m32r_regno_reg_class[i] = GENERAL_REGS; + else + m32r_regno_reg_class[i] = NO_REGS; + } +} + +static tree interrupt_ident; +static tree model_ident; +static tree small_ident; +static tree medium_ident; +static tree large_ident; + +static void +init_idents () +{ + if (interrupt_ident == 0) + { + interrupt_ident = get_identifier ("interrupt"); + model_ident = get_identifier ("model"); + small_ident = get_identifier ("small"); + medium_ident = get_identifier ("medium"); + large_ident = get_identifier ("large"); + } +} + +/* M32R specific attribute support. + + interrupt - for interrupt functions + + model - select code model used to access object + + small: addresses use 24 bits, use bl to make calls + medium: addresses use 32 bits, use bl to make calls + large: addresses use 32 bits, use seth/add3/jl to make calls + + Grep for MODEL in m32r.h for more info. +*/ + +/* Return nonzero if IDENTIFIER is a valid decl attribute. */ + +int +m32r_valid_machine_decl_attribute (type, attributes, identifier, args) + tree type; + tree attributes; + tree identifier; + tree args; + { + init_idents (); + + if (identifier == interrupt_ident + && list_length (args) == 0) + return 1; + + if (identifier == model_ident + && list_length (args) == 1 + && (TREE_VALUE (args) == small_ident + || TREE_VALUE (args) == medium_ident + || TREE_VALUE (args) == large_ident)) + return 1; + + return 0; +} + +/* Return zero if TYPE1 and TYPE are incompatible, one if they are compatible, + and two if they are nearly compatible (which causes a warning to be + generated). */ + +int +m32r_comp_type_attributes (type1, type2) + tree type1, type2; +{ + return 1; +} + +/* Set the default attributes for TYPE. */ + +void +m32r_set_default_type_attributes (type) + tree type; +{ +} + +/* A C statement or statements to switch to the appropriate + section for output of DECL. DECL is either a `VAR_DECL' node + or a constant of some sort. RELOC indicates whether forming + the initial value of DECL requires link-time relocations. */ + +void +m32r_select_section (decl, reloc) + tree decl; + int reloc; +{ + if (TREE_CODE (decl) == STRING_CST) + { + if (! flag_writable_strings) + const_section (); + else + data_section (); + } + else if (TREE_CODE (decl) == VAR_DECL) + { + if (SDATA_NAME_P (XSTR (XEXP (DECL_RTL (decl), 0), 0))) + sdata_section (); + else if ((flag_pic && reloc) + || !TREE_READONLY (decl) + || TREE_SIDE_EFFECTS (decl) + || !DECL_INITIAL (decl) + || (DECL_INITIAL (decl) != error_mark_node + && !TREE_CONSTANT (DECL_INITIAL (decl)))) + data_section (); + else + const_section (); + } + else + const_section (); +} + +/* Encode section information of DECL, which is either a VAR_DECL, + FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???. + + For the M32R we want to record: + + - whether the object lives in .sdata/.sbss. + objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR + + - what code model should be used to access the object + small: recorded with no flag - for space efficiency since they'll + be the most common + medium: prefixed with MEDIUM_FLAG_CHAR + large: prefixed with LARGE_FLAG_CHAR +*/ + +void +m32r_encode_section_info (decl) + tree decl; +{ + char prefix = 0; + tree model = 0; + + switch (TREE_CODE (decl)) + { + case VAR_DECL : + case FUNCTION_DECL : + model = lookup_attribute ("model", DECL_MACHINE_ATTRIBUTES (decl)); + break; + case STRING_CST : + case CONSTRUCTOR : + /* ??? document all others that can appear here */ + default : + return; + } + + /* Only mark the object as being small data area addressable if + it hasn't been explicitly marked with a code model. + + The user can explicitly put an object in the small data area with the + section attribute. If the object is in sdata/sbss and marked with a + code model do both [put the object in .sdata and mark it as being + addressed with a specific code model - don't mark it as being addressed + with an SDA reloc though]. This is ok and might be useful at times. If + the object doesn't fit the linker will give an error. */ + + if (! model) + { + if (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd' + && DECL_SECTION_NAME (decl) != NULL_TREE) + { + char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); + if (! strcmp (name, ".sdata") || ! strcmp (name, ".sbss")) + { +#if 0 /* ??? There's no reason to disallow this, is there? */ + if (TREE_READONLY (decl)) + error_with_decl (decl, "const objects cannot go in .sdata/.sbss"); +#endif + prefix = SDATA_FLAG_CHAR; + } + } + else + { + if (TREE_CODE (decl) == VAR_DECL + && ! TREE_READONLY (decl) + && ! TARGET_SDATA_NONE) + { + int size = int_size_in_bytes (TREE_TYPE (decl)); + + if (size > 0 && size <= g_switch_value) + prefix = SDATA_FLAG_CHAR; + } + } + } + + /* If data area not decided yet, check for a code model. */ + if (prefix == 0) + { + if (model) + { + init_idents (); + + if (TREE_VALUE (TREE_VALUE (model)) == small_ident) + ; /* don't mark the symbol specially */ + else if (TREE_VALUE (TREE_VALUE (model)) == medium_ident) + prefix = MEDIUM_FLAG_CHAR; + else if (TREE_VALUE (TREE_VALUE (model)) == large_ident) + prefix = LARGE_FLAG_CHAR; + else + abort (); /* shouldn't happen */ + } + else + { + if (TARGET_MODEL_SMALL) + ; /* don't mark the symbol specially */ + else if (TARGET_MODEL_MEDIUM) + prefix = MEDIUM_FLAG_CHAR; + else if (TARGET_MODEL_LARGE) + prefix = LARGE_FLAG_CHAR; + else + abort (); /* shouldn't happen */ + } + } + + if (prefix != 0) + { + rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' + ? TREE_CST_RTL (decl) : DECL_RTL (decl)); + char *str = XSTR (XEXP (rtl, 0), 0); + int len = strlen (str); + char *newstr = savealloc (len + 2); + strcpy (newstr + 1, str); + *newstr = prefix; + XSTR (XEXP (rtl, 0), 0) = newstr; + } +} + +/* Do anything needed before RTL is emitted for each function. */ + +void +m32r_init_expanders () +{ + /* ??? At one point there was code here. The function is left in + to make it easy to experiment. */ +} + +/* Acceptable arguments to the call insn. */ + +int +call_address_operand (op, int_mode) + rtx op; + int int_mode; +{ + return symbolic_operand (op, int_mode); + +/* The following xxx_operand functions all take an integer for the machine_mode + argument. This is to allow them to be prototyped in m32r.h which is + included before rtl.h is included. Not every function includes rtl.h, so we + can't assume it will be included. */ + +/* Constants and values in registers are not OK, because + the m32r BL instruction can only support PC relative branching. */ +} + +int +call_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + + if (GET_CODE (op) != MEM) + return 0; + op = XEXP (op, 0); + return call_address_operand (op, mode); +} + +/* Returns 1 if OP is a symbol reference. */ + +int +symbolic_operand (op, int_mode) + rtx op; + int int_mode; +{ + switch (GET_CODE (op)) + { + case SYMBOL_REF: + case LABEL_REF: + case CONST : + return 1; + + default: + return 0; + } +} + +/* Return 1 if OP is a reference to an object in .sdata/.sbss. */ + +int +small_data_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (! TARGET_SDATA_USE) + return 0; + + if (GET_CODE (op) == SYMBOL_REF) + return SDATA_NAME_P (XSTR (op, 0)); + + if (GET_CODE (op) == CONST + && GET_CODE (XEXP (op, 0)) == PLUS + && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT + && INT16_P (INTVAL (XEXP (XEXP (op, 0), 1)))) + return SDATA_NAME_P (XSTR (XEXP (XEXP (op, 0), 0), 0)); + + return 0; +} + +/* Return 1 if OP is a symbol that can use 24 bit addressing. */ + +int +addr24_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) == LABEL_REF) + return TARGET_ADDR24; + + if (GET_CODE (op) == SYMBOL_REF) + return (SMALL_NAME_P (XSTR (op, 0)) + || (TARGET_ADDR24 + && (CONSTANT_POOL_ADDRESS_P (op) + || LIT_NAME_P (XSTR (op, 0))))); + + if (GET_CODE (op) == CONST + && GET_CODE (XEXP (op, 0)) == PLUS + && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT + && UINT24_P (INTVAL (XEXP (XEXP (op, 0), 1)))) + { + rtx sym = XEXP (XEXP (op, 0), 0); + return (SMALL_NAME_P (XSTR (sym, 0)) + || (TARGET_ADDR24 + && (CONSTANT_POOL_ADDRESS_P (op) + || LIT_NAME_P (XSTR (op, 0))))); + } + + return 0; +} + +/* Return 1 if OP is a symbol that needs 32 bit addressing. */ + +int +addr32_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) == LABEL_REF) + return TARGET_ADDR32; + + if (GET_CODE (op) == SYMBOL_REF) + return (! addr24_operand (op, int_mode) + && ! small_data_operand (op, int_mode)); + + if (GET_CODE (op) == CONST + && GET_CODE (XEXP (op, 0)) == PLUS + && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT) + { + return (! addr24_operand (op, int_mode) + && ! small_data_operand (op, int_mode)); + } + + return 0; +} + +/* Return 1 if OP is a function that can be called with the `bl' insn. */ + +int +call26_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) == SYMBOL_REF) + return ! LARGE_NAME_P (XSTR (op, 0)); + + return TARGET_CALL26; +} + +/* Returns 1 if OP is an acceptable operand for seth/add3. */ + +int +seth_add3_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) == SYMBOL_REF + || GET_CODE (op) == LABEL_REF) + return 1; + + if (GET_CODE (op) == CONST + && GET_CODE (XEXP (op, 0)) == PLUS + && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT + && INT16_P (INTVAL (XEXP (XEXP (op, 0), 1)))) + return 1; + + return 0; +} + +/* Return true if OP is a signed 8 bit immediate value. */ + +int +int8_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) != CONST_INT) + return 0; + return INT8_P (INTVAL (op)); +} + +/* Return true if OP is a signed 16 bit immediate value + useful in comparisons. */ + +int +cmp_int16_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) != CONST_INT) + return 0; + return CMP_INT16_P (INTVAL (op)); +} + +/* Return true if OP is an unsigned 16 bit immediate value. */ +int +uint16_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) != CONST_INT) + return 0; + return UINT16_P (INTVAL (op)); +} + +/* Return true if OP is a register or signed 16 bit value. */ +int +reg_or_int16_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + if (GET_CODE (op) != CONST_INT) + return 0; + return INT16_P (INTVAL (op)); +} + +/* Return true if OP is a register or an unsigned 16 bit value. */ +int +reg_or_uint16_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + if (GET_CODE (op) != CONST_INT) + return 0; + return UINT16_P (INTVAL (op)); +} + +/* Return true if OP is a register or an integer value that can be + used is SEQ/SNE. We can use either XOR of the value or ADD of + the negative of the value for the constant. Don't allow 0, + because that is special cased. */ +int +reg_or_eq_int16_operand (op, int_mode) + rtx op; + int int_mode; +{ + HOST_WIDE_INT value; + enum machine_mode mode = (enum machine_mode)int_mode; + + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + + if (GET_CODE (op) != CONST_INT) + return 0; + + value = INTVAL (op); + return (value != 0) && (UINT16_P (value) || CMP_INT16_P (-value)); +} + +/* Same as eqne_int16_operand, except the mode argument is an enum. */ +int +internal_reg_or_eq_int16_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + HOST_WIDE_INT value; + + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + + if (GET_CODE (op) != CONST_INT) + return 0; + + value = INTVAL (op); + return (value != 0) && (UINT16_P (value) || CMP_INT16_P (-value)); +} + +/* Same as reg_or_int16_operand, except the mode argument is an enum. */ +static int +internal_reg_or_uint16_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + if (GET_CODE (op) != CONST_INT) + return 0; + return UINT16_P (INTVAL (op)); +} + +/* Return true if OP is a register or signed 16 bit value for compares. */ +int +reg_or_cmp_int16_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + if (GET_CODE (op) != CONST_INT) + return 0; + return CMP_INT16_P (INTVAL (op)); +} + +/* Same as reg_or_cmp_int16_operand, but uses machine_mode as an + operand. */ +static int +internal_reg_or_cmp_int16_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + if (GET_CODE (op) != CONST_INT) + return 0; + return CMP_INT16_P (INTVAL (op)); +} + +/* Return true if OP is a register or the constant 0. */ +int +reg_or_zero_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + + if (GET_CODE (op) != CONST_INT) + return 0; + + return INTVAL (op) == 0; +} + +/* Like reg_or_zero_operand, except mode argument is an enum. */ +static int +internal_reg_or_zero_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == REG || GET_CODE (op) == SUBREG) + return register_operand (op, mode); + + if (GET_CODE (op) != CONST_INT) + return 0; + + return INTVAL (op) == 0; +} + +/* Return true if OP is a const_int requiring two instructions to load. */ + +int +two_insn_const_operand (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) != CONST_INT) + return 0; + if (INT16_P (INTVAL (op)) + || UINT24_P (INTVAL (op)) + || UPPER16_P (INTVAL (op))) + return 0; + return 1; +} + +/* Return true if OP is an acceptable argument for a single word + move source. */ + +int +move_src_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + switch (GET_CODE (op)) + { + case SYMBOL_REF : + case CONST : + return addr24_operand (op, int_mode); + case CONST_INT : + /* ??? We allow more cse opportunities if we only allow constants + loadable with one insn, and split the rest into two. The instances + where this would help should be rare and the current way is + simpler. */ + return INT32_P (INTVAL (op)); + case LABEL_REF : + return TARGET_ADDR24; + case CONST_DOUBLE : + if (mode == SFmode) + return 1; + else if (mode == SImode) + { + /* Large unsigned constants are represented as const_double's. */ + unsigned HOST_WIDE_INT low, high; + + low = CONST_DOUBLE_LOW (op); + high = CONST_DOUBLE_HIGH (op); + return high == 0 && low <= 0xffffffff; + } + else + return 0; + case REG : + return register_operand (op, mode); + case SUBREG : + /* (subreg (mem ...) ...) can occur here if the inner part was once a + pseudo-reg and is now a stack slot. */ + if (GET_CODE (SUBREG_REG (op)) == MEM) + return address_operand (XEXP (SUBREG_REG (op), 0), mode); + else + return register_operand (op, mode); + case MEM : + if (GET_CODE (XEXP (op, 0)) == PRE_INC + || GET_CODE (XEXP (op, 0)) == PRE_DEC) + return 0; /* loads can't do pre-{inc,dec} */ + return address_operand (XEXP (op, 0), mode); + default : + return 0; + } +} + +/* Return true if OP is an acceptable argument for a double word + move source. */ + +int +move_double_src_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + switch (GET_CODE (op)) + { + case CONST_INT : + case CONST_DOUBLE : + return 1; + case REG : + return register_operand (op, mode); + case SUBREG : + /* (subreg (mem ...) ...) can occur here if the inner part was once a + pseudo-reg and is now a stack slot. */ + if (GET_CODE (SUBREG_REG (op)) == MEM) + return move_double_src_operand (SUBREG_REG (op), int_mode); + else + return register_operand (op, mode); + case MEM : + /* Disallow auto inc/dec for now. */ + if (GET_CODE (XEXP (op, 0)) == PRE_DEC + || GET_CODE (XEXP (op, 0)) == PRE_INC) + return 0; + return address_operand (XEXP (op, 0), mode); + default : + return 0; + } +} + +/* Return true if OP is an acceptable argument for a move destination. */ + +int +move_dest_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + switch (GET_CODE (op)) + { + case REG : + return register_operand (op, mode); + case SUBREG : + /* (subreg (mem ...) ...) can occur here if the inner part was once a + pseudo-reg and is now a stack slot. */ + if (GET_CODE (SUBREG_REG (op)) == MEM) + return address_operand (XEXP (SUBREG_REG (op), 0), mode); + else + return register_operand (op, mode); + case MEM : + if (GET_CODE (XEXP (op, 0)) == POST_INC) + return 0; /* stores can't do post inc */ + return address_operand (XEXP (op, 0), mode); + default : + return 0; + } +} + +/* Return 1 if OP is a DImode const we want to handle inline. + This must match the code in the movdi pattern. + It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */ + +int +easy_di_const (op) + rtx op; +{ + rtx high_rtx, low_rtx; + HOST_WIDE_INT high, low; + + split_double (op, &high_rtx, &low_rtx); + high = INTVAL (high_rtx); + low = INTVAL (low_rtx); + /* Pick constants loadable with 2 16 bit `ldi' insns. */ + if (high >= -128 && high <= 127 + && low >= -128 && low <= 127) + return 1; + return 0; +} + +/* Return 1 if OP is a DFmode const we want to handle inline. + This must match the code in the movdf pattern. + It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */ + +int +easy_df_const (op) + rtx op; +{ + REAL_VALUE_TYPE r; + long l[2]; + + REAL_VALUE_FROM_CONST_DOUBLE (r, op); + REAL_VALUE_TO_TARGET_DOUBLE (r, l); + if (l[0] == 0 && l[1] == 0) + return 1; + if ((l[0] & 0xffff) == 0 && l[1] == 0) + return 1; + return 0; +} + +/* Return 1 if OP is an EQ or NE comparison operator. */ + +int +eqne_comparison_operator (op, int_mode) + rtx op; + int int_mode; +{ + enum rtx_code code = GET_CODE (op); + + if (GET_RTX_CLASS (code) != '<') + return 0; + return (code == EQ || code == NE); +} + +/* Return 1 if OP is a signed comparison operator. */ + +int +signed_comparison_operator (op, int_mode) + rtx op; + int int_mode; +{ + enum rtx_code code = GET_CODE (op); + + if (GET_RTX_CLASS (code) != '<') + return 0; + return (code == EQ || code == NE + || code == LT || code == LE || code == GT || code == GE); +} + +/* Return 1 if OP is (mem (reg ...)). + This is used in insn length calcs. */ + +int +memreg_operand (op, int_mode) + rtx op; + int int_mode; +{ + return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG; +} + +/* Return true if OP is an acceptable input argument for a zero/sign extend + operation. */ + +int +extend_operand (op, int_mode) + rtx op; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + rtx addr; + + switch (GET_CODE (op)) + { + case REG : + case SUBREG : + return register_operand (op, mode); + + case MEM : + addr = XEXP (op, 0); + if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC) + return 0; /* loads can't do pre inc/pre dec */ + + return address_operand (addr, mode); + + default : + return 0; + } +} + +/* Return non-zero if the operand is an insn that is a small insn. + Allow const_int 0 as well, which is a placeholder for NOP slots. */ + +int +small_insn_p (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_CODE (op) == CONST_INT && INTVAL (op) == 0) + return 1; + + if (GET_RTX_CLASS (GET_CODE (op)) != 'i') + return 0; + + return get_attr_length (op) == 2; +} + +/* Return non-zero if the operand is an insn that is a large insn. */ + +int +large_insn_p (op, int_mode) + rtx op; + int int_mode; +{ + if (GET_RTX_CLASS (GET_CODE (op)) != 'i') + return 0; + + return get_attr_length (op) != 2; +} + + +/* Comparisons. */ + +/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, + return the mode to be used for the comparison. */ + +int +m32r_select_cc_mode (op, x, y) + int op; + rtx x, y; +{ + return (int)CCmode; +} + +/* X and Y are two things to compare using CODE. Emit the compare insn and + return the rtx for compare [arg0 of the if_then_else]. + If need_compare is true then the comparison insn must be generated, rather + than being susummed into the following branch instruction. */ + +rtx +gen_compare (int_code, label, x, y) + int int_code; + rtx label; + rtx x; + rtx y; +{ + enum rtx_code code = (enum rtx_code)int_code; + enum rtx_code branch_code; + enum machine_mode mode = SELECT_CC_MODE (code, x, y); + rtx cc_reg = gen_rtx (REG, mode, CARRY_REGNUM); + int must_swap = FALSE; + int int_p = (GET_CODE (y) == CONST_INT); + HOST_WIDE_INT value = (int_p) ? INTVAL (y) : 0; + int signed_p = 0; + rtx arg1; + rtx arg2; + rtx ret; + rtx (*gen_func) PROTO ((rtx, rtx)) + = (rtx (*) PROTO ((rtx, rtx))) abort; + int (*constrain_func) PROTO ((rtx, enum machine_mode)) + = (int (*) PROTO ((rtx, enum machine_mode))) abort; + + start_sequence (); + if (GET_CODE (x) != REG && GET_CODE (x) != SUBREG) + x = force_reg (GET_MODE (x), x); + + if (GET_CODE (y) != REG && GET_CODE (y) != SUBREG && !int_p) + y = force_reg (GET_MODE (x), y); + + /* If we have a LE, GT, etc. of a constant, see if we can tranform it to the + appropriate LT, GE, etc. to use the cmpi or cmpui instruction. */ + if (int_p) + { + if ((code == LE || code == GT) && (value >= -32768 && value < 32767)) + { + ++value; + y = GEN_INT (value); + code = (code == LE) ? LT : GE; + } + + else if ((code == LEU || code == GTU) && (value >= 0 && value < 32767)) + { + ++value; + y = GEN_INT (value); + code = (code == LEU) ? LTU : GEU; + } + } + + switch (code) + { + default: + abort (); + + case EQ: + gen_func = gen_cmp_eqsi_insn; + constrain_func = internal_reg_or_uint16_operand; + branch_code = NE; + signed_p = TRUE; + if (TARGET_M32RX) + { + gen_func = gen_cmp_eqsi_zero_insn; + constrain_func = internal_reg_or_zero_operand; + } + break; + + case NE: + gen_func = gen_cmp_eqsi_insn; + constrain_func = internal_reg_or_uint16_operand; + branch_code = EQ; + signed_p = TRUE; + if (TARGET_M32RX) + { + gen_func = gen_cmp_eqsi_zero_insn; + constrain_func = internal_reg_or_zero_operand; + } + break; + + case LT: + gen_func = gen_cmp_ltsi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = NE; + signed_p = TRUE; + break; + + case LE: + gen_func = gen_cmp_ltsi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = EQ; + signed_p = TRUE; + must_swap = TRUE; + break; + + case GT: + gen_func = gen_cmp_ltsi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = NE; + signed_p = TRUE; + must_swap = TRUE; + break; + + case GE: + gen_func = gen_cmp_ltsi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = EQ; + signed_p = TRUE; + break; + + case LTU: + gen_func = gen_cmp_ltusi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = NE; + signed_p = FALSE; + break; + + case LEU: + gen_func = gen_cmp_ltusi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = EQ; + signed_p = FALSE; + must_swap = TRUE; + break; + + case GTU: + gen_func = gen_cmp_ltusi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = NE; + signed_p = FALSE; + must_swap = TRUE; + break; + + case GEU: + gen_func = gen_cmp_ltusi_insn; + constrain_func = internal_reg_or_cmp_int16_operand; + branch_code = EQ; + signed_p = FALSE; + break; + } + + /* Is this a branch comparison against 0? */ + if (int_p && value == 0 && signed_p) + { + emit_jump_insn (gen_rtx_SET (VOIDmode, + pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx (code, + VOIDmode, + x, + CONST0_RTX (mode)), + gen_rtx_LABEL_REF (VOIDmode, + label), + pc_rtx))); + } + + /* Is this a branch comparison comparing two registers for == or !=? */ + else if (code == EQ || code == NE) + { + if (int_p) + y = force_reg (GET_MODE (x), y); + + emit_jump_insn (gen_rtx_SET (VOIDmode, + pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx (code, + VOIDmode, + x, y), + gen_rtx_LABEL_REF (VOIDmode, + label), + pc_rtx))); + } + + /* If not, set c bit and then do jump */ + else + { + if (int_p && (must_swap || ! (*constrain_func) (y, GET_MODE (y)))) + y = force_reg (GET_MODE (x), y); + + if (must_swap) + { + arg1 = y; + arg2 = x; + } + else + { + arg1 = x; + arg2 = y; + } + + emit_insn ((*gen_func) (arg1, arg2)); + emit_jump_insn (gen_rtx_SET (VOIDmode, + pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx (branch_code, + VOIDmode, + cc_reg, + CONST0_RTX (mode)), + gen_rtx_LABEL_REF (VOIDmode, + label), + pc_rtx))); + } + + ret = gen_sequence (); + end_sequence (); + return ret; +} + +/* Split a 2 word move (DI or DF) into component parts. */ + +rtx +gen_split_move_double (operands) + rtx operands[]; +{ + enum machine_mode mode = GET_MODE (operands[0]); + rtx dest = operands[0]; + rtx src = operands[1]; + rtx val; + + /* We might have (SUBREG (MEM)) here, so just get rid of the + subregs to make this code simpler. It is safe to call + alter_subreg any time after reload. */ + if (GET_CODE (dest) == SUBREG) + dest = alter_subreg (dest); + if (GET_CODE (src) == SUBREG) + src = alter_subreg (src); + + start_sequence (); + if (GET_CODE (dest) == REG) + { + int dregno = REGNO (dest); + + /* reg = reg */ + if (GET_CODE (src) == REG) + { + int sregno = REGNO (src); + + int reverse = (dregno == sregno + 1); + + /* We normally copy the low-numbered register first. However, if + the first register operand 0 is the same as the second register of + operand 1, we must copy in the opposite order. */ + emit_insn (gen_rtx_SET (VOIDmode, + operand_subword (dest, reverse, TRUE, mode), + operand_subword (src, reverse, TRUE, mode))); + + emit_insn (gen_rtx_SET (VOIDmode, + operand_subword (dest, !reverse, TRUE, mode), + operand_subword (src, !reverse, TRUE, mode))); + } + + /* reg = constant */ + else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE) + { + rtx words[2]; + split_double (src, &words[0], &words[1]); + emit_insn (gen_rtx_SET (VOIDmode, + operand_subword (dest, 0, TRUE, mode), + words[0])); + + emit_insn (gen_rtx_SET (VOIDmode, + operand_subword (dest, 1, TRUE, mode), + words[1])); + } + + /* reg = mem */ + else if (GET_CODE (src) == MEM) + { + /* If the high-address word is used in the address, we must load it + last. Otherwise, load it first. */ + rtx addr = XEXP (src, 0); + int reverse = (refers_to_regno_p (dregno, dregno+1, addr, 0) != 0); + + /* We used to optimize loads from single registers as + + ld r1,r3+; ld r2,r3 + + if r3 were not used subsequently. However, the REG_NOTES aren't + propigated correctly by the reload phase, and it can cause bad + code to be generated. We could still try: + + ld r1,r3+; ld r2,r3; addi r3,-4 + + which saves 2 bytes and doesn't force longword alignment. */ + emit_insn (gen_rtx_SET (VOIDmode, + operand_subword (dest, reverse, TRUE, mode), + change_address (src, SImode, + plus_constant (addr, + reverse * UNITS_PER_WORD)))); + + emit_insn (gen_rtx_SET (VOIDmode, + operand_subword (dest, !reverse, TRUE, mode), + change_address (src, SImode, + plus_constant (addr, + (!reverse) * UNITS_PER_WORD)))); + } + + else + abort (); + } + + /* mem = reg */ + /* We used to optimize loads from single registers as + + st r1,r3; st r2,+r3 + + if r3 were not used subsequently. However, the REG_NOTES aren't + propigated correctly by the reload phase, and it can cause bad + code to be generated. We could still try: + + st r1,r3; st r2,+r3; addi r3,-4 + + which saves 2 bytes and doesn't force longword alignment. */ + else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG) + { + rtx addr = XEXP (dest, 0); + + emit_insn (gen_rtx_SET (VOIDmode, + change_address (dest, SImode, addr), + operand_subword (src, 0, TRUE, mode))); + + emit_insn (gen_rtx_SET (VOIDmode, + change_address (dest, SImode, + plus_constant (addr, UNITS_PER_WORD)), + operand_subword (src, 1, TRUE, mode))); + } + + else + abort (); + + val = gen_sequence (); + end_sequence (); + return val; +} + + +/* Implements the FUNCTION_ARG_PARTIAL_NREGS macro. */ + +int +function_arg_partial_nregs (cum, int_mode, type, named) + CUMULATIVE_ARGS *cum; + int int_mode; + tree type; + int named; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + int ret; + int size = (((mode == BLKmode && type) + ? int_size_in_bytes (type) + : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + + if (*cum >= M32R_MAX_PARM_REGS) + ret = 0; + else if (*cum + size > M32R_MAX_PARM_REGS) + ret = (*cum + size) - M32R_MAX_PARM_REGS; + else + ret = 0; + + return ret; +} + +/* Do any needed setup for a variadic function. For the M32R, we must + create a register parameter block, and then copy any anonymous arguments + in registers to memory. + + CUM has not been updated for the last named argument which has type TYPE + and mode MODE, and we rely on this fact. */ + +void +m32r_setup_incoming_varargs (cum, int_mode, type, pretend_size, no_rtl) + CUMULATIVE_ARGS *cum; + int int_mode; + tree type; + int *pretend_size; + int no_rtl; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + int first_anon_arg; + + if (no_rtl) + return; + + /* All BLKmode values are passed by reference. */ + if (mode == BLKmode) + abort (); + + /* We must treat `__builtin_va_alist' as an anonymous arg. */ + if (current_function_varargs) + first_anon_arg = *cum; + else + first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type) + + ROUND_ADVANCE_ARG (mode, type)); + + if (first_anon_arg < M32R_MAX_PARM_REGS) + { + /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */ + int first_reg_offset = first_anon_arg; + /* Size in words to "pretend" allocate. */ + int size = M32R_MAX_PARM_REGS - first_reg_offset; + rtx regblock; + + regblock = gen_rtx (MEM, BLKmode, + plus_constant (arg_pointer_rtx, + FIRST_PARM_OFFSET (0))); + move_block_from_reg (first_reg_offset, regblock, + size, size * UNITS_PER_WORD); + + *pretend_size = (size * UNITS_PER_WORD); + } +} + +/* Cost functions. */ + +/* Provide the costs of an addressing mode that contains ADDR. + If ADDR is not a valid address, its cost is irrelevant. + + This function is trivial at the moment. This code doesn't live + in m32r.h so it's easy to experiment. */ + +int +m32r_address_cost (addr) + rtx addr; +{ + return 1; +} + + +/* A C statement (sans semicolon) to update the integer variable COST based on + the relationship between INSN that is dependent on DEP_INSN through the + dependence LINK. The default is to make no adjustment to COST. This can be + used for example to specify to the scheduler that an output- or + anti-dependence does not incur the same cost as a data-dependence. */ + +int +m32r_adjust_cost (insn, link, dep_insn, cost) + rtx insn; + rtx link; + rtx dep_insn; + int cost; +{ + return cost; +} + + +/* A C statement (sans semicolon) to update the integer scheduling + priority `INSN_PRIORITY(INSN)'. Reduce the priority to execute + the INSN earlier, increase the priority to execute INSN later. + Do not define this macro if you do not need to adjust the + scheduling priorities of insns. + + On the m32r, increase the priority of long instructions so that + the short instructions are scheduled ahead of the long ones. */ + +int +m32r_adjust_priority (insn, priority) + rtx insn; + int priority; +{ + if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') + { + enum rtx_code code = GET_CODE (PATTERN (insn)); + if (code != USE && code != CLOBBER && code != ADDR_VEC + && get_attr_insn_size (insn) != INSN_SIZE_SHORT) + priority <<= 3; + } + + return priority; +} + + +/* Initialize for scheduling a group of instructions. */ + +void +m32r_sched_init (stream, verbose) + FILE *stream; + int verbose; +{ + m32r_sched_odd_word_p = FALSE; +} + + +/* Reorder the schedulers priority list if needed */ + +void +m32r_sched_reorder (stream, verbose, ready, n_ready) + FILE *stream; + int verbose; + rtx *ready; + int n_ready; +{ + if (TARGET_DEBUG) + return; + + if (verbose <= 7) + stream = (FILE *)0; + + if (stream) + fprintf (stream, + ";;\t\t::: Looking at %d insn(s) on ready list, boundary is %s word\n", + n_ready, + (m32r_sched_odd_word_p) ? "odd" : "even"); + + if (n_ready > 1) + { + rtx *long_head = (rtx *) alloca (sizeof (rtx) * n_ready); + rtx *long_tail = long_head; + rtx *short_head = (rtx *) alloca (sizeof (rtx) * n_ready); + rtx *short_tail = short_head; + rtx *new_head = (rtx *) alloca (sizeof (rtx) * n_ready); + rtx *new_tail = new_head + (n_ready - 1); + int i; + + /* Loop through the instructions, classifing them as short/long. Try + to keep 2 short together and/or 1 long. Note, the ready list is + actually ordered backwards, so keep it in that manner. */ + for (i = n_ready-1; i >= 0; i--) + { + rtx insn = ready[i]; + enum rtx_code code; + + if (GET_RTX_CLASS (GET_CODE (insn)) != 'i' + || (code = GET_CODE (PATTERN (insn))) == USE + || code == CLOBBER || code == ADDR_VEC) + { + /* Dump all current short/long insns just in case */ + while (long_head != long_tail) + *new_tail-- = *long_head++; + + while (short_head != short_tail) + *new_tail-- = *short_head++; + + *new_tail-- = insn; + if (stream) + fprintf (stream, + ";;\t\t::: Skipping non instruction %d\n", + INSN_UID (insn)); + + } + + else + { + if (get_attr_insn_size (insn) != INSN_SIZE_SHORT) + *long_tail++ = insn; + + else + *short_tail++ = insn; + } + } + + /* If we are on an odd word, emit a single short instruction if + we can */ + if (m32r_sched_odd_word_p && short_head != short_tail) + *new_tail-- = *short_head++; + + /* Now dump out all of the long instructions */ + while (long_head != long_tail) + *new_tail-- = *long_head++; + + /* Now dump out all of the short instructions */ + while (short_head != short_tail) + *new_tail-- = *short_head++; + + if (new_tail+1 != new_head) + abort (); + + bcopy ((char *) new_head, (char *) ready, sizeof (rtx) * n_ready); + if (stream) + { +#ifdef HAIFA + fprintf (stream, ";;\t\t::: New ready list: "); + debug_ready_list (ready, n_ready); +#else + int i; + for (i = 0; i < n_ready; i++) + { + rtx insn = ready[i]; + enum rtx_code code; + + fprintf (stream, " %d", INSN_UID (ready[i])); + if (GET_RTX_CLASS (GET_CODE (insn)) != 'i' + || (code = GET_CODE (PATTERN (insn))) == USE + || code == CLOBBER || code == ADDR_VEC) + fputs ("(?)", stream); + + else if (get_attr_insn_size (insn) != INSN_SIZE_SHORT) + fputs ("(l)", stream); + + else + fputs ("(s)", stream); + } + + fprintf (stream, "\n"); +#endif + } + } +} + + +/* if we have a machine that can issue a variable # of instructions + per cycle, indicate how many more instructions can be issued + after the current one. */ +int +m32r_sched_variable_issue (stream, verbose, insn, how_many) + FILE *stream; + int verbose; + rtx insn; + int how_many; +{ + int orig_odd_word_p = m32r_sched_odd_word_p; + int short_p = FALSE; + + how_many--; + if (how_many > 0 && !TARGET_DEBUG) + { + if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') + how_many++; + + else if (GET_CODE (PATTERN (insn)) == USE + || GET_CODE (PATTERN (insn)) == CLOBBER + || GET_CODE (PATTERN (insn)) == ADDR_VEC) + how_many++; + + else if (get_attr_insn_size (insn) != INSN_SIZE_SHORT) + { + how_many = 0; + m32r_sched_odd_word_p = 0; + } + + else + { + m32r_sched_odd_word_p = !m32r_sched_odd_word_p; + short_p = TRUE; + } + } + + if (verbose > 7 && stream) + fprintf (stream, + ";;\t\t::: %s insn %d starts on an %s word, can emit %d more instruction(s)\n", + short_p ? "short" : "long", + INSN_UID (insn), + orig_odd_word_p ? "odd" : "even", + how_many); + + return how_many; +} + + +/* Type of function DECL. + + The result is cached. To reset the cache at the end of a function, + call with DECL = NULL_TREE. */ + +enum m32r_function_type +m32r_compute_function_type (decl) + tree decl; +{ + /* Cached value. */ + static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN; + /* Last function we were called for. */ + static tree last_fn = NULL_TREE; + + /* Resetting the cached value? */ + if (decl == NULL_TREE) + { + fn_type = M32R_FUNCTION_UNKNOWN; + last_fn = NULL_TREE; + return fn_type; + } + + if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN) + return fn_type; + + /* Compute function type. */ + fn_type = (lookup_attribute ("interrupt", DECL_MACHINE_ATTRIBUTES (current_function_decl)) != NULL_TREE + ? M32R_FUNCTION_INTERRUPT + : M32R_FUNCTION_NORMAL); + + last_fn = decl; + return fn_type; +} +/* Function prologue/epilogue handlers. */ + +/* M32R stack frames look like: + + Before call After call + +-----------------------+ +-----------------------+ + | | | | + high | local variables, | | local variables, | + mem | reg save area, etc. | | reg save area, etc. | + | | | | + +-----------------------+ +-----------------------+ + | | | | + | arguments on stack. | | arguments on stack. | + | | | | + SP+0->+-----------------------+ +-----------------------+ + | reg parm save area, | + | only created for | + | variable argument | + | functions | + +-----------------------+ + | previous frame ptr | + +-----------------------+ + | | + | register save area | + | | + +-----------------------+ + | return address | + +-----------------------+ + | | + | local variables | + | | + +-----------------------+ + | | + | alloca allocations | + | | + +-----------------------+ + | | + low | arguments on stack | + memory | | + SP+0->+-----------------------+ + +Notes: +1) The "reg parm save area" does not exist for non variable argument fns. +2) The "reg parm save area" can be eliminated completely if we saved regs + containing anonymous args separately but that complicates things too + much (so it's not done). +3) The return address is saved after the register save area so as to have as + many insns as possible between the restoration of `lr' and the `jmp lr'. +*/ + +/* Structure to be filled in by m32r_compute_frame_size with register + save masks, and offsets for the current function. */ +struct m32r_frame_info +{ + unsigned int total_size; /* # bytes that the entire frame takes up */ + unsigned int extra_size; /* # bytes of extra stuff */ + unsigned int pretend_size; /* # bytes we push and pretend caller did */ + unsigned int args_size; /* # bytes that outgoing arguments take up */ + unsigned int reg_size; /* # bytes needed to store regs */ + unsigned int var_size; /* # bytes that variables take up */ + unsigned int gmask; /* mask of saved gp registers */ + unsigned int save_fp; /* nonzero if fp must be saved */ + unsigned int save_lr; /* nonzero if lr (return addr) must be saved */ + int initialized; /* nonzero if frame size already calculated */ +}; + +/* Current frame information calculated by m32r_compute_frame_size. */ +static struct m32r_frame_info current_frame_info; + +/* Zero structure to initialize current_frame_info. */ +static struct m32r_frame_info zero_frame_info; + +#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM)) +#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM)) + +/* Tell prologue and epilogue if register REGNO should be saved / restored. + The return address and frame pointer are treated separately. + Don't consider them here. */ +#define MUST_SAVE_REGISTER(regno, interrupt_p) \ +((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \ + && (regs_ever_live[regno] && (!call_used_regs[regno] || interrupt_p))) + +#define MUST_SAVE_FRAME_POINTER (regs_ever_live[FRAME_POINTER_REGNUM]) +#define MUST_SAVE_RETURN_ADDR (regs_ever_live[RETURN_ADDR_REGNUM] || profile_flag) + +#define SHORT_INSN_SIZE 2 /* size of small instructions */ +#define LONG_INSN_SIZE 4 /* size of long instructions */ + +/* Return the bytes needed to compute the frame pointer from the current + stack pointer. + + SIZE is the size needed for local variables. */ + +unsigned int +m32r_compute_frame_size (size) + int size; /* # of var. bytes allocated. */ +{ + int regno; + unsigned int total_size, var_size, args_size, pretend_size, extra_size; + unsigned int reg_size, frame_size; + unsigned int gmask; + enum m32r_function_type fn_type; + int interrupt_p; + + var_size = M32R_STACK_ALIGN (size); + args_size = M32R_STACK_ALIGN (current_function_outgoing_args_size); + pretend_size = current_function_pretend_args_size; + extra_size = FIRST_PARM_OFFSET (0); + total_size = extra_size + pretend_size + args_size + var_size; + reg_size = 0; + gmask = 0; + + /* See if this is an interrupt handler. Call used registers must be saved + for them too. */ + fn_type = m32r_compute_function_type (current_function_decl); + interrupt_p = M32R_INTERRUPT_P (fn_type); + + /* Calculate space needed for registers. */ + + for (regno = 0; regno < M32R_MAX_INT_REGS; regno++) + { + if (MUST_SAVE_REGISTER (regno, interrupt_p)) + { + reg_size += UNITS_PER_WORD; + gmask |= 1 << regno; + } + } + + current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER; + current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR; + + reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr) + * UNITS_PER_WORD); + total_size += reg_size; + + /* ??? Not sure this is necessary, and I don't think the epilogue + handler will do the right thing if this changes total_size. */ + total_size = M32R_STACK_ALIGN (total_size); + + frame_size = total_size - (pretend_size + reg_size); + + /* Save computed information. */ + current_frame_info.total_size = total_size; + current_frame_info.extra_size = extra_size; + current_frame_info.pretend_size = pretend_size; + current_frame_info.var_size = var_size; + current_frame_info.args_size = args_size; + current_frame_info.reg_size = reg_size; + current_frame_info.gmask = gmask; + current_frame_info.initialized = reload_completed; + + /* Ok, we're done. */ + return total_size; +} + +/* When the `length' insn attribute is used, this macro specifies the + value to be assigned to the address of the first insn in a + function. If not specified, 0 is used. */ + +int +m32r_first_insn_address () +{ + if (! current_frame_info.initialized) + m32r_compute_frame_size (get_frame_size ()); + + return 0; +} + +/* Expand the m32r prologue as a series of insns. */ + +void +m32r_expand_prologue () +{ + int regno; + int frame_size; + unsigned int gmask; + + if (! current_frame_info.initialized) + m32r_compute_frame_size (get_frame_size ()); + + gmask = current_frame_info.gmask; + + /* These cases shouldn't happen. Catch them now. */ + if (current_frame_info.total_size == 0 && gmask) + abort (); + + /* Allocate space for register arguments if this is a variadic function. */ + if (current_frame_info.pretend_size != 0) + { + /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives + the wrong result on a 64-bit host. */ + HOST_WIDE_INT pretend_size = current_frame_info.pretend_size; + emit_insn (gen_addsi3 (stack_pointer_rtx, + stack_pointer_rtx, + GEN_INT (-pretend_size))); + } + + /* Save any registers we need to and set up fp. */ + + if (current_frame_info.save_fp) + emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx)); + + gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK); + + /* Save any needed call-saved regs (and call-used if this is an + interrupt handler). */ + for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno) + { + if ((gmask & (1 << regno)) != 0) + emit_insn (gen_movsi_push (stack_pointer_rtx, + gen_rtx_REG (Pmode, regno))); + } + + if (current_frame_info.save_lr) + emit_insn (gen_movsi_push (stack_pointer_rtx, + gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM))); + + /* Allocate the stack frame. */ + frame_size = (current_frame_info.total_size + - (current_frame_info.pretend_size + + current_frame_info.reg_size)); + + if (frame_size == 0) + ; /* nothing to do */ + else if (frame_size <= 32768) + emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, + GEN_INT (-frame_size))); + else + { + rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM); + emit_insn (gen_movsi (tmp, GEN_INT (frame_size))); + emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp)); + } + + if (frame_pointer_needed) + emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx)); + + if (profile_flag || profile_block_flag) + emit_insn (gen_blockage ()); +} + + +/* Set up the stack and frame pointer (if desired) for the function. + Note, if this is changed, you need to mirror the changes in + m32r_compute_frame_size which calculates the prolog size. */ + +void +m32r_output_function_prologue (file, size) + FILE * file; + int size; +{ + enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl); + + /* If this is an interrupt handler, mark it as such. */ + if (M32R_INTERRUPT_P (fn_type)) + { + fprintf (file, "\t%s interrupt handler\n", + ASM_COMMENT_START); + } + + if (! current_frame_info.initialized) + m32r_compute_frame_size (size); + + /* This is only for the human reader. */ + fprintf (file, + "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n", + ASM_COMMENT_START, + current_frame_info.var_size, + current_frame_info.reg_size / 4, + current_frame_info.args_size, + current_frame_info.extra_size); +} + +/* Do any necessary cleanup after a function to restore stack, frame, + and regs. */ + +void +m32r_output_function_epilogue (file, size) + FILE * file; + int size; +{ + int regno; + int noepilogue = FALSE; + int total_size; + enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl); + + /* This is only for the human reader. */ + fprintf (file, "\t%s EPILOGUE\n", ASM_COMMENT_START); + + if (!current_frame_info.initialized) + abort (); + total_size = current_frame_info.total_size; + + if (total_size == 0) + { + rtx insn = get_last_insn (); + + /* If the last insn was a BARRIER, we don't have to write any code + because a jump (aka return) was put there. */ + if (GET_CODE (insn) == NOTE) + insn = prev_nonnote_insn (insn); + if (insn && GET_CODE (insn) == BARRIER) + noepilogue = TRUE; + } + + if (!noepilogue) + { + unsigned int pretend_size = current_frame_info.pretend_size; + unsigned int frame_size = total_size - pretend_size; + unsigned int var_size = current_frame_info.var_size; + unsigned int args_size = current_frame_info.args_size; + unsigned int gmask = current_frame_info.gmask; + int can_trust_sp_p = !current_function_calls_alloca; + char * sp_str = reg_names[STACK_POINTER_REGNUM]; + char * fp_str = reg_names[FRAME_POINTER_REGNUM]; + + /* The first thing to do is point the sp at the bottom of the register + save area. */ + if (can_trust_sp_p) + { + unsigned int reg_offset = var_size + args_size; + if (reg_offset == 0) + ; /* nothing to do */ + else if (reg_offset < 128) + fprintf (file, "\taddi %s,%s%d\n", + sp_str, IMMEDIATE_PREFIX, reg_offset); + else if (reg_offset < 32768) + fprintf (file, "\tadd3 %s,%s,%s%d\n", + sp_str, sp_str, IMMEDIATE_PREFIX, reg_offset); + else + fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n", + reg_names[PROLOGUE_TMP_REGNUM], + IMMEDIATE_PREFIX, reg_offset, + sp_str, reg_names[PROLOGUE_TMP_REGNUM]); + } + else if (frame_pointer_needed) + { + unsigned int reg_offset = var_size + args_size; + if (reg_offset == 0) + fprintf (file, "\tmv %s,%s\n", sp_str, fp_str); + else if (reg_offset < 32768) + fprintf (file, "\tadd3 %s,%s,%s%d\n", + sp_str, fp_str, IMMEDIATE_PREFIX, reg_offset); + else + fprintf (file, "\tld24 %s,%s%d\n\tadd %s,%s\n", + reg_names[PROLOGUE_TMP_REGNUM], + IMMEDIATE_PREFIX, reg_offset, + sp_str, reg_names[PROLOGUE_TMP_REGNUM]); + } + else + abort (); + + if (current_frame_info.save_lr) + fprintf (file, "\tpop %s\n", reg_names[RETURN_ADDR_REGNUM]); + + /* Restore any saved registers, in reverse order of course. */ + gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK); + for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno) + { + if ((gmask & (1L << regno)) != 0) + fprintf (file, "\tpop %s\n", reg_names[regno]); + } + + if (current_frame_info.save_fp) + fprintf (file, "\tpop %s\n", fp_str); + + /* Remove varargs area if present. */ + if (current_frame_info.pretend_size != 0) + fprintf (file, "\taddi %s,%s%d\n", + sp_str, IMMEDIATE_PREFIX, current_frame_info.pretend_size); + + /* Emit the return instruction. */ + if (M32R_INTERRUPT_P (fn_type)) + fprintf (file, "\trte\n"); + else + fprintf (file, "\tjmp %s\n", reg_names[RETURN_ADDR_REGNUM]); + } + +#if 0 /* no longer needed */ + /* Ensure the function cleanly ends on a 32 bit boundary. */ + fprintf (file, "\t.fillinsn\n"); +#endif + + /* Reset state info for each function. */ + current_frame_info = zero_frame_info; + m32r_compute_function_type (NULL_TREE); +} + +/* Return non-zero if this function is known to have a null or 1 instruction + epilogue. */ + +int +direct_return () +{ + if (!reload_completed) + return FALSE; + + if (! current_frame_info.initialized) + m32r_compute_frame_size (get_frame_size ()); + + return current_frame_info.total_size == 0; +} + + +/* PIC */ + +/* Emit special PIC prologues and epilogues. */ + +void +m32r_finalize_pic () +{ + /* nothing to do */ +} + +/* Nested function support. */ + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +void +m32r_initialize_trampoline (tramp, fnaddr, cxt) + rtx tramp, fnaddr, cxt; +{ +} + +/* Set the cpu type and print out other fancy things, + at the top of the file. */ + +void +m32r_asm_file_start (file) + FILE * file; +{ + if (flag_verbose_asm) + fprintf (file, "%s M32R/D special options: -G %d\n", + ASM_COMMENT_START, g_switch_value); +} + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +void +m32r_print_operand (file, x, code) + FILE * file; + rtx x; + int code; +{ + rtx addr; + + switch (code) + { + /* The 's' and 'p' codes are used by output_block_move() to + indicate post-increment 's'tores and 'p're-increment loads. */ + case 's': + if (GET_CODE (x) == REG) + fprintf (file, "@+%s", reg_names [REGNO (x)]); + else + output_operand_lossage ("invalid operand to %s code"); + return; + + case 'p': + if (GET_CODE (x) == REG) + fprintf (file, "@%s+", reg_names [REGNO (x)]); + else + output_operand_lossage ("invalid operand to %p code"); + return; + + case 'R' : + /* Write second word of DImode or DFmode reference, + register or memory. */ + if (GET_CODE (x) == REG) + fputs (reg_names[REGNO (x)+1], file); + else if (GET_CODE (x) == MEM) + { + fprintf (file, "@("); + /* Handle possible auto-increment. Since it is pre-increment and + we have already done it, we can just use an offset of four. */ + /* ??? This is taken from rs6000.c I think. I don't think it is + currently necessary, but keep it around. */ + if (GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == PRE_DEC) + output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4)); + else + output_address (plus_constant (XEXP (x, 0), 4)); + fputc (')', file); + } + else + output_operand_lossage ("invalid operand to %R code"); + return; + + case 'H' : /* High word */ + case 'L' : /* Low word */ + if (GET_CODE (x) == REG) + { + /* L = least significant word, H = most significant word */ + if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L')) + fputs (reg_names[REGNO (x)], file); + else + fputs (reg_names[REGNO (x)+1], file); + } + else if (GET_CODE (x) == CONST_INT + || GET_CODE (x) == CONST_DOUBLE) + { + rtx first, second; + + split_double (x, &first, &second); + fprintf (file, "0x%08lx", + code == 'L' ? INTVAL (first) : INTVAL (second)); + } + else + output_operand_lossage ("invalid operand to %H/%L code"); + return; + + case 'A' : + { + REAL_VALUE_TYPE d; + char str[30]; + + if (GET_CODE (x) != CONST_DOUBLE + || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT) + fatal_insn ("Bad insn for 'A'", x); + REAL_VALUE_FROM_CONST_DOUBLE (d, x); + REAL_VALUE_TO_DECIMAL (d, "%.20e", str); + fprintf (file, "%s", str); + return; + } + + case 'B' : /* Bottom half */ + case 'T' : /* Top half */ + /* Output the argument to a `seth' insn (sets the Top half-word). + For constants output arguments to a seth/or3 pair to set Top and + Bottom halves. For symbols output arguments to a seth/add3 pair to + set Top and Bottom halves. The difference exists because for + constants seth/or3 is more readable but for symbols we need to use + the same scheme as `ld' and `st' insns (16 bit addend is signed). */ + switch (GET_CODE (x)) + { + case CONST_INT : + case CONST_DOUBLE : + { + rtx first, second; + + split_double (x, &first, &second); + x = WORDS_BIG_ENDIAN ? second : first; + fprintf (file, +#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT + "0x%x", +#else + "0x%lx", +#endif + (code == 'B' + ? INTVAL (x) & 0xffff + : (INTVAL (x) >> 16) & 0xffff)); + } + return; + case CONST : + case SYMBOL_REF : + if (code == 'B' + && small_data_operand (x, VOIDmode)) + { + fputs ("sda(", file); + output_addr_const (file, x); + fputc (')', file); + return; + } + /* fall through */ + case LABEL_REF : + fputs (code == 'T' ? "shigh(" : "low(", file); + output_addr_const (file, x); + fputc (')', file); + return; + default : + output_operand_lossage ("invalid operand to %T/%B code"); + return; + } + break; + + case 'U' : + /* ??? wip */ + /* Output a load/store with update indicator if appropriate. */ + if (GET_CODE (x) == MEM) + { + if (GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == PRE_DEC) + fputs (".a", file); + } + else + output_operand_lossage ("invalid operand to %U code"); + return; + + case 'N' : + /* Print a constant value negated. */ + if (GET_CODE (x) == CONST_INT) + output_addr_const (file, GEN_INT (- INTVAL (x))); + else + output_operand_lossage ("invalid operand to %N code"); + return; + + case 'X' : + /* Print a const_int in hex. Used in comments. */ + if (GET_CODE (x) == CONST_INT) + fprintf (file, +#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT + "0x%x", +#else + "0x%lx", +#endif + INTVAL (x)); + return; + + case '#' : + fputs (IMMEDIATE_PREFIX, file); + return; + +#if 0 /* ??? no longer used */ + case '@' : + fputs (reg_names[SDA_REGNUM], file); + return; +#endif + + case 0 : + /* Do nothing special. */ + break; + + default : + /* Unknown flag. */ + output_operand_lossage ("invalid operand output code"); + } + + switch (GET_CODE (x)) + { + case REG : + fputs (reg_names[REGNO (x)], file); + break; + + case MEM : + addr = XEXP (x, 0); + if (GET_CODE (addr) == PRE_INC) + { + if (GET_CODE (XEXP (addr, 0)) != REG) + fatal_insn ("Pre-increment address is not a register", x); + + fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]); + } + else if (GET_CODE (addr) == PRE_DEC) + { + if (GET_CODE (XEXP (addr, 0)) != REG) + fatal_insn ("Pre-decrement address is not a register", x); + + fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]); + } + else if (GET_CODE (addr) == POST_INC) + { + if (GET_CODE (XEXP (addr, 0)) != REG) + fatal_insn ("Post-increment address is not a register", x); + + fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]); + } + else + { + fputs ("@(", file); + output_address (XEXP (x, 0)); + fputc (')', file); + } + break; + + case CONST_DOUBLE : + /* We handle SFmode constants here as output_addr_const doesn't. */ + if (GET_MODE (x) == SFmode) + { + REAL_VALUE_TYPE d; + long l; + + REAL_VALUE_FROM_CONST_DOUBLE (d, x); + REAL_VALUE_TO_TARGET_SINGLE (d, l); + fprintf (file, "0x%08lx", l); + break; + } + + /* Fall through. Let output_addr_const deal with it. */ + + default : + output_addr_const (file, x); + break; + } +} + +/* Print a memory address as an operand to reference that memory location. */ + +void +m32r_print_operand_address (file, addr) + FILE * file; + rtx addr; +{ + register rtx base; + register rtx index = 0; + int offset = 0; + + switch (GET_CODE (addr)) + { + case REG : + fputs (reg_names[REGNO (addr)], file); + break; + + case PLUS : + if (GET_CODE (XEXP (addr, 0)) == CONST_INT) + offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); + else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) + offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); + else + base = XEXP (addr, 0), index = XEXP (addr, 1); + if (GET_CODE (base) == REG) + { + /* Print the offset first (if present) to conform to the manual. */ + if (index == 0) + { + if (offset != 0) + fprintf (file, "%d,", offset); + fputs (reg_names[REGNO (base)], file); + } + /* The chip doesn't support this, but left in for generality. */ + else if (GET_CODE (index) == REG) + fprintf (file, "%s,%s", + reg_names[REGNO (base)], reg_names[REGNO (index)]); + /* Not sure this can happen, but leave in for now. */ + else if (GET_CODE (index) == SYMBOL_REF) + { + output_addr_const (file, index); + fputc (',', file); + fputs (reg_names[REGNO (base)], file); + } + else + fatal_insn ("Bad address", addr); + } + else if (GET_CODE (base) == LO_SUM) + { + if (index != 0 + || GET_CODE (XEXP (base, 0)) != REG) + abort (); + if (small_data_operand (XEXP (base, 1), VOIDmode)) + fputs ("sda(", file); + else + fputs ("low(", file); + output_addr_const (file, plus_constant (XEXP (base, 1), offset)); + fputs ("),", file); + fputs (reg_names[REGNO (XEXP (base, 0))], file); + } + else + fatal_insn ("Bad address", addr); + break; + + case LO_SUM : + if (GET_CODE (XEXP (addr, 0)) != REG) + fatal_insn ("Lo_sum not of register", addr); + if (small_data_operand (XEXP (addr, 1), VOIDmode)) + fputs ("sda(", file); + else + fputs ("low(", file); + output_addr_const (file, XEXP (addr, 1)); + fputs ("),", file); + fputs (reg_names[REGNO (XEXP (addr, 0))], file); + break; + + case PRE_INC : /* Assume SImode */ + fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]); + break; + + case PRE_DEC : /* Assume SImode */ + fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]); + break; + + case POST_INC : /* Assume SImode */ + fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]); + break; + + default : + output_addr_const (file, addr); + break; + } +} + +/* Return true if the operands are the constants 0 and 1. */ +int +zero_and_one (operand1, operand2) + rtx operand1; + rtx operand2; +{ + return + GET_CODE (operand1) == CONST_INT + && GET_CODE (operand2) == CONST_INT + && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1)) + ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0))); +} + +/* Return non-zero if the operand is suitable for use in a conditional move sequence. */ +int +conditional_move_operand (operand, int_mode) + rtx operand; + int int_mode; +{ + enum machine_mode mode = (enum machine_mode)int_mode; + + /* Only defined for simple integers so far... */ + if (mode != SImode && mode != HImode && mode != QImode) + return FALSE; + + /* At the moment we can hanndle moving registers and loading constants. */ + /* To be added: Addition/subtraction/bitops/multiplication of registers. */ + + switch (GET_CODE (operand)) + { + case REG: + return 1; + + case CONST_INT: + return INT8_P (INTVAL (operand)); + + default: +#if 0 + fprintf (stderr, "Test for cond move op of type: %s\n", + GET_RTX_NAME (GET_CODE (operand))); +#endif + return 0; + } +} + +/* Return true if the code is a test of the carry bit */ +int +carry_compare_operand (op, int_mode) + rtx op; + int int_mode; +{ + rtx x; + + if (GET_MODE (op) != CCmode && GET_MODE (op) != VOIDmode) + return FALSE; + + if (GET_CODE (op) != NE && GET_CODE (op) != EQ) + return FALSE; + + x = XEXP (op, 0); + if (GET_CODE (x) != REG || REGNO (x) != CARRY_REGNUM) + return FALSE; + + x = XEXP (op, 1); + if (GET_CODE (x) != CONST_INT || INTVAL (x) != 0) + return FALSE; + + return TRUE; +} + +/* Place into the buffer an assembler instruction which can be executed in the S pipe. */ +static void +emit_S_clause (dest, source, buffer) + rtx dest; + rtx source; + char * buffer; +{ + char * dest_reg; + + + dest_reg = reg_names [REGNO (dest)]; + + switch (GET_CODE (source)) + { + case REG: + sprintf (buffer, "mv %s, %s", dest_reg, reg_names [REGNO (source)]); + break; + + case CONST_INT: + sprintf (buffer, "ldi %s, #%d", dest_reg, INTVAL (source)); + break; + + /* Todo: other S pipe instructions. */ + default: + abort(); + } + + return; +} + + +/* Generate the correct assembler code to handle the conditional loading of a + value into a register. It is known that the operands satisfy the + conditional_move_operand() function above. The destination is operand[0]. + The condition is operand [1]. The 'true' value is operand [2] and the + 'false' value is operand [3]. */ +char * +emit_cond_move (operands, insn) + rtx * operands; + rtx insn; +{ + static char buffer [100]; + + buffer [0] = 0; + + /* Destination must be a register. */ + if (GET_CODE (operands [0]) != REG) + abort(); + if (! conditional_move_operand (operands [2], SImode)) + abort(); + if (! conditional_move_operand (operands [3], SImode)) + abort(); + + + /* Check to see if the test is reversed. */ + if (GET_CODE (operands [1]) == NE) + { + rtx tmp = operands [2]; + operands [2] = operands [3]; + operands [3] = tmp; + } + + /* Catch a special case where 0 or 1 is being loaded into the destination. + Since we already have these values in the C bit we can use a special + instruction. */ + if (zero_and_one (operands [2], operands [3])) + { + char * dest = reg_names [REGNO (operands [0])]; + + sprintf (buffer, "mvfc %s, cbr", dest); + + /* If the true value was '0' then we need to invert the results of the move. */ + if (INTVAL (operands [2]) == 0) + sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1", + dest, dest); + + return buffer; + } + + + /* Test to see if the then clause is redundant. */ + if (GET_CODE (operands [2]) == REG + && REGNO (operands [2]) == REGNO (operands [0])) + /* Do not do anything for the then clause. */ + ; + else + { + /* Generate the then clause. */ + sprintf (buffer, "snc || "); + emit_S_clause (operands [0], operands [2], buffer + strlen (buffer)); + } + + /* Test to see if the else clause is redundant. */ + if (GET_CODE (operands [3]) == REG + && REGNO (operands [3]) == REGNO (operands [0])) + /* Do not do anything for the else clause. */ + ; + else + { + /* Generate the else clause. */ + + if (* buffer != 0) + strcat (buffer, "\n\t"); + + strcat (buffer, "sc || "); + emit_S_clause (operands [0], operands [3], buffer + strlen (buffer)); + } + + + return buffer; +} + + +/* Return true if the code is a test of the carry bit that can be used + to start a conditional execution sequence. This function is very + similar to carry_compare_operand() except that it allows a test + for 'register == register' and 'register == 0' as well as the + normal 'carry flag set'. */ +int +conditional_compare_operand (op, int_mode) + rtx op; + int int_mode; +{ + rtx x; + + if (GET_MODE (op) != CCmode && GET_MODE (op) != VOIDmode) + return FALSE; + + if ( GET_CODE (op) != NE + && GET_CODE (op) != EQ + && GET_CODE (op) != LE + && GET_CODE (op) != GE + && GET_CODE (op) != LT + && GET_CODE (op) != GT) + return FALSE; + + x = XEXP (op, 0); + if (GET_CODE (x) != REG) + return FALSE; + + /* Allow a test of 'reg eq/ne reg' or 'Carry flag set/not set'. */ + x = XEXP (op, 1); + if (GET_CODE (x) == CONST_INT) + { + if (INTVAL (x) != 0) + return FALSE; + + return TRUE; + } + else if (GET_CODE (x) != REG) + return FALSE; + + return TRUE; +} + +/* Return true if the binary operator can go inside of a s{n}c || operation. */ +int +binary_parallel_operator (op, int_mode) + rtx op; + int int_mode; +{ + rtx op0, op1; + + /* Can only handle integer operations. */ + if ( GET_MODE (op) != SImode + && GET_MODE (op) != HImode + && GET_MODE (op) != QImode) + return FALSE; + + /* Can only handle simple binary operations. */ + if ( GET_CODE (op) != PLUS + && GET_CODE (op) != MINUS + && GET_CODE (op) != MULT + && GET_CODE (op) != AND + && GET_CODE (op) != IOR + && GET_CODE (op) != XOR) + return FALSE; + + op0 = XEXP (op, 0); + op1 = XEXP (op, 1); + + while (GET_CODE (op0) == SUBREG) + op0 = SUBREG_REG (op0); + + while (GET_CODE (op1) == SUBREG) + op1 = SUBREG_REG (op1); + + if (GET_CODE (op0) != REG) + return FALSE; + + /* Allowable opreations are entirely register based + or the addition of a small constant to a register. */ + if (GET_CODE (op1) == REG) + { + return TRUE; + } + else if (GET_CODE (op1) == CONST_INT) + { + if (GET_CODE (op) == PLUS || GET_CODE (op) == MINUS) + return INT8_P (INTVAL (op1)); + } + + return FALSE; +} + +/* Generate the assembler statement for the given comparison RTL. + Returns true if the sense of the comparison is reversed. */ +static int +generate_comparison (operand, buffer) + rtx operand; + char * buffer; +{ + rtx op1 = XEXP (operand, 0); + rtx op2 = XEXP (operand, 1); + int reverse_sense = FALSE; + + + if (GET_CODE (op1) != REG) + abort(); + + /* If we are testing the carry bit the comparison has already been generated. + Since there is only one bit, the only viable tests are NE and EQ. If the + test is NE, then we must reverse the sense of the comparision. */ + if (REGNO (op1) == CARRY_REGNUM) + return GET_CODE (operand) == NE; + + /* Handle tests of a value in a register. */ + switch (GET_CODE (operand)) + { + case NE: + reverse_sense = TRUE; + /* Fall through. */ + case EQ: + if (GET_CODE (op2) == REG) + sprintf (buffer, "cmpeq %s %s\n\t", + reg_names [REGNO (op1)], reg_names [REGNO (op2)]); + else if (GET_CODE (op2) == CONST_INT && INTVAL (op2) == 0) + sprintf (buffer, "cmpz %s\n\t", reg_names [REGNO (op1)]); + else + abort(); + break; + + case GE: + reverse_sense = TRUE; + /* Fall through. */ + case LT: + if (GET_CODE (op2) != CONST_INT || ! INT16_P (INTVAL (op2))) + abort(); + + sprintf (buffer, "cmpi %s, #%d\n\t", reg_names [REGNO (op1)], INTVAL (op2)); + break; + + case GT: + reverse_sense = TRUE; + /* Fall through. */ + case LE: + if (GET_CODE (op2) != CONST_INT || ! INT16_P (INTVAL (op2) + 1)) + abort(); + + sprintf (buffer, "cmpi %s, #%d\n\t", reg_names [REGNO (op1)], INTVAL (op2) + 1); + break; + + default: + abort(); + } + + /* These generated comparisons are inverted. */ + return ! reverse_sense; +} + + + +/* Generate the correct assembler code to handle the conditional execution of a + simple binary operation. It is known that the operation satisfies + binary_parallel_operand() and that the condition satifies + conditional_compare_operand(). The operation is in operands [4] and its two + arguments are in operands [1] and [2]. The destination of the operation is + operands [0], which is the same as operands [1]. The condition is in + operands [3], and if 'condition_true' is non-zero then the operation should + be performed if the condition is true, otherwise it should be performed if + the condition is false. */ +char * +emit_binary_cond_exec (operands, condition_true) + rtx * operands; + int condition_true; +{ + static char buffer [100]; + + buffer [0] = 0; + + /* Destination and first operand must be registers. */ + if ( GET_CODE (operands [0]) != REG + || GET_CODE (operands [1]) != REG) + abort(); + + /* Destination must be the same as the first opreand. */ + if (REGNO (operands [0]) != REGNO (operands [1])) + abort(); + + /* Generate the comparison and if necessary reverse the sense of the test. */ + if (generate_comparison (operands [3], buffer)) + condition_true = ! condition_true; + + /* Generate the appropriate abort of the following binary operation. */ + if (condition_true) + strcat (buffer, "snc || "); + else + strcat (buffer, "sc || "); + + /* Generate the binary operation. */ + switch (GET_CODE (operands [4])) + { + case PLUS: strcat (buffer, "add "); break; + case MINUS: strcat (buffer, "sub "); break; + case MULT: strcat (buffer, "mul "); break; + case AND: strcat (buffer, "and "); break; + case IOR: strcat (buffer, "or "); break; + case XOR: strcat (buffer, "xor "); break; + default: abort(); + } + + /* Generate the arguments for the binary operation. */ + if (GET_CODE (operands [2]) == REG) + sprintf (buffer + strlen (buffer), "%s, %s", + reg_names [REGNO (operands [0])], + reg_names [REGNO (operands [2])]); + else if (GET_CODE (operands [2]) == CONST_INT) + sprintf (buffer + strlen (buffer), "%s, %d", + reg_names [REGNO (operands [0])], + INTVAL (operands [2])); + else + abort(); + + return buffer; +} + +/* Return true if the unary operator can go inside of a s{n}c || operation. */ +int +unary_parallel_operator (op, int_mode) + rtx op; + int int_mode; +{ + /* Can only handle integer operations. */ + if ( GET_MODE (op) != SImode + && GET_MODE (op) != HImode + && GET_MODE (op) != QImode) + return FALSE; + + /* Can only handle simple unary operations. */ + if ( GET_CODE (op) != NEG + && GET_CODE (op) != NOT) + return FALSE; + + /* Can only handle register based operations. */ + op = XEXP (op, 0); + while (GET_CODE (op) == SUBREG) + op = SUBREG_REG (op); + + if (GET_CODE (op) == REG) + return TRUE; + + return FALSE; +} + +/* Generate the correct assembler code to handle the conditional execution + of a simple unary operation. It is known that the operation satisfies + unary_parallel_operand() and that the condition satifies + conditional_compare_operand(). The operation is in operands [3] and + its argument is in operands [1]. The destination of the operation is + operands [0]. The condition is in operands [2], and if 'condition_true' is + non-zero then the operation should be performed if the condition is true, + otherwise it should be performed if the condition is false. */ +char * +emit_unary_cond_exec (operands, condition_true) + rtx * operands; + int condition_true; +{ + static char buffer [100]; + + buffer [0] = 0; + + /* Destination and operand must be registers. */ + if ( GET_CODE (operands [0]) != REG + || GET_CODE (operands [1]) != REG) + abort(); + + /* Generate the comparison, and if necessary reverse the sense of the test. */ + if (generate_comparison (operands [2], buffer)) + condition_true = ! condition_true; + + /* Generate the appropriate abort of the following binary operation. */ + if (condition_true) + strcat (buffer, "snc || "); + else + strcat (buffer, "sc || "); + + /* Generate the unary operation. */ + switch (GET_CODE (operands [3])) + { + case NOT: strcat (buffer, "not "); break; + case NEG: strcat (buffer, "neg "); break; + default: abort(); + } + + /* Generate the arguments for the unary operation. */ + sprintf (buffer + strlen (buffer), "%s, %s", + reg_names [REGNO (operands [0])], + reg_names [REGNO (operands [1])]); + + return buffer; +} + +/* END CYGNUS LOCAL -- meissner/m32r work */ + +/* Returns true if the registers contained in the two + rtl expressions are different. */ +int +m32r_not_same_reg (a, b) + rtx a; + rtx b; +{ + int reg_a = -1; + int reg_b = -2; + + while (GET_CODE (a) == SUBREG) + a = SUBREG_REG (a); + + if (GET_CODE (a) == REG) + reg_a = REGNO (a); + + while (GET_CODE (b) == SUBREG) + b = SUBREG_REG (b); + + if (GET_CODE (b) == REG) + reg_b = REGNO (b); + + return reg_a != reg_b; +} + + +/* Use a library function to move some bytes. */ +static void +block_move_call (dest_reg, src_reg, bytes_rtx) + rtx dest_reg; + rtx src_reg; + rtx bytes_rtx; +{ + /* We want to pass the size as Pmode, which will normally be SImode + but will be DImode if we are using 64 bit longs and pointers. */ + if (GET_MODE (bytes_rtx) != VOIDmode + && GET_MODE (bytes_rtx) != Pmode) + bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1); + +#ifdef TARGET_MEM_FUNCTIONS + emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcpy"), 0, + VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode, + convert_to_mode (TYPE_MODE (sizetype), bytes_rtx, + TREE_UNSIGNED (sizetype)), + TYPE_MODE (sizetype)); +#else + emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcopy"), 0, + VOIDmode, 3, src_reg, Pmode, dest_reg, Pmode, + convert_to_mode (TYPE_MODE (integer_type_node), bytes_rtx, + TREE_UNSIGNED (integer_type_node)), + TYPE_MODE (integer_type_node)); +#endif +} + +/* The maximum number of bytes to copy using pairs of load/store instructions. + If a block is larger than this then a loop will be generated to copy + MAX_MOVE_BYTES chunks at a time. The value of 32 is a semi-arbitary choice. + A customer uses Dhrystome as their benchmark, and Dhrystone has a 31 byte + string copy in it. */ +#define MAX_MOVE_BYTES 32 + +/* Expand string/block move operations. + + operands[0] is the pointer to the destination. + operands[1] is the pointer to the source. + operands[2] is the number of bytes to move. + operands[3] is the alignment. */ + +void +m32r_expand_block_move (operands) + rtx operands[]; +{ + rtx orig_dst = operands[0]; + rtx orig_src = operands[1]; + rtx bytes_rtx = operands[2]; + rtx align_rtx = operands[3]; + int constp = GET_CODE (bytes_rtx) == CONST_INT; + HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0; + int align = INTVAL (align_rtx); + int leftover; + rtx src_reg; + rtx dst_reg; + + if (constp && bytes <= 0) + return; + + /* Move the address into scratch registers. */ + dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0)); + src_reg = copy_addr_to_reg (XEXP (orig_src, 0)); + + if (align > UNITS_PER_WORD) + align = UNITS_PER_WORD; + + /* If we prefer size over speed, always use a function call. + If we do not know the size, use a function call. + If the blocks are not word aligned, use a function call. */ + if (optimize_size || ! constp || align != UNITS_PER_WORD) + { + block_move_call (dst_reg, src_reg, bytes_rtx); + return; + } + + leftover = bytes % MAX_MOVE_BYTES; + bytes -= leftover; + + /* If necessary, generate a loop to handle the bulk of the copy. */ + if (bytes) + { + rtx label; + rtx final_src; + rtx at_a_time = GEN_INT (MAX_MOVE_BYTES); + rtx rounded_total = GEN_INT (bytes); + + /* If we are going to have to perform this loop more than + once, then generate a label and compute the address the + source register will contain upon completion of the final + itteration. */ + if (bytes > MAX_MOVE_BYTES) + { + final_src = gen_reg_rtx (Pmode); + + if (INT16_P(bytes)) + emit_insn (gen_addsi3 (final_src, src_reg, rounded_total)); + else + { + emit_insn (gen_movsi (final_src, rounded_total)); + emit_insn (gen_addsi3 (final_src, final_src, src_reg)); + } + + label = gen_label_rtx (); + emit_label (label); + } + + /* It is known that output_block_move() will update src_reg to point + to the word after the end of the source block, and dst_reg to point + to the last word of the destination block, provided that the block + is MAX_MOVE_BYTES long. */ + emit_insn (gen_movstrsi_internal (dst_reg, src_reg, at_a_time)); + emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4))); + + if (bytes > MAX_MOVE_BYTES) + { + emit_insn (gen_cmpsi (src_reg, final_src)); + emit_jump_insn (gen_bne (label)); + } + } + + if (leftover) + emit_insn (gen_movstrsi_internal (dst_reg, src_reg, GEN_INT (leftover))); +} + + +/* Emit load/stores for a small constant word aligned block_move. + + operands[0] is the memory address of the destination. + operands[1] is the memory address of the source. + operands[2] is the number of bytes to move. + operands[3] is a temp register. + operands[4] is a temp register. */ + +char * +m32r_output_block_move (insn, operands) + rtx insn; + rtx operands[]; +{ + HOST_WIDE_INT bytes = INTVAL (operands[2]); + int first_time; + int got_extra = 0; + + if (bytes < 1 || bytes > MAX_MOVE_BYTES) + abort (); + + /* We do not have a post-increment store available, so the first set of + stores are done without any increment, then the remaining ones can use + the pre-increment addressing mode. + + Note: expand_block_move() also relies upon this behaviour when building + loops to copy large blocks. */ + first_time = 1; + + while (bytes > 0) + { + if (bytes >= 8) + { + if (first_time) + { + output_asm_insn ("ld\t%3, %p1", operands); + output_asm_insn ("ld\t%4, %p1", operands); + output_asm_insn ("st\t%3, @%0", operands); + output_asm_insn ("st\t%4, %s0", operands); + } + else + { + output_asm_insn ("ld\t%3, %p1", operands); + output_asm_insn ("ld\t%4, %p1", operands); + output_asm_insn ("st\t%3, %s0", operands); + output_asm_insn ("st\t%4, %s0", operands); + } + + bytes -= 8; + } + else if (bytes >= 4) + { + if (bytes > 4) + got_extra = 1; + + output_asm_insn ("ld\t%3, %p1", operands); + + if (got_extra) + output_asm_insn ("ld\t%4, %p1", operands); + + if (first_time) + output_asm_insn ("st\t%3, @%0", operands); + else + output_asm_insn ("st\t%3, %s0", operands); + + bytes -= 4; + } + else + { + /* Get the entire next word, even though we do not want all of it. + The saves us from doing several smaller loads, and we assume that + we cannot cause a page fault when at least part of the word is in + valid memory [since we don't get called if things aren't properly + aligned]. */ + int dst_offset = first_time ? 0 : 4; + int last_shift; + rtx my_operands[3]; + + /* If got_extra is true then we have already loaded + the next word as part of loading and storing the previous word. */ + if (! got_extra) + output_asm_insn ("ld\t%4, @%1", operands); + + if (bytes >= 2) + { + bytes -= 2; + + output_asm_insn ("sra3\t%3, %4, #16", operands); + my_operands[0] = operands[3]; + my_operands[1] = GEN_INT (dst_offset); + my_operands[2] = operands[0]; + output_asm_insn ("sth\t%0, @(%1,%2)", my_operands); + + /* If there is a byte left to store then increment the + destination address and shift the contents of the source + register down by 8 bits. We could not do the address + increment in the store half word instruction, because it does + not have an auto increment mode. */ + if (bytes > 0) /* assert (bytes == 1) */ + { + dst_offset += 2; + last_shift = 8; + } + } + else + last_shift = 24; + + if (bytes > 0) + { + my_operands[0] = operands[4]; + my_operands[1] = GEN_INT (last_shift); + output_asm_insn ("srai\t%0, #%1", my_operands); + my_operands[0] = operands[4]; + my_operands[1] = GEN_INT (dst_offset); + my_operands[2] = operands[0]; + output_asm_insn ("stb\t%0, @(%1,%2)", my_operands); + } + + bytes = 0; + } + + first_time = 0; + } + + return ""; +} + +/* Return true if op is an integer constant, less than or equal to + MAX_MOVE_BYTES. */ +int +m32r_block_immediate_operand (op, mode) + rtx op; + int mode; +{ + if (GET_CODE (op) != CONST_INT + || INTVAL (op) > MAX_MOVE_BYTES + || INTVAL (op) <= 0) + return 0; + + return 1; +} + |