diff options
Diffstat (limited to 'gcc/config/romp')
-rwxr-xr-x | gcc/config/romp/romp.c | 2038 | ||||
-rwxr-xr-x | gcc/config/romp/romp.h | 1636 | ||||
-rwxr-xr-x | gcc/config/romp/romp.md | 2776 | ||||
-rwxr-xr-x | gcc/config/romp/x-mach | 5 | ||||
-rwxr-xr-x | gcc/config/romp/x-romp | 11 | ||||
-rwxr-xr-x | gcc/config/romp/xm-romp.h | 54 |
6 files changed, 6520 insertions, 0 deletions
diff --git a/gcc/config/romp/romp.c b/gcc/config/romp/romp.c new file mode 100755 index 0000000..0f64a9e --- /dev/null +++ b/gcc/config/romp/romp.c @@ -0,0 +1,2038 @@ +/* Subroutines used for code generation on ROMP. + Copyright (C) 1990, 1991, 1992, 1993, 1997 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +#include "config.h" +#include <stdio.h> +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "real.h" +#include "insn-config.h" +#include "conditions.h" +#include "insn-flags.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "recog.h" +#include "expr.h" +#include "obstack.h" +#include "tree.h" + +#define min(A,B) ((A) < (B) ? (A) : (B)) +#define max(A,B) ((A) > (B) ? (A) : (B)) + +static int unsigned_comparisons_p (); +static void output_loadsave_fpregs (); +static void output_fpops (); +static void init_fpops (); + +/* Return 1 if the insn using CC0 set by INSN does not contain + any unsigned tests applied to the condition codes. + + Based on `next_insn_tests_no_inequality' in recog.c. */ + +int +next_insn_tests_no_unsigned (insn) + rtx insn; +{ + register rtx next = next_cc0_user (insn); + + if (next == 0) + { + if (find_reg_note (insn, REG_UNUSED, cc0_rtx)) + return 1; + else + abort (); + } + + return ((GET_CODE (next) == JUMP_INSN + || GET_CODE (next) == INSN + || GET_CODE (next) == CALL_INSN) + && ! unsigned_comparisons_p (PATTERN (next))); +} + +static int +unsigned_comparisons_p (x) + rtx x; +{ + register char *fmt; + register int len, i; + register enum rtx_code code = GET_CODE (x); + + switch (code) + { + case REG: + case PC: + case CC0: + case CONST_INT: + case CONST_DOUBLE: + case CONST: + case LABEL_REF: + case SYMBOL_REF: + return 0; + + case LTU: + case GTU: + case LEU: + case GEU: + return (XEXP (x, 0) == cc0_rtx || XEXP (x, 1) == cc0_rtx); + } + + len = GET_RTX_LENGTH (code); + fmt = GET_RTX_FORMAT (code); + + for (i = 0; i < len; i++) + { + if (fmt[i] == 'e') + { + if (unsigned_comparisons_p (XEXP (x, i))) + return 1; + } + else if (fmt[i] == 'E') + { + register int j; + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + if (unsigned_comparisons_p (XVECEXP (x, i, j))) + return 1; + } + } + + return 0; +} + +/* Update the condition code from the insn. Look mostly at the first + byte of the machine-specific insn description information. + + cc_state.value[12] refer to two possible values that might correspond + to the CC. We only store register values. */ + +update_cc (body, insn) + rtx body; + rtx insn; +{ + switch (get_attr_cc (insn)) + { + case CC_NONE: + /* Insn does not affect the CC at all. */ + break; + + case CC_CHANGE0: + /* Insn doesn't affect the CC but does modify operand[0], known to be + a register. */ + if (cc_status.value1 != 0 + && reg_overlap_mentioned_p (recog_operand[0], cc_status.value1)) + cc_status.value1 = 0; + + if (cc_status.value2 != 0 + && reg_overlap_mentioned_p (recog_operand[0], cc_status.value2)) + cc_status.value2 = 0; + + break; + + case CC_COPY1TO0: + /* Insn copies operand[1] to operand[0], both registers, but doesn't + affect the CC. */ + if (cc_status.value1 != 0 + && reg_overlap_mentioned_p (recog_operand[0], cc_status.value1)) + cc_status.value1 = 0; + + if (cc_status.value2 != 0 + && reg_overlap_mentioned_p (recog_operand[0], cc_status.value2)) + cc_status.value2 = 0; + + if (cc_status.value1 != 0 + && rtx_equal_p (cc_status.value1, recog_operand[1])) + cc_status.value2 = recog_operand[0]; + + if (cc_status.value2 != 0 + && rtx_equal_p (cc_status.value2, recog_operand[1])) + cc_status.value1 = recog_operand[0]; + + break; + + case CC_CLOBBER: + /* Insn clobbers CC. */ + CC_STATUS_INIT; + break; + + case CC_SETS: + /* Insn sets CC to recog_operand[0], but overflow is impossible. */ + CC_STATUS_INIT; + cc_status.flags |= CC_NO_OVERFLOW; + cc_status.value1 = recog_operand[0]; + break; + + case CC_COMPARE: + /* Insn is a compare which sets the CC fully. Update CC_STATUS for this + compare and mark whether the test will be signed or unsigned. */ + { + register rtx p = PATTERN (insn); + + CC_STATUS_INIT; + + if (GET_CODE (p) == PARALLEL) + p = XVECEXP (p, 0, 0); + cc_status.value1 = SET_SRC (p); + + if (GET_CODE (SET_SRC (p)) == REG) + cc_status.flags |= CC_NO_OVERFLOW; + if (! next_insn_tests_no_unsigned (insn)) + cc_status.flags |= CC_UNSIGNED; + } + break; + + case CC_TBIT: + /* Insn sets T bit if result is non-zero. Next insn must be branch. */ + CC_STATUS_INIT; + cc_status.flags = CC_IN_TB | CC_NOT_NEGATIVE; + break; + + default: + abort (); + } +} + +/* Return 1 if a previous compare needs to be re-issued. This will happen + if two compares tested the same objects, but one was signed and the + other unsigned. OP is the comparison operation being performed. */ + +int +restore_compare_p (op) + rtx op; +{ + enum rtx_code code = GET_CODE (op); + + return (((code == GEU || code == LEU || code == GTU || code == LTU) + && ! (cc_status.flags & CC_UNSIGNED)) + || ((code == GE || code == LE || code == GT || code == LT) + && (cc_status.flags & CC_UNSIGNED))); +} + +/* Generate the (long) string corresponding to an inline multiply insn. + Note that `r10' does not refer to the register r10, but rather to the + SCR used as the MQ. */ +char * +output_in_line_mul () +{ + static char insns[200]; + int i; + + strcpy (insns, "s %0,%0\n"); + strcat (insns, "\tmts r10,%1\n"); + for (i = 0; i < 16; i++) + strcat (insns, "\tm %0,%2\n"); + strcat (insns, "\tmfs r10,%0"); + + return insns; +} + +/* Returns 1 if OP is a memory reference with an offset from a register within + the range specified. The offset must also be a multiple of the size of the + mode. */ + +static int +memory_offset_in_range_p (op, mode, low, high) + register rtx op; + enum machine_mode mode; + int low, high; +{ + int offset = 0; + + if (! memory_operand (op, mode)) + return 0; + + while (GET_CODE (op) == SUBREG) + { + offset += SUBREG_WORD (op) * UNITS_PER_WORD; +#if BYTES_BIG_ENDIAN + offset -= (min (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (op))) + - min (UNITS_PER_WORD, + GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))); +#endif + op = SUBREG_REG (op); + } + + /* We must now have either (mem (reg (x)), (mem (plus (reg (x)) (c))), + or a constant pool address. */ + if (GET_CODE (op) != MEM) + abort (); + + /* Now use the actual mode and get the address. */ + mode = GET_MODE (op); + op = XEXP (op, 0); + if (GET_CODE (op) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (op)) + offset = get_pool_offset (op) + 12; + else if (GET_CODE (op) == PLUS) + { + if (GET_CODE (XEXP (op, 1)) != CONST_INT + || ! register_operand (XEXP (op, 0), Pmode)) + return 0; + + offset += INTVAL (XEXP (op, 1)); + } + + else if (! register_operand (op, Pmode)) + return 0; + + return (offset >= low && offset <= high + && (offset % GET_MODE_SIZE (mode) == 0)); +} + +/* Return 1 if OP is a valid operand for a memory reference insn that can + only reference indirect through a register. */ + +int +zero_memory_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return memory_offset_in_range_p (op, mode, 0, 0); +} + +/* Return 1 if OP is a valid operand for a `short' memory reference insn. */ + +int +short_memory_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + if (mode == VOIDmode) + mode = GET_MODE (op); + + return memory_offset_in_range_p (op, mode, 0, + 15 * min (UNITS_PER_WORD, + GET_MODE_SIZE (mode))); +} + +/* Returns 1 if OP is a memory reference involving a symbolic constant + that is not in the constant pool. */ + +int +symbolic_memory_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (! memory_operand (op, mode)) + return 0; + + while (GET_CODE (op) == SUBREG) + op = SUBREG_REG (op); + + if (GET_CODE (op) != MEM) + abort (); + + op = XEXP (op, 0); + if (constant_pool_address_operand (op, VOIDmode)) + return 0; + else + return romp_symbolic_operand (op, Pmode) + || (GET_CODE (op) == PLUS && register_operand (XEXP (op, 0), Pmode) + && romp_symbolic_operand (XEXP (op, 1), Pmode)); +} + + +/* Returns 1 if OP is a constant pool reference to the current function. */ + +int +current_function_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF + || ! CONSTANT_POOL_ADDRESS_P (XEXP (op, 0))) + return 0; + + op = get_pool_constant (XEXP (op, 0)); + return (GET_CODE (op) == SYMBOL_REF + && ! strcmp (current_function_name, XSTR (op, 0))); +} + +/* Return non-zero if this function is known to have a null epilogue. */ + +int +null_epilogue () +{ + return (reload_completed + && first_reg_to_save () == 16 + && ! romp_pushes_stack ()); +} + +/* Returns 1 if OP is the address of a location in the constant pool. */ + +int +constant_pool_address_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return ((GET_CODE (op) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (op)) + || (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT + && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (op, 0), 0)))); +} + +/* Returns 1 if OP is either a symbol reference or a sum of a symbol + reference and a constant. */ + +int +romp_symbolic_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + switch (GET_CODE (op)) + { + case SYMBOL_REF: + case LABEL_REF: + return ! op->integrated; + + case CONST: + op = XEXP (op, 0); + return (GET_CODE (XEXP (op, 0)) == SYMBOL_REF + || GET_CODE (XEXP (op, 0)) == LABEL_REF) + && GET_CODE (XEXP (op, 1)) == CONST_INT; + + default: + return 0; + } +} + +/* Returns 1 if OP is a valid constant for the ROMP. */ + +int +constant_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + switch (GET_CODE (op)) + { + case LABEL_REF: + case SYMBOL_REF: + case PLUS: + case CONST: + return romp_symbolic_operand (op,mode); + + case CONST_INT: + return (unsigned int) (INTVAL (op) + 0x8000) < 0x10000 + || (INTVAL (op) & 0xffff) == 0 || (INTVAL (op) & 0xffff0000) == 0; + + default: + return 0; + } +} + +/* Returns 1 if OP is either a constant integer valid for the ROMP or a + register. If a register, it must be in the proper mode unless MODE is + VOIDmode. */ + +int +reg_or_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT) + return constant_operand (op, mode); + + return register_operand (op, mode); +} + +/* Return 1 is the operand is either a register or ANY constant integer. */ + +int +reg_or_any_cint_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return GET_CODE (op) == CONST_INT || register_operand (op, mode); +} + +/* Return 1 if the operand is either a register or a valid D-type operand. */ + +int +reg_or_D_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT) + return (unsigned) (INTVAL (op) + 0x8000) < 0x10000; + + return register_operand (op, mode); +} + +/* Return 1 if the operand is either a register or an item that can be + used as the operand of an SI add insn. */ + +int +reg_or_add_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + return reg_or_D_operand (op, mode) || romp_symbolic_operand (op, mode) + || (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff) == 0); +} + +/* Return 1 if the operand is either a register or an item that can be + used as the operand of a ROMP logical AND insn. */ + +int +reg_or_and_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (reg_or_cint_operand (op, mode)) + return 1; + + if (GET_CODE (op) != CONST_INT) + return 0; + + return (INTVAL (op) & 0xffff) == 0xffff + || (INTVAL (op) & 0xffff0000) == 0xffff0000; +} + +/* Return 1 if the operand is a register or memory operand. */ + +int +reg_or_mem_operand (op, mode) + register rtx op; + register enum machine_mode mode; +{ + return register_operand (op, mode) || memory_operand (op, mode); +} + +/* Return 1 if the operand is either a register or a memory operand that is + not symbolic. */ + +int +reg_or_nonsymb_mem_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (register_operand (op, mode)) + return 1; + + if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) + return 1; + + return 0; +} + +/* Return 1 if this operand is valid for the ROMP. This is any operand except + certain constant integers. */ + +int +romp_operand (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (GET_CODE (op) == CONST_INT) + return constant_operand (op, mode); + + return general_operand (op, mode); +} + +/* Return 1 if the operand is (reg:mode 0). */ + +int +reg_0_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return ((mode == VOIDmode || mode == GET_MODE (op)) + && GET_CODE (op) == REG && REGNO (op) == 0); +} + +/* Return 1 if the operand is (reg:mode 15). */ + +int +reg_15_operand (op, mode) + rtx op; + enum machine_mode mode; +{ + return ((mode == VOIDmode || mode == GET_MODE (op)) + && GET_CODE (op) == REG && REGNO (op) == 15); +} + +/* Return 1 if this is a binary floating-point operation. */ + +int +float_binary (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (mode != VOIDmode && mode != GET_MODE (op)) + return 0; + + if (GET_MODE (op) != SFmode && GET_MODE (op) != DFmode) + return 0; + + switch (GET_CODE (op)) + { + case PLUS: + case MINUS: + case MULT: + case DIV: + return GET_MODE (XEXP (op, 0)) == GET_MODE (op) + && GET_MODE (XEXP (op, 1)) == GET_MODE (op); + + default: + return 0; + } +} + +/* Return 1 if this is a unary floating-point operation. */ + +int +float_unary (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (mode != VOIDmode && mode != GET_MODE (op)) + return 0; + + if (GET_MODE (op) != SFmode && GET_MODE (op) != DFmode) + return 0; + + return (GET_CODE (op) == NEG || GET_CODE (op) == ABS) + && GET_MODE (XEXP (op, 0)) == GET_MODE (op); +} + +/* Return 1 if this is a valid floating-point conversion that can be done + as part of an operation by the RT floating-point routines. */ + +int +float_conversion (op, mode) + register rtx op; + enum machine_mode mode; +{ + if (mode != VOIDmode && mode != GET_MODE (op)) + return 0; + + switch (GET_CODE (op)) + { + case FLOAT_TRUNCATE: + return GET_MODE (op) == SFmode && GET_MODE (XEXP (op, 0)) == DFmode; + + case FLOAT_EXTEND: + return GET_MODE (op) == DFmode && GET_MODE (XEXP (op, 0)) == SFmode; + + case FLOAT: + return ((GET_MODE (XEXP (op, 0)) == SImode + || GET_CODE (XEXP (op, 0)) == CONST_INT) + && (GET_MODE (op) == SFmode || GET_MODE (op) == DFmode)); + + case FIX: + return ((GET_MODE (op) == SImode + || GET_CODE (XEXP (op, 0)) == CONST_INT) + && (GET_MODE (XEXP (op, 0)) == SFmode + || GET_MODE (XEXP (op, 0)) == DFmode)); + + default: + return 0; + } +} + +/* Print an operand. Recognize special options, documented below. */ + +void +print_operand (file, x, code) + FILE *file; + rtx x; + char code; +{ + int i; + + switch (code) + { + case 'B': + /* Byte number (const/8) */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%B value"); + + fprintf (file, "%d", INTVAL (x) / 8); + break; + + case 'L': + /* Low order 16 bits of constant. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%L value"); + + fprintf (file, "%d", INTVAL (x) & 0xffff); + break; + + case 's': + /* Null or "16" depending on whether the constant is greater than 16. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%s value"); + + if (INTVAL (x) >= 16) + fprintf (file, "16"); + + break; + + case 'S': + /* For shifts: 's' will have given the half. Just give the amount + within 16. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%S value"); + + fprintf (file, "%d", INTVAL (x) & 15); + break; + + case 'b': + /* The number of a single bit set or cleared, mod 16. Note that the ROMP + numbers bits with the high-order bit 31. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%b value"); + + if ((i = exact_log2 (INTVAL (x))) >= 0) + fprintf (file, "%d", (31 - i) % 16); + else if ((i = exact_log2 (~ INTVAL (x))) >= 0) + fprintf (file, "%d", (31 - i) % 16); + else + output_operand_lossage ("invalid %%b value"); + + break; + + case 'h': + /* "l" or "u" depending on which half of the constant is zero. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%h value"); + + if ((INTVAL (x) & 0xffff0000) == 0) + fprintf (file, "l"); + else if ((INTVAL (x) & 0xffff) == 0) + fprintf (file, "u"); + else + output_operand_lossage ("invalid %%h value"); + + break; + + case 'H': + /* Upper or lower half, depending on which half is zero. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%H value"); + + if ((INTVAL (x) & 0xffff0000) == 0) + fprintf (file, "%d", INTVAL (x) & 0xffff); + else if ((INTVAL (x) & 0xffff) == 0) + fprintf (file, "%d", (INTVAL (x) >> 16) & 0xffff); + else + output_operand_lossage ("invalid %%H value"); + + break; + + case 'z': + /* Write two characters: + 'lo' if the high order part is all ones + 'lz' if the high order part is all zeros + 'uo' if the low order part is all ones + 'uz' if the low order part is all zeros + */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%z value"); + + if ((INTVAL (x) & 0xffff0000) == 0) + fprintf (file, "lz"); + else if ((INTVAL (x) & 0xffff0000) == 0xffff0000) + fprintf (file, "lo"); + else if ((INTVAL (x) & 0xffff) == 0) + fprintf (file, "uz"); + else if ((INTVAL (x) & 0xffff) == 0xffff) + fprintf (file, "uo"); + else + output_operand_lossage ("invalid %%z value"); + + break; + + case 'Z': + /* Upper or lower half, depending on which is non-zero or not + all ones. Must be consistent with 'z' above. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%Z value"); + + if ((INTVAL (x) & 0xffff0000) == 0 + || (INTVAL (x) & 0xffff0000) == 0xffff0000) + fprintf (file, "%d", INTVAL (x) & 0xffff); + else if ((INTVAL (x) & 0xffff) == 0 || (INTVAL (x) & 0xffff) == 0xffff) + fprintf (file, "%d", (INTVAL (x) >> 16) & 0xffff); + else + output_operand_lossage ("invalid %%Z value"); + + break; + + case 'k': + /* Same as 'z', except the trailing 'o' or 'z' is not written. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%k value"); + + if ((INTVAL (x) & 0xffff0000) == 0 + || (INTVAL (x) & 0xffff0000) == 0xffff0000) + fprintf (file, "l"); + else if ((INTVAL (x) & 0xffff) == 0 + || (INTVAL (x) & 0xffff) == 0xffff) + fprintf (file, "u"); + else + output_operand_lossage ("invalid %%k value"); + + break; + + case 't': + /* Similar to 's', except that we write 'h' or 'u'. */ + if (GET_CODE (x) != CONST_INT) + output_operand_lossage ("invalid %%k value"); + + if (INTVAL (x) < 16) + fprintf (file, "u"); + else + fprintf (file, "l"); + break; + + case 'M': + /* For memory operations, write 's' if the operand is a short + memory operand. */ + if (short_memory_operand (x, VOIDmode)) + fprintf (file, "s"); + break; + + case 'N': + /* Like 'M', but check for zero memory offset. */ + if (zero_memory_operand (x, VOIDmode)) + fprintf (file, "s"); + break; + + case 'O': + /* Write low-order part of DImode or DFmode. Supported for MEM + and REG only. */ + if (GET_CODE (x) == REG) + fprintf (file, "%s", reg_names[REGNO (x) + 1]); + else if (GET_CODE (x) == MEM) + print_operand (file, gen_rtx (MEM, GET_MODE (x), + plus_constant (XEXP (x, 0), 4)), 0); + else + abort (); + break; + + case 'C': + /* Offset in constant pool for constant pool address. */ + if (! constant_pool_address_operand (x, VOIDmode)) + abort (); + if (GET_CODE (x) == SYMBOL_REF) + fprintf (file, "%d", get_pool_offset (x) + 12); + else + /* Must be (const (plus (symbol_ref) (const_int))) */ + fprintf (file, "%d", + (get_pool_offset (XEXP (XEXP (x, 0), 0)) + 12 + + INTVAL (XEXP (XEXP (x, 0), 1)))); + break; + + case 'j': + /* Branch opcode. Check for condition in test bit for eq/ne. */ + switch (GET_CODE (x)) + { + case EQ: + if (cc_status.flags & CC_IN_TB) + fprintf (file, "ntb"); + else + fprintf (file, "eq"); + break; + + case NE: + if (cc_status.flags & CC_IN_TB) + fprintf (file, "tb"); + else + fprintf (file, "ne"); + break; + + case GT: + case GTU: + fprintf (file, "h"); + break; + + case LT: + case LTU: + fprintf (file, "l"); + break; + + case GE: + case GEU: + fprintf (file, "he"); + break; + + case LE: + case LEU: + fprintf (file, "le"); + break; + + default: + output_operand_lossage ("invalid %%j value"); + } + break; + + case 'J': + /* Reversed branch opcode. */ + switch (GET_CODE (x)) + { + case EQ: + if (cc_status.flags & CC_IN_TB) + fprintf (file, "tb"); + else + fprintf (file, "ne"); + break; + + case NE: + if (cc_status.flags & CC_IN_TB) + fprintf (file, "ntb"); + else + fprintf (file, "eq"); + break; + + case GT: + case GTU: + fprintf (file, "le"); + break; + + case LT: + case LTU: + fprintf (file, "he"); + break; + + case GE: + case GEU: + fprintf (file, "l"); + break; + + case LE: + case LEU: + fprintf (file, "h"); + break; + + default: + output_operand_lossage ("invalid %%j value"); + } + break; + + case '.': + /* Output nothing. Used as delimiter in, e.g., "mc%B1%.3 " */ + break; + + case '#': + /* Output 'x' if this insn has a delay slot, else nothing. */ + if (dbr_sequence_length ()) + fprintf (file, "x"); + break; + + case 0: + if (GET_CODE (x) == REG) + fprintf (file, "%s", reg_names[REGNO (x)]); + else if (GET_CODE (x) == MEM) + { + if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF + && current_function_operand (x, Pmode)) + fprintf (file, "r14"); + else + output_address (XEXP (x, 0)); + } + else + output_addr_const (file, x); + break; + + default: + output_operand_lossage ("invalid %%xn code"); + } +} + +/* This page contains routines that are used to determine what the function + prologue and epilogue code will do and write them out. */ + +/* Return the first register that is required to be saved. 16 if none. */ + +int +first_reg_to_save() +{ + int first_reg; + + /* Find lowest numbered live register. */ + for (first_reg = 6; first_reg <= 15; first_reg++) + if (regs_ever_live[first_reg]) + break; + + /* If we think that we do not have to save r14, see if it will be used + to be sure. */ + if (first_reg > 14 && romp_using_r14 ()) + first_reg = 14; + + return first_reg; +} + +/* Compute the size of the save area in the stack, including the space for + the first four incoming arguments. */ + +int +romp_sa_size () +{ + int size; + int i; + + /* We have the 4 words corresponding to the arguments passed in registers, + 4 reserved words, space for static chain, general register save area, + and floating-point save area. */ + size = 4 + 4 + 1 + (16 - first_reg_to_save ()); + + /* The documentation says we have to leave 18 words in the save area if + any floating-point registers at all are saved, not the three words + per register you might otherwise expect. */ + for (i = 2 + (TARGET_FP_REGS != 0); i <= 7; i++) + if (regs_ever_live[i + 17]) + { + size += 18; + break; + } + + return size * 4; +} + +/* Return non-zero if this function makes calls or has fp operations + (which are really calls). */ + +int +romp_makes_calls () +{ + rtx insn; + + for (insn = get_insns (); insn; insn = next_insn (insn)) + { + if (GET_CODE (insn) == CALL_INSN) + return 1; + else if (GET_CODE (insn) == INSN) + { + rtx body = PATTERN (insn); + + if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER + && GET_CODE (body) != ADDR_VEC + && GET_CODE (body) != ADDR_DIFF_VEC + && get_attr_type (insn) == TYPE_FP) + return 1; + } + } + + return 0; +} + +/* Return non-zero if this function will use r14 as a pointer to its + constant pool. */ + +int +romp_using_r14 () +{ + /* If we are debugging, profiling, have a non-empty constant pool, or + call a function, we need r14. */ + return (write_symbols != NO_DEBUG || profile_flag || get_pool_size () != 0 + || romp_makes_calls ()); +} + +/* Return non-zero if this function needs to push space on the stack. */ + +int +romp_pushes_stack () +{ + /* We need to push the stack if a frame pointer is needed (because the + stack might be dynamically adjusted), if we are debugging, if the + total required size is more than 100 bytes, or if we make calls. */ + + return (frame_pointer_needed || write_symbols != NO_DEBUG + || (romp_sa_size () + get_frame_size ()) > 100 + || romp_makes_calls ()); +} + +/* Write function prologue. + + We compute the size of the fixed area required as follows: + + We always allocate 4 words for incoming arguments, 4 word reserved, 1 + word for static link, as many words as required for general register + save area, plus 2 words for each FP reg 2-7 that must be saved. */ + +void +output_prolog (file, size) + FILE *file; + int size; +{ + int first_reg; + int reg_save_offset; + int fp_save = size + current_function_outgoing_args_size; + + init_fpops (); + + /* Add in fixed size plus output argument area. */ + size += romp_sa_size () + current_function_outgoing_args_size; + + /* Compute first register to save and perform the save operation if anything + needs to be saved. */ + first_reg = first_reg_to_save(); + reg_save_offset = - (4 + 4 + 1 + (16 - first_reg)) * 4; + if (first_reg == 15) + fprintf (file, "\tst r15,%d(r1)\n", reg_save_offset); + else if (first_reg < 16) + fprintf (file, "\tstm r%d,%d(r1)\n", first_reg, reg_save_offset); + + /* Set up pointer to data area if it is needed. */ + if (romp_using_r14 ()) + fprintf (file, "\tcas r14,r0,r0\n"); + + /* Set up frame pointer if needed. */ + if (frame_pointer_needed) + fprintf (file, "\tcal r13,-%d(r1)\n", romp_sa_size () + 64); + + /* Push stack if neeeded. There are a couple of ways of doing this. */ + if (romp_pushes_stack ()) + { + if (size >= 32768) + { + if (size >= 65536) + { + fprintf (file, "\tcau r0,%d(r0)\n", size >> 16); + fprintf (file, "\toil r0,r0,%d\n", size & 0xffff); + } + else + fprintf (file, "\tcal16 r0,%d(r0)\n", size); + fprintf (file, "\ts r1,r0\n"); + } + else + fprintf (file, "\tcal r1,-%d(r1)\n", size); + } + + /* Save floating-point registers. */ + output_loadsave_fpregs (file, USE, + plus_constant (stack_pointer_rtx, fp_save)); +} + +/* Output the offset information used by debuggers. + This is the exactly the total_size value of output_epilog + which is added to the frame pointer. However the value in the debug + table is encoded in a space-saving way as follows: + + The first byte contains two fields: a 2-bit size field and the first + 6 bits of an offset value. The 2-bit size field is in the high-order + position and specifies how many subsequent bytes follow after + this one. An offset value is at most 4-bytes long. + + The last 6 bits of the first byte initialize the offset value. In many + cases where procedures have small local storage, this is enough and, in + this case, the high-order size field is zero so the byte can (almost) be + used as is (see below). Thus, the byte value of 0x0d is encodes a offset + size of 13 words, or 52 bytes. + + For procedures with a local space larger than 60 bytes, the 6 bits + are the high-order 6 bits. The remaining bytes follow as necessary, + in Big Endian order. Thus, the short value of 16907 (= 16384+523) + encodes an offset of 2092 bytes (523 words). + + The total offset value is in words (not bytes), so the final value has to + be multiplied by 4 before it can be used in address computations by a + debugger. */ + +void +output_encoded_offset (file, reg_offset) + FILE *file; + unsigned reg_offset; +{ + /* Convert the offset value to 4-byte words rather than bytes. */ + reg_offset = (reg_offset + 3) / 4; + + /* Now output 1-4 bytes in encoded form. */ + if (reg_offset < (1 << 6)) + /* Fits into one byte */ + fprintf (file, "\t.byte %d\n", reg_offset); + else if (reg_offset < (1 << (6 + 8))) + /* Fits into two bytes */ + fprintf (file, "\t.short %d\n", (1 << (6 + 8)) + reg_offset); + else if (reg_offset < (1 << (6 + 8 + 8))) + { + /* Fits in three bytes */ + fprintf (file, "\t.byte %d\n", (2 << 6) + (reg_offset >> ( 6+ 8))); + fprintf (file, "\t.short %d\n", reg_offset % (1 << (6 + 8))); + } + else + { + /* Use 4 bytes. */ + fprintf (file, "\t.short %d", (3 << (6 + 8)) + (reg_offset >> (6 + 8))); + fprintf (file, "\t.short %d\n", reg_offset % (1 << (6 + 8))); + } +} + +/* Write function epilogue. */ + +void +output_epilog (file, size) + FILE *file; + int size; +{ + int first_reg = first_reg_to_save(); + int pushes_stack = romp_pushes_stack (); + int reg_save_offset = - ((16 - first_reg) + 1 + 4 + 4) * 4; + int total_size = (size + romp_sa_size () + + current_function_outgoing_args_size); + int fp_save = size + current_function_outgoing_args_size; + int long_frame = total_size >= 32768; + rtx insn = get_last_insn (); + int write_code = 1; + + int nargs = 0; /* words of arguments */ + tree argptr; + + /* Compute the number of words of arguments. Since this is just for + the traceback table, we ignore arguments that don't have a size or + don't have a fixed size. */ + + for (argptr = DECL_ARGUMENTS (current_function_decl); + argptr; argptr = TREE_CHAIN (argptr)) + { + int this_size = int_size_in_bytes (TREE_TYPE (argptr)); + + if (this_size > 0) + nargs += (this_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + } + + /* If the last insn was a BARRIER, we don't have to write anything except + the trace table. */ + if (GET_CODE (insn) == NOTE) + insn = prev_nonnote_insn (insn); + if (insn && GET_CODE (insn) == BARRIER) + write_code = 0; + + /* Restore floating-point registers. */ + if (write_code) + output_loadsave_fpregs (file, CLOBBER, + gen_rtx (PLUS, Pmode, gen_rtx (REG, Pmode, 1), + GEN_INT (fp_save))); + + /* If we push the stack and do not have size > 32K, adjust the register + save location to the current position of sp. Otherwise, if long frame, + restore sp from fp. */ + if (pushes_stack && ! long_frame) + reg_save_offset += total_size; + else if (long_frame && write_code) + fprintf (file, "\tcal r1,%d(r13)\n", romp_sa_size () + 64); + + /* Restore registers. */ + if (first_reg == 15 && write_code) + fprintf (file, "\tl r15,%d(r1)\n", reg_save_offset); + else if (first_reg < 16 && write_code) + fprintf (file, "\tlm r%d,%d(r1)\n", first_reg, reg_save_offset); + if (first_reg == 16) first_reg = 0; + + /* Handle popping stack, if needed and write debug table entry. */ + if (pushes_stack) + { + if (write_code) + { + if (long_frame) + fprintf (file, "\tbr r15\n"); + else + fprintf (file, "\tbrx r15\n\tcal r1,%d(r1)\n", total_size); + } + + /* Table header (0xdf), usual-type stack frame (0x07), + table header (0xdf), and first register saved. + + The final 0x08 means that there is a byte following this one + describing the number of parameter words and the register used as + stack pointer. + + If GCC passed floating-point parameters in floating-point registers, + it would be necessary to change the final byte from 0x08 to 0x0c. + Also an additional entry byte would be need to be emitted to specify + the first floating-point register. + + (See also Section 11 (Trace Tables) in ``IBM/4.3 Linkage Convention,'' + pages IBM/4.3-PSD:5-7 of Volume III of the IBM Academic Operating + System Manual dated July 1987.) */ + + fprintf (file, "\t.long 0x%x\n", 0xdf07df08 + first_reg * 0x10); + + if (nargs > 15) nargs = 15; + + /* The number of parameter words and the register used as the stack + pointer (encoded here as r1). + + Note: The MetWare Hich C Compiler R2.1y actually gets this wrong; + it erroneously lists r13 but uses r1 as the stack too. But a bug in + dbx 1.5 nullifies this mistake---most of the time. + (Dbx retrieves the value of r13 saved on the stack which is often + the value of r1 before the call.) */ + + fprintf (file, "\t.byte 0x%x1\n", nargs); + output_encoded_offset (file, total_size); + } + else + { + if (write_code) + fprintf (file, "\tbr r15\n"); + + /* Table header (0xdf), no stack frame (0x02), + table header (0xdf) and no parameters saved (0x00). + + If GCC passed floating-point parameters in floating-point registers, + it might be necessary to change the final byte from 0x00 to 0x04. + Also a byte would be needed to specify the first floating-point + register. */ + fprintf (file, "\t.long 0xdf02df00\n"); + } + + /* Output any pending floating-point operations. */ + output_fpops (file); +} + +/* For the ROMP we need to make new SYMBOL_REFs for the actual name of a + called routine. To keep them unique we maintain a hash table of all + that have been created so far. */ + +struct symref_hashent { + rtx symref; /* Created SYMBOL_REF rtx. */ + struct symref_hashent *next; /* Next with same hash code. */ +}; + +#define SYMHASHSIZE 151 +#define HASHBITS 65535 + +/* Define the hash table itself. */ + +static struct symref_hashent *symref_hash_table[SYMHASHSIZE]; + +/* Given a name (allocable in temporary storage), return a SYMBOL_REF + for the name. The rtx is allocated from the current rtl_obstack, while + the name string is allocated from the permanent obstack. */ +rtx +get_symref (name) + register char *name; +{ + extern struct obstack permanent_obstack; + register char *sp = name; + unsigned int hash = 0; + struct symref_hashent *p, **last_p; + + /* Compute the hash code for the string. */ + while (*sp) + hash = (hash << 4) + *sp++; + + /* Search for a matching entry in the hash table, keeping track of the + insertion location as we do so. */ + hash = (hash & HASHBITS) % SYMHASHSIZE; + for (last_p = &symref_hash_table[hash], p = *last_p; + p; last_p = &p->next, p = *last_p) + if (strcmp (name, XSTR (p->symref, 0)) == 0) + break; + + /* If couldn't find matching SYMBOL_REF, make a new one. */ + if (p == 0) + { + /* Ensure SYMBOL_REF will stay around. */ + end_temporary_allocation (); + p = *last_p = (struct symref_hashent *) + permalloc (sizeof (struct symref_hashent)); + p->symref = gen_rtx (SYMBOL_REF, Pmode, + obstack_copy0 (&permanent_obstack, + name, strlen (name))); + p->next = 0; + resume_temporary_allocation (); + } + + return p->symref; +} + +/* Validate the precision of a floating-point operation. + + We merge conversions from integers and between floating-point modes into + the insn. However, this must not effect the desired precision of the + insn. The RT floating-point system uses the widest of the operand modes. + If this should be a double-precision insn, ensure that one operand + passed to the floating-point processor has double mode. + + Note that since we don't check anything if the mode is single precision, + it, strictly speaking, isn't necessary to call this for those insns. + However, we do so in case something else needs to be checked in the + future. + + This routine returns 1 if the operation is OK. */ + +int +check_precision (opmode, op1, op2) + enum machine_mode opmode; + rtx op1, op2; +{ + if (opmode == SFmode) + return 1; + + /* If operand is not a conversion from an integer mode or an extension from + single-precision, it must be a double-precision value. */ + if (GET_CODE (op1) != FLOAT && GET_CODE (op1) != FLOAT_EXTEND) + return 1; + + if (op2 && GET_CODE (op2) != FLOAT && GET_CODE (op2) != FLOAT_EXTEND) + return 1; + + return 0; +} + +/* Floating-point on the RT is done by creating an operation block in the data + area that describes the operation. If two floating-point operations are the + same in a single function, they can use the same block. + + These routines are responsible for managing these blocks. */ + +/* Structure to describe a floating-point operation. */ + +struct fp_op { + struct fp_op *next_same_hash; /* Next op with same hash code. */ + struct fp_op *next_in_mem; /* Next op in memory. */ + int mem_offset; /* Offset from data area. */ + short size; /* Size of block in bytes. */ + short noperands; /* Number of operands in block. */ + rtx ops[3]; /* RTL for operands. */ + enum rtx_code opcode; /* Operation being performed. */ +}; + +/* Size of hash table. */ +#define FP_HASH_SIZE 101 + +/* Hash table of floating-point operation blocks. */ +static struct fp_op *fp_hash_table[FP_HASH_SIZE]; + +/* First floating-point block in data area. */ +static struct fp_op *first_fpop; + +/* Last block in data area so far. */ +static struct fp_op *last_fpop_in_mem; + +/* Subroutine number in file, to get unique "LF" labels. */ +static int subr_number = 0; + +/* Current word offset in data area (includes header and any constant pool). */ +int data_offset; + +/* Compute hash code for an RTX used in floating-point. */ + +static unsigned int +hash_rtx (x) + register rtx x; +{ + register unsigned int hash = (((int) GET_CODE (x) << 10) + + ((int) GET_MODE (x) << 20)); + register int i; + register char *fmt = GET_RTX_FORMAT (GET_CODE (x)); + + for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++) + if (fmt[i] == 'e') + hash += hash_rtx (XEXP (x, i)); + else if (fmt[i] == 'u') + hash += (unsigned HOST_WIDE_INT) XEXP (x, i); + else if (fmt[i] == 'i') + hash += XINT (x, i); + else if (fmt[i] == 's') + hash += (unsigned HOST_WIDE_INT) XSTR (x, i); + + return hash; +} + +/* Given an operation code and up to three operands, return a character string + corresponding to the code to emit to branch to a floating-point operation + block. INSN is provided to see if the delay slot has been filled or not. + + A new floating-point operation block is created if this operation has not + been seen before. */ + +char * +output_fpop (code, op0, op1, op2, insn) + enum rtx_code code; + rtx op0, op1, op2; + rtx insn; +{ + static char outbuf[40]; + unsigned int hash, hash0, hash1, hash2; + int size, i; + register struct fp_op *fpop, *last_fpop; + int dyadic = (op2 != 0); + enum machine_mode opmode; + int noperands; + rtx tem; + unsigned int tem_hash; + int fr0_avail = 0; + + /* Compute hash code for each operand. If the operation is commutative, + put the one with the smaller hash code first. This will make us see + more operations as identical. */ + hash0 = op0 ? hash_rtx (op0) : 0; + hash1 = op1 ? hash_rtx (op1) : 0; + hash2 = op2 ? hash_rtx (op2) : 0; + + if (hash0 > hash1 && code == EQ) + { + tem = op0; op0 = op1; op1 = tem; + tem_hash = hash0; hash0 = hash1; hash1 = tem_hash; + } + else if (hash1 > hash2 && (code == PLUS || code == MULT)) + { + tem = op1; op1 = op2; op2 = tem; + tem_hash = hash1; hash1 = hash2; hash2 = tem_hash; + } + + /* If operation is commutative and the first and third operands are equal, + swap the second and third operands. Note that we must consider two + operands equal if they are the same register even if different modes. */ + if (op2 && (code == PLUS || code == MULT) + && (rtx_equal_p (op0, op2) + || (GET_CODE (op0) == REG && GET_CODE (op2) == REG + && REGNO (op0) == REGNO (op2)))) + { + tem = op1; op1 = op2; op2 = tem; + tem_hash = hash1; hash1 = hash2; hash2 = tem_hash; + } + + /* If the first and second operands are the same, merge them. Don't do this + for SFmode or SImode in general registers because this triggers a bug in + the RT fp code. */ + if (op1 && rtx_equal_p (op0, op1) + && code != EQ && code != GE && code != SET + && ((GET_MODE (op1) != SFmode && GET_MODE (op1) != SImode) + || GET_CODE (op0) != REG || FP_REGNO_P (REGNO (op0)))) + { + op1 = op2; + op2 = 0; + } + + noperands = 1 + (op1 != 0) + (op2 != 0); + + /* Compute hash code for entire expression and see if operation block + already exists. */ + hash = ((int) code << 13) + (hash0 << 2) + (hash1 << 1) + hash2; + + hash %= FP_HASH_SIZE; + for (fpop = fp_hash_table[hash], last_fpop = 0; + fpop; + last_fpop = fpop, fpop = fpop->next_same_hash) + if (fpop->opcode == code && noperands == fpop->noperands + && (op0 == 0 || rtx_equal_p (op0, fpop->ops[0])) + && (op1 == 0 || rtx_equal_p (op1, fpop->ops[1])) + && (op2 == 0 || rtx_equal_p (op2, fpop->ops[2]))) + goto win; + + /* We have never seen this operation before. */ + fpop = (struct fp_op *) oballoc (sizeof (struct fp_op)); + fpop->mem_offset = data_offset; + fpop->opcode = code; + fpop->noperands = noperands; + fpop->ops[0] = op0; + fpop->ops[1] = op1; + fpop->ops[2] = op2; + + /* Compute the size using the rules in Appendix A of the RT Linkage + Convention (4.3/RT-PSD:5) manual. These rules are a bit ambiguous, + but if we guess wrong, it will effect only efficiency, not correctness. */ + + /* Size = 24 + 32 for each non-fp (or fr7) */ + size = 24; + if (op0 && (GET_CODE (op0) != REG + || ! FP_REGNO_P (REGNO (op0)) || REGNO (op0) == 23)) + size += 32; + + if (op1 && (GET_CODE (op1) != REG + || ! FP_REGNO_P (REGNO (op1)) || REGNO (op1) == 23)) + size += 32; + + if (op2 && (GET_CODE (op2) != REG + || ! FP_REGNO_P (REGNO (op2)) || REGNO (op2) == 23)) + size += 32; + + /* Size + 12 for each conversion. First get operation mode. */ + if ((op0 && GET_MODE (op0) == DFmode) + || (op1 && GET_MODE (op1) == DFmode) + || (op2 && GET_MODE (op2) == DFmode)) + opmode = DFmode; + else + opmode = SFmode; + + if (op0 && GET_MODE (op0) != opmode) + size += 12; + if (op1 && GET_MODE (op1) != opmode) + size += 12; + if (op2 && GET_MODE (op2) != opmode) + size += 12; + + /* 12 more if first and third operand types not the same. */ + if (op2 && GET_MODE (op0) != GET_MODE (op2)) + size += 12; + + /* CMP and CMPT need additional. Also, compute size of save/restore here. */ + if (code == EQ) + size += 32; + else if (code == GE) + size += 64; + else if (code == USE || code == CLOBBER) + { + /* 34 + 24 for each additional register plus 8 if fr7 saved. (We + call it 36 because we need to keep the block length a multiple + of four. */ + size = 36 - 24; + for (i = 0; i <= 7; i++) + if (INTVAL (op0) & (1 << (7-i))) + size += 24 + 8 * (i == 7); + } + + /* We provide no general-purpose scratch registers. */ + size +=16; + + /* No floating-point scratch registers are provided. Compute extra + length due to this. This logic is that shown in the referenced + appendix. */ + + i = 0; + if (op0 && GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0))) + i++; + if (op1 && GET_CODE (op1) == REG && FP_REGNO_P (REGNO (op1))) + i++; + if (op2 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2))) + i++; + + if ((op0 == 0 || GET_CODE (op0) != REG || REGNO(op0) != 17) + && (op1 == 0 || GET_CODE (op1) != REG || REGNO(op1) != 17) + && (op2 == 0 || GET_CODE (op2) != REG || REGNO(op2) != 17)) + fr0_avail = 1; + + if (dyadic) + { + if (i == 0) + size += fr0_avail ? 64 : 112; + else if (fpop->noperands == 2 && i == 1) + size += fr0_avail ? 0 : 64; + else if (fpop->noperands == 3) + { + if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) + && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2))) + { + if (REGNO (op0) == REGNO (op2)) +#if 1 + /* This triggers a bug on the RT. */ + abort (); +#else + size += fr0_avail ? 0 : 64; +#endif + } + else + { + i = 0; + if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0))) + i++; + if (GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2))) + i++; + if (i == 0) + size += fr0_avail ? 64 : 112; + else if (i == 1) + size += fr0_avail ? 0 : 64; + } + } + } + else if (code != USE && code != CLOBBER + && (GET_CODE (op0) != REG || ! FP_REGNO_P (REGNO (op0)))) + size += 64; + + if (! TARGET_FULL_FP_BLOCKS) + { + /* If we are not to pad the blocks, just compute its actual length. */ + size = 12; /* Header + opcode */ + if (code == USE || code == CLOBBER) + size += 2; + else + { + if (op0) size += 2; + if (op1) size += 2; + if (op2) size += 2; + } + + /* If in the middle of a word, round. */ + if (size % UNITS_PER_WORD) + size += 2; + + /* Handle any immediates. */ + if (code != USE && code != CLOBBER && op0 && GET_CODE (op0) != REG) + size += 4; + if (op1 && GET_CODE (op1) != REG) + size += 4; + if (op2 && GET_CODE (op2) != REG) + size += 4; + + if (code != USE && code != CLOBBER && + op0 && GET_CODE (op0) == CONST_DOUBLE && GET_MODE (op0) == DFmode) + size += 4; + if (op1 && GET_CODE (op1) == CONST_DOUBLE && GET_MODE (op1) == DFmode) + size += 4; + if (op2 && GET_CODE (op2) == CONST_DOUBLE && GET_MODE (op2) == DFmode) + size += 4; + } + + /* Done with size computation! Chain this in. */ + fpop->size = size; + data_offset += size / UNITS_PER_WORD; + fpop->next_in_mem = 0; + fpop->next_same_hash = 0; + + if (last_fpop_in_mem) + last_fpop_in_mem->next_in_mem = fpop; + else + first_fpop = fpop; + last_fpop_in_mem = fpop; + + if (last_fpop) + last_fpop->next_same_hash = fpop; + else + fp_hash_table[hash] = fpop; + +win: + /* FPOP describes the operation to be performed. Return a string to branch + to it. */ + if (fpop->mem_offset < 32768 / UNITS_PER_WORD) + sprintf (outbuf, "cal r15,%d(r14)\n\tbalr%s r15,r15", + fpop->mem_offset * UNITS_PER_WORD, + dbr_sequence_length () ? "x" : ""); + else + sprintf (outbuf, "get r15,$L%dF%d\n\tbalr%s r15,r15", + subr_number, fpop->mem_offset * UNITS_PER_WORD, + dbr_sequence_length () ? "x" : ""); + return outbuf; +} + +/* If necessary, output a floating-point operation to save or restore all + floating-point registers. + + file is the file to write the operation to, CODE is USE for save, CLOBBER + for restore, and ADDR is the address of the same area, as RTL. */ + +static void +output_loadsave_fpregs (file, code, addr) + FILE *file; + enum rtx_code code; + rtx addr; +{ + register int i; + register int mask = 0; + + for (i = 2 + (TARGET_FP_REGS != 0); i <= 7; i++) + if (regs_ever_live[i + 17]) + mask |= 1 << (7 - i); + + if (mask) + fprintf (file, "\t%s\n", + output_fpop (code, GEN_INT (mask), + gen_rtx (MEM, Pmode, addr), + 0, const0_rtx)); + +} + +/* Output any floating-point operations at the end of the routine. */ + +static void +output_fpops (file) + FILE *file; +{ + register struct fp_op *fpop; + register int size_so_far; + register int i; + rtx immed[3]; + + if (first_fpop == 0) + return; + + data_section (); + + ASM_OUTPUT_ALIGN (file, 2); + + for (fpop = first_fpop; fpop; fpop = fpop->next_in_mem) + { + if (fpop->mem_offset < 32768 / UNITS_PER_WORD) + fprintf (file, "# data area offset = %d\n", + fpop->mem_offset * UNITS_PER_WORD); + else + fprintf (file, "L%dF%d:\n", + subr_number, fpop->mem_offset * UNITS_PER_WORD); + + fprintf (file, "\tcas r0,r15,r0\n"); + fprintf (file, "\t.long FPGLUE\n"); + switch (fpop->opcode) + { + case USE: + fprintf (file, "\t.byte 0x1d\t# STOREM\n"); + break; + case CLOBBER: + fprintf (file, "\t.byte 0x0f\t# LOADM\n"); + break; + case ABS: + fprintf (file, "\t.byte 0x00\t# ABS\n"); + break; + case PLUS: + fprintf (file, "\t.byte 0x02\t# ADD\n"); + break; + case EQ: + fprintf (file, "\t.byte 0x07\t# CMP\n"); + break; + case GE: + fprintf (file, "\t.byte 0x08\t# CMPT\n"); + break; + case DIV: + fprintf (file, "\t.byte 0x0c\t# DIV\n"); + break; + case SET: + fprintf (file, "\t.byte 0x14\t# MOVE\n"); + break; + case MULT: + fprintf (file, "\t.byte 0x15\t# MUL\n"); + break; + case NEG: + fprintf (file, "\t.byte 0x16\t# NEG\n"); + break; + case SQRT: + fprintf (file, "\t.byte 0x1c\t# SQRT\n"); + break; + case MINUS: + fprintf (file, "\t.byte 0x1e\t# SUB\n"); + break; + default: + abort (); + } + + fprintf (file, "\t.byte %d\n", fpop->noperands); + fprintf (file, "\t.short 0x8001\n"); + + if ((fpop->ops[0] == 0 + || GET_CODE (fpop->ops[0]) != REG || REGNO(fpop->ops[0]) != 17) + && (fpop->ops[1] == 0 || GET_CODE (fpop->ops[1]) != REG + || REGNO(fpop->ops[1]) != 17) + && (fpop->ops[2] == 0 || GET_CODE (fpop->ops[2]) != REG + || REGNO(fpop->ops[2]) != 17)) + fprintf (file, "\t.byte %d, 0x80\n", fpop->size); + else + fprintf (file, "\t.byte %d, 0\n", fpop->size); + size_so_far = 12; + for (i = 0; i < fpop->noperands; i++) + { + register int type; + register int opbyte; + register char *desc0; + char desc1[50]; + + immed[i] = 0; + switch (GET_MODE (fpop->ops[i])) + { + case SImode: + case VOIDmode: + desc0 = "int"; + type = 0; + break; + case SFmode: + desc0 = "float"; + type = 2; + break; + case DFmode: + desc0 = "double"; + type = 3; + break; + default: + abort (); + } + + switch (GET_CODE (fpop->ops[i])) + { + case REG: + strcpy(desc1, reg_names[REGNO (fpop->ops[i])]); + if (FP_REGNO_P (REGNO (fpop->ops[i]))) + { + type += 0x10; + opbyte = REGNO (fpop->ops[i]) - 17; + } + else + { + type += 0x00; + opbyte = REGNO (fpop->ops[i]); + if (type == 3) + opbyte = (opbyte << 4) + opbyte + 1; + } + break; + + case MEM: + type += 0x30; + if (GET_CODE (XEXP (fpop->ops[i], 0)) == PLUS) + { + immed[i] = XEXP (XEXP (fpop->ops[i], 0), 1); + opbyte = REGNO (XEXP (XEXP (fpop->ops[i], 0), 0)); + if (GET_CODE (immed[i]) == CONST_INT) + sprintf (desc1, "%d(%s)", INTVAL (immed[i]), + reg_names[opbyte]); + else + sprintf (desc1, "<memory> (%s)", reg_names[opbyte]); + } + else if (GET_CODE (XEXP (fpop->ops[i], 0)) == REG) + { + opbyte = REGNO (XEXP (fpop->ops[i], 0)); + immed[i] = const0_rtx; + sprintf (desc1, "(%s)", reg_names[opbyte]); + } + else + { + immed[i] = XEXP (fpop->ops[i], 0); + opbyte = 0; + sprintf(desc1, "<memory>"); + } + break; + + case CONST_INT: + case CONST_DOUBLE: + case CONST: + case SYMBOL_REF: + case LABEL_REF: + type += 0x20; + opbyte = 0; + immed[i] = fpop->ops[i]; + desc1[0] = '$'; + desc1[1] = '\0'; + break; + + default: + abort (); + } + + /* Save/restore is special. */ + if (i == 0 && (fpop->opcode == USE || fpop->opcode == CLOBBER)) + type = 0xff, opbyte = INTVAL (fpop->ops[0]), immed[i] = 0; + + fprintf (file, "\t.byte 0x%x,0x%x # (%s) %s\n", + type, opbyte, desc0, desc1); + + size_so_far += 2; + } + + /* If in the middle of a word, round. */ + if (size_so_far % UNITS_PER_WORD) + { + fprintf (file, "\t.space 2\n"); + size_so_far += 2; + } + + for (i = 0; i < fpop->noperands; i++) + if (immed[i]) + switch (GET_MODE (immed[i])) + { + case SImode: + case VOIDmode: + size_so_far += 4; + fprintf (file, "\t.long "); + output_addr_const (file, immed[i]); + fprintf (file, "\n"); + break; + + case DFmode: + size_so_far += 4; + case SFmode: + size_so_far += 4; + if (GET_CODE (immed[i]) == CONST_DOUBLE) + { + union real_extract u; + + bcopy ((char *) &CONST_DOUBLE_LOW (immed[i]), + (char *) &u, sizeof u); + if (GET_MODE (immed[i]) == DFmode) + ASM_OUTPUT_DOUBLE (file, u.d); + else + ASM_OUTPUT_FLOAT (file, u.d); + } + else + abort (); + break; + + default: + abort (); + } + + if (size_so_far != fpop->size) + { + if (TARGET_FULL_FP_BLOCKS) + fprintf (file, "\t.space %d\n", fpop->size - size_so_far); + else + abort (); + } + } + + /* Update for next subroutine. */ + subr_number++; + text_section (); +} + + /* Initialize floating-point operation table. */ + +static void +init_fpops() +{ + register int i; + + first_fpop = last_fpop_in_mem = 0; + for (i = 0; i < FP_HASH_SIZE; i++) + fp_hash_table[i] = 0; +} + +/* Return the offset value of an automatic variable (N_LSYM) having + the given offset. Basically, we correct by going from a frame pointer to + stack pointer value. +*/ + +int +romp_debugger_auto_correction(offset) + int offset; +{ + int fp_to_sp; + + /* We really want to go from STACK_POINTER_REGNUM to + FRAME_POINTER_REGNUM, but this isn't defined. So go the other + direction and negate. */ + INITIAL_ELIMINATION_OFFSET (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM, + fp_to_sp); + + /* The offset value points somewhere between the frame pointer and + the stack pointer. What is up from the frame pointer is down from the + stack pointer. Therefore the negation in the offset value too. */ + + return -(offset+fp_to_sp+4); +} + +/* Return the offset value of an argument having + the given offset. Basically, we correct by going from a arg pointer to + stack pointer value. */ + +int +romp_debugger_arg_correction (offset) + int offset; +{ + int fp_to_argp; + + INITIAL_ELIMINATION_OFFSET (ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM, + fp_to_argp); + + /* Actually, something different happens if offset is from a floating-point + register argument, but we don't handle it here. */ + + return (offset - fp_to_argp); +} diff --git a/gcc/config/romp/romp.h b/gcc/config/romp/romp.h new file mode 100755 index 0000000..82a0186 --- /dev/null +++ b/gcc/config/romp/romp.h @@ -0,0 +1,1636 @@ +/* Definitions of target machine for GNU compiler, for ROMP chip. + Copyright (C) 1989, 1991, 1993, 1995, 1996 Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@nyu.edu) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +/* Names to predefine in the preprocessor for this target machine. */ + +#define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(ibm032) -Amachine(ibm032)" + +/* Print subsidiary information on the compiler version in use. */ +#define TARGET_VERSION ; + +/* Add -lfp_p when running with -p or -pg. */ +#define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}" + +/* Run-time compilation parameters selecting different hardware subsets. */ + +/* Flag to generate all multiplies as an in-line sequence of multiply-step + insns instead of calling a library routine. */ +#define TARGET_IN_LINE_MUL (target_flags & 1) + +/* Flag to generate padded floating-point data blocks. Otherwise, we generate + them the minimum size. This trades off execution speed against size. */ +#define TARGET_FULL_FP_BLOCKS (target_flags & 2) + +/* Flag to pass and return floating point values in floating point registers. + Since this violates the linkage convention, we feel free to destroy fr2 + and fr3 on function calls. + fr1-fr3 are used to pass the arguments. */ +#define TARGET_FP_REGS (target_flags & 4) + +/* Flag to return structures of more than one word in memory. This is for + compatibility with the MetaWare HighC (hc) compiler. */ +#define TARGET_HC_STRUCT_RETURN (target_flags & 010) + +extern int target_flags; + +/* Macro to define tables used to set the flags. + This is a list in braces of pairs in braces, + each pair being { "NAME", VALUE } + where VALUE is the bits to set or minus the bits to clear. + An empty string NAME is used to identify the default VALUE. */ + +#define TARGET_SWITCHES \ + { {"in-line-mul", 1}, \ + {"call-lib-mul", -1}, \ + {"full-fp-blocks", 2}, \ + {"minimum-fp-blocks", -2}, \ + {"fp-arg-in-fpregs", 4}, \ + {"fp-arg-in-gregs", -4}, \ + {"hc-struct-return", 010}, \ + {"nohc-struct-return", - 010}, \ + { "", TARGET_DEFAULT}} + +#define TARGET_DEFAULT 3 + +/* target machine storage layout */ + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. */ +/* That is true on ROMP. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on ROMP. */ +#define BYTES_BIG_ENDIAN 1 + +/* Define this if most significant word of a multiword number is lowest + numbered. + + For ROMP we can decide arbitrarily since there are no machine instructions + for them. Might as well be consistent with bits and bytes. */ +#define WORDS_BIG_ENDIAN 1 + +/* number of bits in an addressable storage unit */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY 32 + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 16 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 32 + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* Every structure's size must be a multiple of this. */ +#define STRUCTURE_SIZE_BOUNDARY 8 + +/* A bitfield declared as `int' forces `int' alignment for the struct. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* Make strings word-aligned so strcpy from constants will be faster. */ +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ + (TREE_CODE (EXP) == STRING_CST \ + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) + +/* Make arrays of chars word-aligned for the same reasons. */ +#define DATA_ALIGNMENT(TYPE, ALIGN) \ + (TREE_CODE (TYPE) == ARRAY_TYPE \ + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ + && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) + +/* Set this nonzero if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT 1 + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + + ROMP has 16 fullword registers and 8 floating point registers. + + In addition, the difference between the frame and argument pointers is + a function of the number of registers saved, so we need to have a register + to use for AP that will later be eliminated in favor of sp or fp. This is + a normal register, but it is fixed. */ + +#define FIRST_PSEUDO_REGISTER 25 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + + On ROMP, r1 is used for the stack and r14 is used for a + data area pointer. + + HACK WARNING: On the RT, there is a bug in code generation for + the MC68881 when the first and third operands are the same floating-point + register. See the definition of the FINAL_PRESCAN_INSN macro for details. + Here we need to reserve fr0 for this purpose. */ +#define FIXED_REGISTERS \ + {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, \ + 1, 0, 0, 0, 0, 0, 0, 0} + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ +#define CALL_USED_REGISTERS \ + {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, \ + 1, 1, 0, 0, 0, 0, 0, 0} + +/* List the order in which to allocate registers. Each register must be + listed once, even those in FIXED_REGISTERS. + + We allocate in the following order: + fr0, fr1 (not saved) + fr2 ... fr6 + fr7 (more expensive for some FPA's) + r0 (not saved and won't conflict with parameter register) + r4, r3, r2 (not saved, highest used first to make less conflict) + r5 (not saved, but forces r6 to be saved if DI/DFmode) + r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save) + r1, ap */ + +#define REG_ALLOC_ORDER \ + {17, 18, \ + 19, 20, 21, 22, 23, \ + 24, \ + 0, \ + 4, 3, 2, \ + 5, \ + 15, 14, 13, 12, 11, 10, \ + 9, 8, 7, 6, \ + 1, 16} + +/* True if register is floating-point. */ +#define FP_REGNO_P(N) ((N) >= 17) + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + On ROMP, ordinary registers hold 32 bits worth; + a single floating point register is always enough for + anything that can be stored in them at all. */ +#define HARD_REGNO_NREGS(REGNO, MODE) \ + (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + On ROMP, the cpu registers can hold any mode but the float registers + can hold only floating point. */ +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ + ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \ + == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)) + +/* A C expression returning the cost of moving data from a register of class + CLASS1 to one of CLASS2. + + On the ROMP, access to floating-point registers is expensive (even between + two FP regs.) */ +#define REGISTER_MOVE_COST(CLASS1, CLASS2) \ + (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS)) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* ROMP pc isn't overloaded on a register that the compiler knows about. */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 1 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 13 + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms + may be accessed via the stack pointer) in functions that seem suitable. + This is computed in `reload', in reload1.c. */ +#define FRAME_POINTER_REQUIRED 0 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 16 + +/* Place to put static chain when calling a function that requires it. */ +#define STATIC_CHAIN \ + gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \ + GEN_INT (-36))) + +/* Place where static chain is found upon entry to routine. */ +#define STATIC_CHAIN_INCOMING \ + gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \ + GEN_INT (-20))) + +/* Place that structure value return address is placed. + + On the ROMP, it is passed as an extra parameter. */ +#define STRUCT_VALUE 0 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +/* The ROMP has two types of registers, general and floating-point. + + However, r0 is special in that it cannot be used as a base register. + So make a class for registers valid as base registers. + + For floating-point support, add classes that just consist of r0 and + r15, respectively. */ + +enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS, + FP_REGS, ALL_REGS, LIM_REG_CLASSES }; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ + {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \ + "FP_REGS", "ALL_REGS" } + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \ + 0x1fe0000, 0x1ffffff } + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +#define REGNO_REG_CLASS(REGNO) \ + ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS) + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS BASE_REGS +#define BASE_REG_CLASS BASE_REGS + +/* Get reg_class from a letter such as appears in the machine description. */ + +#define REG_CLASS_FROM_LETTER(C) \ + ((C) == 'f' ? FP_REGS \ + : (C) == 'b' ? BASE_REGS \ + : (C) == 'z' ? R0_REGS \ + : (C) == 't' ? R15_REGS \ + : NO_REGS) + +/* The letters I, J, K, L, M, N, and P in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + + `I' is constants less than 16 + `J' is negative constants greater than -16 + `K' is the range for a normal D insn. + `L' is a constant with only the low-order 16 bits set + `M' is a constant with only the high-order 16 bits set + `N' is a single-bit constant + `O' is a constant with either the high-order or low-order 16 bits all ones + `P' is the complement of a single-bit constant + */ + +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \ + : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \ + : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \ + : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \ + : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \ + : (C) == 'N' ? exact_log2 (VALUE) >= 0 \ + : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \ + || ((VALUE) & 0xffff0000) == 0xffff0000 \ + : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \ + : 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. + No floating-point constants on ROMP. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0 + +/* Optional extra constraints for this machine. + + For the ROMP, `Q' means that this is a memory operand but not a symbolic + memory operand. Note that an unassigned pseudo register is such a + memory operand. If register allocation has not been done, we reject + pseudos, since we assume (hope) that they will get hard registers. + + `R' means that this is a constant pool reference to the current function. + This is just r14 and so can be treated as a register. We bother with this + just in move insns as that is the only place it is likely to occur. + + `S' means that this is the address of a constant pool location. This is + equal to r14 plus a constant. We also only check for this in move insns. */ + +#define EXTRA_CONSTRAINT(OP, C) \ + ((C) == 'Q' ? \ + ((GET_CODE (OP) == REG \ + && REGNO (OP) >= FIRST_PSEUDO_REGISTER \ + && reg_renumber != 0 \ + && reg_renumber[REGNO (OP)] < 0) \ + || (GET_CODE (OP) == MEM \ + && ! symbolic_memory_operand (OP, VOIDmode))) \ + : (C) == 'R' ? current_function_operand (OP, VOIDmode) \ + : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \ + : 0) + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + + For the ROMP, if X is a memory reference that involves a symbol, + we must use a BASE_REGS register instead of GENERAL_REGS + to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF + to be valid, so we assume that this is the case. + + Also, if X is an integer class, ensure that floating-point registers + aren't used. */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \ + ? GENERAL_REGS : \ + (CLASS) != GENERAL_REGS ? (CLASS) : \ + GET_CODE (X) != MEM ? GENERAL_REGS : \ + GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \ + GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \ + GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \ + GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \ + GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \ + GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \ + GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \ + GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS) + +/* Return the register class of a scratch register needed to store into + OUT from a register of class CLASS in MODE. + + On the ROMP, we cannot store into a symbolic memory address from an + integer register; we need a BASE_REGS register as a scratch to do it. */ + +#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \ + (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \ + ? BASE_REGS : NO_REGS) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. + + On ROMP, this is the size of MODE in words, + except in the FP regs, where a single reg is always enough. */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((CLASS) == FP_REGS ? 1 \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. */ +#define FRAME_GROWS_DOWNWARD + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. + On the ROMP, if we set the frame pointer to 15 words below the highest + address of the highest local variable, the first 16 words will be + addressable via D-short insns. */ +#define STARTING_FRAME_OFFSET 64 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On ROMP, don't define this because there are no push insns. */ +/* #define PUSH_ROUNDING(BYTES) */ + +/* Offset of first parameter from the argument pointer register value. + On the ROMP, we define the argument pointer to the start of the argument + area. */ +#define FIRST_PARM_OFFSET(FNDECL) 0 + +/* Define this if stack space is still allocated for a parameter passed + in a register. The value is the number of bytes. */ +#define REG_PARM_STACK_SPACE(FNDECL) 16 + +/* This is the difference between the logical top of stack and the actual sp. + + For the ROMP, sp points past the words allocated for the first four outgoing + arguments (they are part of the callee's frame). */ +#define STACK_POINTER_OFFSET -16 + +/* Define this if the maximum size of all the outgoing args is to be + accumulated and pushed during the prologue. The amount can be + found in the variable current_function_outgoing_args_size. */ +#define ACCUMULATE_OUTGOING_ARGS + +/* Value is the number of bytes of arguments automatically + popped when returning from a subroutine call. + FUNDECL is the declaration node of the function (as a tree), + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. */ + +#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. + + On ROMP the value is found in r2, unless the machine specific option + fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, TYPE_MODE (VALTYPE), \ + (TARGET_FP_REGS && \ + GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2) + +/* The definition of this macro implies that there are cases where + a scalar value cannot be returned in registers. + + For the ROMP, if compatibility with HC is required, anything of + type DImode is returned in memory. */ + +#define RETURN_IN_MEMORY(type) \ + (TYPE_MODE (type) == BLKmode \ + || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode)) + +/* 1 if N is a possible register number for a function value + as seen by the caller. + + On ROMP, r2 is the only register thus used unless fp values are to be + returned in fp regs, in which case fr1 is also used. */ + +#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS)) + +/* 1 if N is a possible register number for function argument passing. + On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */ + +#define FUNCTION_ARG_REGNO_P(N) \ + (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21)) + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the ROMP, this is a structure. The first word is the number of + words of (integer only if -mfp-arg-in-fpregs is specified) arguments + scanned so far (including the invisible argument, if any, which holds + the structure-value-address). The second word hold the corresponding + value for floating-point arguments, except that both single and double + count as one register. */ + +struct rt_cargs {int gregs, fregs; }; +#define CUMULATIVE_ARGS struct rt_cargs + +#define USE_FP_REG(MODE,CUM) \ + (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \ + && (CUM).fregs < 3) + +/* Define intermediate macro to compute the size (in registers) of an argument + for the ROMP. */ + +#define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \ +(! (NAMED) ? 0 \ + : (MODE) != BLKmode \ + ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ + : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On ROMP, the offset normally starts at 0, but starts at 4 bytes + when the function gets a structure-value-address as an + invisible first argument. */ + +#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \ + (CUM).gregs = 0, \ + (CUM).fregs = 0 + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ +{ if (NAMED) \ + { \ + if (USE_FP_REG(MODE, CUM)) \ + (CUM).fregs++; \ + else \ + (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \ + } \ +} + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On ROMP the first four words of args are normally in registers + and the rest are pushed. */ + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ + (! (NAMED) ? 0 \ + : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \ + : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \ + : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0) + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ + (! (NAMED) ? 0 \ + : USE_FP_REG(MODE,CUM) ? 0 \ + : (((CUM).gregs < 4 \ + && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \ + ? 4 - (CUM).gregs : 0)) + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. + + CUM is as above. + + MODE and TYPE are the mode and type of the current parameter. + + PRETEND_SIZE is a variable that should be set to the amount of stack + that must be pushed by the prolog to pretend that our caller pushed + it. + + Normally, this macro will push all remaining incoming registers on the + stack and set PRETEND_SIZE to the length of the registers pushed. */ + +#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ +{ if (TARGET_FP_REGS) \ + error ("can't have varargs with -mfp-arg-in-fp-regs"); \ + else if ((CUM).gregs < 4) \ + { \ + int first_reg_offset = (CUM).gregs; \ + \ + if (MUST_PASS_IN_STACK (MODE, TYPE)) \ + first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \ + \ + if (first_reg_offset > 4) \ + first_reg_offset = 4; \ + \ + if (! NO_RTL && first_reg_offset != 4) \ + move_block_from_reg \ + (2 + first_reg_offset, \ + gen_rtx (MEM, BLKmode, \ + plus_constant (virtual_incoming_args_rtx, \ + first_reg_offset * 4)), \ + 4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \ + PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \ + } \ +} + +/* This macro produces the initial definition of a function name. + On the ROMP, we need to place an extra '.' in the function name. */ + +#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ +{ if (TREE_PUBLIC(DECL)) \ + fprintf (FILE, "\t.globl _.%s\n", NAME); \ + fprintf (FILE, "_.%s:\n", NAME); \ +} + +/* This macro is used to output the start of the data area. + + On the ROMP, the _name is a pointer to the data area. At that + location is the address of _.name, which is really the name of + the function. We need to set all this up here. + + The global declaration of the data area, if needed, is done in + `assemble_function', where it thinks it is globalizing the function + itself. */ + +#define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \ +{ extern int data_offset; \ + data_section (); \ + fprintf (FILE, "\t.align 2\n"); \ + ASM_OUTPUT_LABEL (FILE, NAME); \ + fprintf (FILE, "\t.long _.%s, 0, ", NAME); \ + if (current_function_calls_alloca) \ + fprintf (FILE, "0x%x\n", \ + 0xf6900000 + current_function_outgoing_args_size); \ + else \ + fprintf (FILE, "0\n"); \ + data_offset = ((SIZE) + 12 + 3) / 4; \ +} + +/* Select section for constant in constant pool. + + On ROMP, all constants are in the data area. */ + +#define SELECT_RTX_SECTION(MODE, X) data_section () + +/* This macro generates the assembly code for function entry. + FILE is a stdio stream to output the code to. + SIZE is an int: how many units of temporary storage to allocate. + Refer to the array `regs_ever_live' to determine which registers + to save; `regs_ever_live[I]' is nonzero if register number I + is ever used in the function. This macro is responsible for + knowing which registers should not be saved even if used. */ + +#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ + fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n"); + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ +/* #define EXIT_IGNORE_STACK 1 */ + +/* This macro generates the assembly code for function exit, + on machines that need it. If FUNCTION_EPILOGUE is not defined + then individual return instructions are generated for each + return statement. Args are same as for FUNCTION_PROLOGUE. + + The function epilogue should not depend on the current stack pointer! + It should use the frame pointer only. This is mandatory because + of alloca; we also take advantage of it to omit stack adjustments + before returning. */ + +#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE) + +/* Output assembler code for a block containing the constant parts + of a trampoline, leaving space for the variable parts. + + The trampoline should set the static chain pointer to value placed + into the trampoline and should branch to the specified routine. + + On the ROMP, we have a problem. There are no free registers to use + to construct the static chain and function addresses. Hence we use + the following kludge: r15 (the return address) is first saved in mq. + Then we use r15 to form the function address. We then branch to the + function and restore r15 in the delay slot. This makes it appear that + the function was called directly from the caller. + + (Note that the function address built is actually that of the data block. + This is passed in r0 and the actual routine address is loaded into r15.) + + In addition, note that the address of the "called function", in this case + the trampoline, is actually the address of the data area. So we need to + make a fake data area that will contain the address of the trampoline. + Note that this must be defined as two half-words, since the trampoline + template (as opposed to the trampoline on the stack) is only half-word + aligned. */ + +#define TRAMPOLINE_TEMPLATE(FILE) \ +{ \ + fprintf (FILE, "\t.short 0,0\n"); \ + fprintf (FILE, "\tcau r0,0(r0)\n"); \ + fprintf (FILE, "\toil r0,r0,0\n"); \ + fprintf (FILE, "\tmts r10,r15\n"); \ + fprintf (FILE, "\tst r0,-36(r1)\n"); \ + fprintf (FILE, "\tcau r15,0(r0)\n"); \ + fprintf (FILE, "\toil r15,r15,0\n"); \ + fprintf (FILE, "\tcas r0,r15,r0\n"); \ + fprintf (FILE, "\tls r15,0(r15)\n"); \ + fprintf (FILE, "\tbrx r15\n"); \ + fprintf (FILE, "\tmfs r10,r15\n"); \ +} + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE 36 + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. + + On the RT, the static chain and function addresses are written in + two 16-bit sections. + + We also need to write the address of the first instruction in + the trampoline into the first word of the trampoline to simulate a + data area. */ + +#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ +{ \ + rtx _addr, _temp; \ + rtx _val; \ + \ + _temp = expand_binop (SImode, add_optab, ADDR, \ + GEN_INT (4), \ + 0, 1, OPTAB_LIB_WIDEN); \ + emit_move_insn (gen_rtx (MEM, SImode, \ + memory_address (SImode, ADDR)), _temp); \ + \ + _val = force_reg (SImode, CXT); \ + _addr = memory_address (HImode, plus_constant (ADDR, 10)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _val)); \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \ + build_int_2 (16, 0), 0, 1); \ + _addr = memory_address (HImode, plus_constant (ADDR, 6)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _temp)); \ + \ + _val = force_reg (SImode, FNADDR); \ + _addr = memory_address (HImode, plus_constant (ADDR, 24)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _val)); \ + _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \ + build_int_2 (16, 0), 0, 1); \ + _addr = memory_address (HImode, plus_constant (ADDR, 20)); \ + emit_move_insn (gen_rtx (MEM, HImode, _addr), \ + gen_lowpart (HImode, _temp)); \ + \ +} + +/* Definitions for register eliminations. + + We have two registers that can be eliminated on the ROMP. First, the + frame pointer register can often be eliminated in favor of the stack + pointer register. Secondly, the argument pointer register can always be + eliminated; it is replaced with either the stack or frame pointer. + + In addition, we use the elimination mechanism to see if r14 is needed. + Initially we assume that it isn't. If it is, we spill it. This is done + by making it an eliminable register. It doesn't matter what we replace + it with, since it will never occur in the rtl at this point. */ + +/* This is an array of structures. Each structure initializes one pair + of eliminable registers. The "from" register number is given first, + followed by "to". Eliminations of the same "from" register are listed + in order of preference. */ +#define ELIMINABLE_REGS \ +{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ + { 14, 0}} + +/* Given FROM and TO register numbers, say whether this elimination is allowed. + Frame pointer elimination is automatically handled. + + For the ROMP, if frame pointer elimination is being done, we would like to + convert ap into fp, not sp. + + We need r14 if various conditions (tested in romp_using_r14) are true. + + All other eliminations are valid. */ +#define CAN_ELIMINATE(FROM, TO) \ + ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ + ? ! frame_pointer_needed \ + : (FROM) == 14 ? ! romp_using_r14 () \ + : 1) + +/* Define the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ +{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ + { \ + if (romp_pushes_stack ()) \ + (OFFSET) = ((get_frame_size () - 64) \ + + current_function_outgoing_args_size); \ + else \ + (OFFSET) = - (romp_sa_size () + 64); \ + } \ + else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ + (OFFSET) = romp_sa_size () - 16 + 64; \ + else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ + { \ + if (romp_pushes_stack ()) \ + (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \ + + current_function_outgoing_args_size); \ + else \ + (OFFSET) = -16; \ + } \ + else if ((FROM) == 14) \ + (OFFSET) = 0; \ + else \ + abort (); \ +} + +/* Addressing modes, and classification of registers for them. */ + +/* #define HAVE_POST_INCREMENT 0 */ +/* #define HAVE_POST_DECREMENT 0 */ + +/* #define HAVE_PRE_DECREMENT 0 */ +/* #define HAVE_PRE_INCREMENT 0 */ + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) 0 +#define REGNO_OK_FOR_BASE_P(REGNO) \ +((REGNO) < FIRST_PSEUDO_REGISTER \ + ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \ + : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \ + && reg_renumber[REGNO] != 16)) + +/* Maximum number of registers that can appear in a valid memory address. */ + +#define MAX_REGS_PER_ADDRESS 1 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) \ + (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ + || GET_CODE (X) == HIGH) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. + + On the ROMP, there is a bit of a hack here. Basically, we wish to + only issue instructions that are not `as' macros. However, in the + case of `get', `load', and `store', if the operand is a relocatable + symbol (possibly +/- an integer), there is no way to express the + resulting split-relocation except with the macro. Therefore, allow + either a constant valid in a normal (sign-extended) D-format insn or + a relocatable expression. + + Also, for DFmode and DImode, we must ensure that both words are + addressable. + + We define two macros: The first is given an offset (0 or 4) and indicates + that the operand is a CONST_INT that is valid for that offset. The second + indicates a valid non-CONST_INT constant. */ + +#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \ + (GET_CODE (X) == CONST_INT \ + && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000) + +#define LEGITIMATE_ADDRESS_CONSTANT_P(X) \ + (GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == LABEL_REF \ + || (GET_CODE (X) == CONST \ + && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ + || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \ + && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)) + +/* Include all constant integers and constant double, but exclude + SYMBOL_REFs that are to be obtained from the data area (see below). */ +#define LEGITIMATE_CONSTANT_P(X) \ + ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \ + || GET_CODE (X) == CONST_INT \ + || GET_CODE (X) == CONST_DOUBLE) \ + && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X))) + +/* For no good reason, we do the same as the other RT compilers and load + the addresses of data areas for a function from our data area. That means + that we need to mark such SYMBOL_REFs. We do so here. */ +#define ENCODE_SECTION_INFO(DECL) \ + if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \ + SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. + + Most source files want to accept pseudo regs in the hope that + they will get allocated to the class that the insn wants them to be in. + Source files for reload pass need to be strict. + After reload, it makes no difference, since pseudo regs have + been eliminated by then. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) 0 +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) \ + (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) + +#else + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) + +#endif + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + On the ROMP, a legitimate address is either a legitimate constant, + a register plus a legitimate constant, or a register. See the + discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */ +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ +{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ + goto ADDR; \ + if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \ + goto ADDR; \ + if (GET_CODE (X) == PLUS \ + && GET_CODE (XEXP (X, 0)) == REG \ + && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ + && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \ + goto ADDR; \ + if (GET_CODE (X) == PLUS \ + && GET_CODE (XEXP (X, 0)) == REG \ + && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ + && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \ + && (((MODE) != DFmode && (MODE) != DImode) \ + || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \ + goto ADDR; \ +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + On ROMP, check for the sum of a register with a constant + integer that is out of range. If so, generate code to add the + constant with the low-order 16 bits masked to the register and force + this result into another register (this can be done with `cau'). + Then generate an address of REG+(CONST&0xffff), allowing for the + possibility of bit 16 being a one. + + If the register is not OK for a base register, abort. */ + +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \ + { int high_int, low_int; \ + if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \ + abort (); \ + high_int = INTVAL (XEXP (X, 1)) >> 16; \ + low_int = INTVAL (XEXP (X, 1)) & 0xffff; \ + if (low_int & 0x8000) \ + high_int += 1, low_int |= 0xffff0000; \ + (X) = gen_rtx (PLUS, SImode, \ + force_operand \ + (gen_rtx (PLUS, SImode, XEXP (X, 0), \ + GEN_INT (high_int << 16)), 0),\ + GEN_INT (low_int)); \ + } \ +} + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + + On the ROMP this is true only if the address is valid with a zero offset + but not with an offset of four (this means it cannot be used as an + address for DImode or DFmode). Since we know it is valid, we just check + for an address that is not valid with an offset of four. */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ +{ if (GET_CODE (ADDR) == PLUS \ + && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \ + && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \ + goto LABEL; \ +} + +/* Define this if some processing needs to be done immediately before + emitting code for an insn. + + This is used on the ROMP, to compensate for a bug in the floating-point + code. When a floating-point operation is done with the first and third + operands both the same floating-point register, it will generate bad code + for the MC68881. So we must detect this. If it occurs, we patch the + first operand to be fr0 and insert a move insn to move it to the desired + destination. */ +#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \ + { rtx op0, op1, op2, operation, tem; \ + if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \ + { \ + op0 = OPERANDS[0]; \ + operation = OPERANDS[1]; \ + if (float_conversion (operation, VOIDmode)) \ + operation = XEXP (operation, 0); \ + if (float_binary (operation, VOIDmode)) \ + { \ + op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \ + if (float_conversion (op1, VOIDmode)) \ + op1 = XEXP (op1, 0); \ + if (float_conversion (op2, VOIDmode)) \ + op2 = XEXP (op2, 0); \ + if (rtx_equal_p (op0, op2) \ + && (GET_CODE (operation) == PLUS \ + || GET_CODE (operation) == MULT)) \ + tem = op1, op1 = op2, op2 = tem; \ + if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \ + && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \ + && REGNO (op0) == REGNO (op2)) \ + { \ + tem = gen_rtx (REG, GET_MODE (op0), 17); \ + emit_insn_after (gen_move_insn (op0, tem), INSN); \ + SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \ + OPERANDS[0] = tem; \ + } \ + } \ + } \ + } + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE SImode + +/* Define as C expression which evaluates to nonzero if the tablejump + instruction expects the table to contain offsets from the address of the + table. + Do not define this if the table should contain absolute addresses. */ +/* #define CASE_VECTOR_PC_RELATIVE 1 */ + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 0 + +/* This flag, if defined, says the same insns that convert to a signed fixnum + also convert validly to an unsigned one. + + We actually lie a bit here as overflow conditions are different. But + they aren't being checked anyway. */ + +#define FIXUNS_TRUNC_LIKE_FIX_TRUNC + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Nonzero if access to memory by bytes is no faster than for words. + Also non-zero if doing byte operations (specifically shifts) in registers + is undesirable. */ +#define SLOW_BYTE_ACCESS 1 + +/* Define if operations between registers always perform the operation + on the full register even if a narrower mode is specified. */ +#define WORD_REGISTER_OPERATIONS + +/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD + will either zero-extend or sign-extend. The value of this macro should + be the code that says which one of the two operations is implicitly + done, NIL if none. */ +#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND + +/* This is BSD, so it wants DBX format. */ +#define DBX_DEBUGGING_INFO + +/* Define the letter code used in a stabs entry for parameters passed + with the register attribute. + + GCC's default value, 'P', is used by dbx to refers to an external + procedure. The section 5 manual page for dbx implies that 'R' would be the + right letter, but dbx 1.5 has a bug in it that precludes its use. + Probably that is why neither hc or pcc use this. pcc puts in two + stabs entries: one for the parameter location and one for the register + location. The letter `r' (register) + would be okay, but it loses parameter attribute of the stabs entry. */ +#define DBX_REGPARM_STABS_LETTER 'R' + +/* A C expression for the integer offset value of an automatic variable + (N_LSYM) having address X (an RTX). This gets used in .stabs entries + for the local variables. Compare with the default definition. */ +extern int romp_debugger_auto_correction(); +#define DEBUGGER_AUTO_OFFSET(X) \ + (GET_CODE (X) == PLUS \ + ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \ + : 0 ) + +/* A C expression for the integer offset value of an argument (N_PSYM) + having address X (an RTX). The nominal offset is OFFSET. */ +extern int romp_debugger_arg_correction(); +#define DEBUGGER_ARG_OFFSET(OFFSET, X) \ + romp_debugger_arg_correction (OFFSET); + +/* We don't have GAS for the RT yet, so don't write out special + .stabs in cc1plus. */ + +#define FASCIST_ASSEMBLER + +/* Do not break .stabs pseudos into continuations. */ +#define DBX_CONTIN_LENGTH 0 + +/* Don't try to use the `x' type-cross-reference character in DBX data. + Also has the consequence of putting each struct, union or enum + into a separate .stabs, containing only cross-refs to the others. */ +#define DBX_NO_XREFS + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +#define Pmode SImode + +/* Mode of a function address in a call instruction (for indexing purposes). + + Doesn't matter on ROMP. */ +#define FUNCTION_MODE SImode + +/* Define this if addresses of constant functions + shouldn't be put through pseudo regs where they can be cse'd. + Desirable on machines where ordinary constants are expensive + but a CALL with constant address is cheap. */ +#define NO_FUNCTION_CSE + +/* Define this if shift instructions ignore all but the low-order + few bits. + + This is not true on the RT since it uses the low-order 6, not 5, bits. + At some point, this should be extended to see how to express that. */ + +/* #define SHIFT_COUNT_TRUNCATED */ + +/* Compute the cost of computing a constant rtl expression RTX whose + rtx-code is CODE, contained within an expression of code OUTER_CODE. + The body of this macro is a portion of a switch statement. If the + code is computed here, return it with a return statement. Otherwise, + break from the switch. */ + +#define CONST_COSTS(RTX,CODE,OUTER_CODE) \ + case CONST_INT: \ + if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \ + || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \ + || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \ + && (unsigned int) (INTVAL (RTX) + 15) < 31) \ + || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\ + return 0; \ + return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \ + || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + if (current_function_operand (RTX, Pmode)) return 0; \ + return COSTS_N_INSNS (2); \ + case CONST_DOUBLE: \ + if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \ + return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \ + ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4)); + +/* Provide the costs of a rtl expression. This is in the body of a + switch on CODE. + + References to our own data area are really references to r14, so they + are very cheap. Multiples and divides are very expensive. */ + +#define RTX_COSTS(X,CODE,OUTER_CODE) \ + case MEM: \ + return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \ + case MULT: \ + return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\ + ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + return COSTS_N_INSNS (45); + +/* Compute the cost of an address. This is meant to approximate the size + and/or execution delay of an insn using that address. If the cost is + approximated by the RTL complexity, including CONST_COSTS above, as + is usually the case for CISC machines, this macro should not be defined. + For aggressively RISCy machines, only one insn format is allowed, so + this macro should be a constant. The value of this macro only matters + for valid addresses. + + For the ROMP, everything is cost 0 except for addresses involving + symbolic constants, which are cost 1. */ + +#define ADDRESS_COST(RTX) \ + ((GET_CODE (RTX) == SYMBOL_REF \ + && ! CONSTANT_POOL_ADDRESS_P (RTX)) \ + || GET_CODE (RTX) == LABEL_REF \ + || (GET_CODE (RTX) == CONST \ + && ! constant_pool_address_operand (RTX, Pmode)) \ + || (GET_CODE (RTX) == PLUS \ + && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \ + && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \ + || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \ + || GET_CODE (XEXP (RTX, 1)) == CONST))) + +/* Adjust the length of an INSN. LENGTH is the currently-computed length and + should be adjusted to reflect any required changes. This macro is used when + there is some systematic length adjustment required that would be difficult + to express in the length attribute. + + On the ROMP, there are two adjustments: First, a 2-byte insn in the delay + slot of a CALL (including floating-point operations) actually takes four + bytes. Second, we have to make the worst-case alignment assumption for + address vectors. */ + +#define ADJUST_INSN_LENGTH(X,LENGTH) \ + if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \ + && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \ + && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \ + (LENGTH) += 2; \ + else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \ + (LENGTH) += 2; + +/* Tell final.c how to eliminate redundant test instructions. */ + +/* Here we define machine-dependent flags and fields in cc_status + (see `conditions.h'). */ + +/* Set if condition code (really not-Z) is stored in `test bit'. */ +#define CC_IN_TB 01000 + +/* Set if condition code is set by an unsigned compare. */ +#define CC_UNSIGNED 02000 + +/* Store in cc_status the expressions + that the condition codes will describe + after execution of an instruction whose pattern is EXP. + Do not alter them if the instruction would not alter the cc's. */ + +#define NOTICE_UPDATE_CC(BODY,INSN) \ + update_cc (BODY, INSN) + +/* Control the assembler format that we output. */ + +/* Output at beginning of assembler file. */ + +#define ASM_FILE_START(FILE) \ +{ extern char *version_string; \ + char *p; \ + \ + fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \ + fprintf (FILE, "\t.globl .oVgcc"); \ + for (p = version_string; *p != ' ' && *p != 0; p++) \ + fprintf (FILE, "%c", *p); \ + fprintf (FILE, "\n\t.set .oVgcc"); \ + for (p = version_string; *p != ' ' && *p != 0; p++) \ + fprintf (FILE, "%c", *p); \ + fprintf (FILE, ",0\n"); \ +} + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "" + +/* Output before instructions and read-only data. */ + +#define TEXT_SECTION_ASM_OP ".text" + +/* Output before writable data. */ + +#define DATA_SECTION_ASM_OP ".data" + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +#define REGISTER_NAMES \ +{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \ + "r10", "r11", "r12", "r13", "r14", "r15", "ap", \ + "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" } + +/* How to renumber registers for dbx and gdb. */ + +#define DBX_REGISTER_NUMBER(REGNO) (REGNO) + +/* This is how to output the definition of a user-level label named NAME, + such as the label on a static function or variable NAME. */ + +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0) + +/* This is how to output a command to make the user-level label named NAME + defined for reference from other files. */ + +#define ASM_GLOBALIZE_LABEL(FILE,NAME) \ + do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0) + +/* The prefix to add to user-visible assembler symbols. */ + +#define USER_LABEL_PREFIX "_" + +/* This is how to output an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. */ + +#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ + fprintf (FILE, "%s%d:\n", PREFIX, NUM) + +/* This is how to output a label for a jump table. Arguments are the same as + for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is + passed. */ + +#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ +{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } + +/* This is how to store into the string LABEL + the symbol_ref name of an internal numbered label where + PREFIX is the class of label and NUM is the number within the class. + This is suitable for output with `assemble_name'. */ + +#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ + sprintf (LABEL, "*%s%d", PREFIX, NUM) + +/* This is how to output an assembler line defining a `double' constant. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ + fprintf (FILE, "\t.double 0d%.20e\n", (VALUE)) + +/* This is how to output an assembler line defining a `float' constant. + + WARNING: Believe it or not, the ROMP assembler has a bug in its + handling of single-precision floating-point values making it impossible + to output such values in the expected way. Therefore, it must be output + in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES + NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done + about it short of fixing the assembler. */ + +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ + do { union { int i; float f; } u_i_f; \ + u_i_f.f = (VALUE); \ + fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\ + } while (0) + +/* This is how to output an assembler line defining an `int' constant. */ + +#define ASM_OUTPUT_INT(FILE,VALUE) \ +( fprintf (FILE, "\t.long "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* Likewise for `char' and `short' constants. */ + +#define ASM_OUTPUT_SHORT(FILE,VALUE) \ +( fprintf (FILE, "\t.short "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +#define ASM_OUTPUT_CHAR(FILE,VALUE) \ +( fprintf (FILE, "\t.byte "), \ + output_addr_const (FILE, (VALUE)), \ + fprintf (FILE, "\n")) + +/* This is how to output an assembler line for a numeric constant byte. */ + +#define ASM_OUTPUT_BYTE(FILE,VALUE) \ + fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) + +/* This is how to output code to push a register on the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ + fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO]) + +/* This is how to output an insn to pop a register from the stack. + It need not be very fast code. */ + +#define ASM_OUTPUT_REG_POP(FILE,REGNO) \ + fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO]) + +/* This is how to output an element of a case-vector that is absolute. */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ + fprintf (FILE, "\t.long L%d\n", VALUE) + +/* This is how to output an element of a case-vector that is relative. + Don't define this if it is not supported. */ + +/* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */ + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) != 0) \ + fprintf (FILE, "\t.align %d\n", (LOG)) + +#define ASM_OUTPUT_SKIP(FILE,SIZE) \ + fprintf (FILE, "\t.space %d\n", (SIZE)) + +/* This says how to output an assembler line + to define a global common symbol. */ + +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ +( fputs (".comm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* This says how to output an assembler line + to define a local common symbol. */ + +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ +( fputs (".lcomm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* Store in OUTPUT a string (made with alloca) containing + an assembler-name for a local static variable named NAME. + LABELNO is an integer which is different for each call. */ + +#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ +( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ + sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) + +/* Define the parentheses used to group arithmetic operations + in assembler code. */ + +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* Define results of standard character escape sequences. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) + +/* Define which CODE values are valid. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '.' || (CODE) == '#') + +/* Print a memory address as an operand to reference that memory location. */ + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ +{ register rtx addr = ADDR; \ + register rtx base = 0, offset = addr; \ + if (GET_CODE (addr) == REG) \ + base = addr, offset = const0_rtx; \ + else if (GET_CODE (addr) == PLUS \ + && GET_CODE (XEXP (addr, 0)) == REG) \ + base = XEXP (addr, 0), offset = XEXP (addr, 1); \ + else if (GET_CODE (addr) == SYMBOL_REF \ + && CONSTANT_POOL_ADDRESS_P (addr)) \ + { \ + offset = GEN_INT (get_pool_offset (addr) + 12); \ + base = gen_rtx (REG, SImode, 14); \ + } \ + else if (GET_CODE (addr) == CONST \ + && GET_CODE (XEXP (addr, 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \ + && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \ + && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \ + { \ + offset = plus_constant (XEXP (XEXP (addr, 0), 1), \ + (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \ + + 12)); \ + base = gen_rtx (REG, SImode, 14); \ + } \ + output_addr_const (FILE, offset); \ + if (base) \ + fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \ +} + +/* Define the codes that are matched by predicates in aux-output.c. */ + +#define PREDICATE_CODES \ + {"zero_memory_operand", {SUBREG, MEM}}, \ + {"short_memory_operand", {SUBREG, MEM}}, \ + {"symbolic_memory_operand", {SUBREG, MEM}}, \ + {"current_function_operand", {MEM}}, \ + {"constant_pool_address_operand", {SUBREG, CONST}}, \ + {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \ + {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \ + {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \ + {"short_cint_operand", {CONST_INT}}, \ + {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \ + PLUS, CONST, CONST_INT}}, \ + {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \ + {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \ + {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \ + {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \ + SYMBOL_REF, CONST_DOUBLE}}, \ + {"reg_0_operand", {REG}}, \ + {"reg_15_operand", {REG}}, \ + {"float_binary", {PLUS, MINUS, MULT, DIV}}, \ + {"float_unary", {NEG, ABS}}, \ + {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}}, + +/* Define functions defined in aux-output.c and used in templates. */ + +extern char *output_in_line_mul (); +extern char *output_fpop (); diff --git a/gcc/config/romp/romp.md b/gcc/config/romp/romp.md new file mode 100755 index 0000000..3abd56b --- /dev/null +++ b/gcc/config/romp/romp.md @@ -0,0 +1,2776 @@ +;;- Machine description for ROMP chip for GNU C compiler +;; Copyright (C) 1988, 1991, 1993, 1994, 1995 Free Software Foundation, Inc. +;; Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) + +;; This file is part of GNU CC. + +;; GNU CC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 2, or (at your option) +;; any later version. + +;; GNU CC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GNU CC; see the file COPYING. If not, write to +;; the Free Software Foundation, 59 Temple Place - Suite 330, +;; Boston, MA 02111-1307, USA. + + +;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. + +;; Define the attributes for the ROMP. + +;; Insn type. Used to default other attribute values. + +(define_attr "type" + "branch,ibranch,return,fp,load,loadz,store,call,address,arith,compare,multi,misc" + (const_string "arith")) + +;; Length in bytes. + +(define_attr "length" "" + (cond [(eq_attr "type" "branch") + (if_then_else (and (ge (minus (pc) (match_dup 0)) + (const_int -256)) + (le (minus (pc) (match_dup 0)) + (const_int 254))) + (const_int 2) + (const_int 4)) + (eq_attr "type" "return,ibranch") (const_int 2) + (eq_attr "type" "fp") (const_int 10) + (eq_attr "type" "call") (const_int 4) + (eq_attr "type" "load") + (cond [(match_operand 1 "short_memory_operand" "") (const_int 2) + (match_operand 1 "symbolic_memory_operand" "") (const_int 8)] + (const_int 4)) + (eq_attr "type" "loadz") + (cond [(match_operand 1 "zero_memory_operand" "") (const_int 2) + (match_operand 1 "symbolic_memory_operand" "") (const_int 8)] + (const_string "4")) + (eq_attr "type" "store") + (cond [(match_operand 0 "short_memory_operand" "") (const_int 2) + (match_operand 0 "symbolic_memory_operand" "") (const_int 8)] + (const_int 4))] + (const_int 4))) + +;; Whether insn can be placed in a delay slot. + +(define_attr "in_delay_slot" "yes,no" + (cond [(eq_attr "length" "8,10,38") (const_string "no") + (eq_attr "type" "branch,ibranch,return,call,multi") + (const_string "no")] + (const_string "yes"))) + +;; Whether insn needs a delay slot. We have to say that two-byte +;; branches do not need a delay slot. Otherwise, branch shortening will +;; try to do something with delay slot insns (we want it to on the PA). +;; This is a kludge, which should be cleaned up at some point. + +(define_attr "needs_delay_slot" "yes,no" + (if_then_else (ior (and (eq_attr "type" "branch") + (eq_attr "length" "4")) + (eq_attr "type" "ibranch,return,call")) + (const_string "yes") (const_string "no"))) + +;; What insn does to the condition code. + +(define_attr "cc" + "clobber,none,sets,change0,copy1to0,compare,tbit" + (cond [(eq_attr "type" "load,loadz") (const_string "change0") + (eq_attr "type" "store") (const_string "none") + (eq_attr "type" "fp,call") (const_string "clobber") + (eq_attr "type" "branch,ibranch,return") (const_string "none") + (eq_attr "type" "address") (const_string "change0") + (eq_attr "type" "compare") (const_string "compare") + (eq_attr "type" "arith") (const_string "sets")] + (const_string "clobber"))) + +;; Define attributes for `asm' insns. + +(define_asm_attributes [(set_attr "type" "misc") + (set_attr "length" "8") + (set_attr "in_delay_slot" "no") + (set_attr "cc" "clobber")]) + +;; Define the delay slot requirements for branches and calls. We don't have +;; any annulled insns. +;; +(define_delay (eq_attr "needs_delay_slot" "yes") + [(eq_attr "in_delay_slot" "yes") (nil) (nil)]) + +;; We cannot give a floating-point comparison a delay slot, even though it +;; could make use of it. This is because it would confuse next_cc0_user +;; to do so. Other fp insns can't get a delay slow because they set their +;; result and use their input after the delay slot insn is executed. This +;; isn't what reorg.c expects. + +;; Define load & store delays. These were obtained by measurements done by +;; jfc@athena.mit.edu. +;; +;; In general, the memory unit can support at most two simultaneous operations. +;; +;; Loads take 5 cycles to return the data and can be pipelined up to the +;; limit of two simultaneous operations. +(define_function_unit "memory" 1 2 (eq_attr "type" "load,loadz") 5 0) + +;; Stores do not return data, but tie up the memory unit for 2 cycles if the +;; next insn is also a store. +(define_function_unit "memory" 1 2 (eq_attr "type" "store") 1 2 + [(eq_attr "type" "store")]) + +;; Move word instructions. +;; +;; If destination is memory but source is not register, force source to +;; register. +;; +;; If source is a constant that is too large to load in a single insn, build +;; it in two pieces. +;; +;; If destination is memory and source is a register, a temporary register +;; will be needed. In that case, make a PARALLEL of the SET and a +;; CLOBBER of a SCRATCH to allocate the required temporary. +;; +;; This temporary is ACTUALLY only needed when the destination is a +;; relocatable expression. For generating RTL, however, we always +;; place the CLOBBER. In insns where it is not needed, the SCRATCH will +;; not be allocated to a register. +;; +;; Also, avoid creating pseudo-registers or SCRATCH rtx's during reload as +;; they will not be correctly handled. We never need pseudos for that +;; case anyway. +;; +;; We do not use DEFINE_SPLIT for loading constants because the number +;; of cases in the resulting unsplit insn would be too high to deal +;; with practically. +(define_expand "movsi" + [(set (match_operand:SI 0 "general_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (GET_CODE (op1) == REG && REGNO (op1) == 16) + DONE; + + if (GET_CODE (op0) == REG && REGNO (op0) == 16) + DONE; + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storesi (operands[0], force_reg (SImode, operands[1]))); + DONE; + } + else if (GET_CODE (op1) == CONST_INT) + { + int const_val = INTVAL (op1); + + /* Try a number of cases to see how to best load the constant. */ + if ((const_val & 0xffff) == 0 + || (const_val & 0xffff0000) == 0 + || (unsigned) (const_val + 0x8000) < 0x10000) + /* Can do this in one insn, so generate it. */ + ; + else if (((- const_val) & 0xffff) == 0 + || ((- const_val) & 0xffff0000) == 0 + || (unsigned) ((- const_val) + 0x8000) < 0x10000) + { + /* Can do this by loading the negative constant and then negating. */ + emit_move_insn (operands[0], + GEN_INT (- const_val)); + emit_insn (gen_negsi2 (operands[0], operands[0])); + DONE; + } + else + /* Do this the long way. */ + { + unsigned int high_part = const_val & 0xffff0000; + unsigned int low_part = const_val & 0xffff; + int i; + + if (low_part >= 0x10 && exact_log2 (low_part) >= 0) + i = high_part, high_part = low_part, low_part = i; + + emit_move_insn (operands[0], + GEN_INT (low_part)); + emit_insn (gen_iorsi3 (operands[0], operands[0], + GEN_INT (high_part))); + DONE; + } + } +}") + +;; Move from a symbolic memory location to a register is special. In this +;; case, we know in advance that the register cannot be r0, so we can improve +;; register allocation by treating it separately. + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (match_operand:SI 1 "symbolic_memory_operand" "m"))] + "" + "load %0,%1" + [(set_attr "type" "load")]) + +;; Generic single-word move insn. We avoid the case where the destination is +;; a symbolic address, as that needs a temporary register. + +(define_insn "" + [(set (match_operand:SI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,r,r,r,b,Q") + (match_operand:SI 1 "romp_operand" "rR,I,K,L,M,S,s,Q,m,r"))] + "register_operand (operands[0], SImode) + || register_operand (operands[1], SImode)" + "@ + cas %0,%1,r0 + lis %0,%1 + cal %0,%1(r0) + cal16 %0,%1(r0) + cau %0,%H1(r0) + ail %0,r14,%C1 + get %0,$%1 + l%M1 %0,%1 + load %0,%1 + st%M0 %1,%0" + [(set_attr "type" "address,address,address,address,address,arith,misc,load,load,store") + (set_attr "length" "2,2,4,4,4,4,8,*,*,*")]) + +(define_insn "storesi" + [(set (match_operand:SI 0 "memory_operand" "=Q,m") + (match_operand:SI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + st%M0 %1,%0 + store %1,%0,%2" + [(set_attr "type" "store")]) + +;; This pattern is used by reload when we store into a symbolic address. It +;; provides the temporary register required. This pattern is only used +;; when SECONDARY_OUTPUT_RELOAD_CLASS returns something other than +;; NO_REGS, so we need not have any predicates here. + +(define_expand "reload_outsi" + [(parallel [(set (match_operand:SI 0 "symbolic_memory_operand" "=m") + (match_operand:SI 1 "" "r")) + (clobber (match_operand:SI 2 "" "=&b"))])] + "" + "") + +;; Now do the same for the QI move instructions. +(define_expand "movqi" + [(set (match_operand:QI 0 "general_operand" "") + (match_operand:QI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storeqi (operands[0], force_reg (QImode, operands[1]))); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:QI 0 "register_operand" "=b") + (match_operand:QI 1 "symbolic_memory_operand" "m"))] + "" + "loadc %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:QI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,b,Q") + (match_operand:QI 1 "romp_operand" "r,I,n,s,Q,m,r"))] + "register_operand (operands[0], QImode) + || register_operand (operands[1], QImode)" + "@ + cas %0,%1,r0 + lis %0,%1 + cal %0,%L1(r0) + get %0,$%1 + lc%M1 %0,%1 + loadc %0,%1 + stc%M0 %1,%0" + [(set_attr "type" "address,address,address,misc,load,load,store") + (set_attr "length" "2,2,4,8,*,*,*")]) + +(define_insn "storeqi" + [(set (match_operand:QI 0 "memory_operand" "=Q,m") + (match_operand:QI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + stc%M0 %1,%0 + storec %1,%0,%2" + [(set_attr "type" "store")]) + +(define_expand "reload_outqi" + [(parallel [(set (match_operand:QI 0 "symbolic_memory_operand" "=m") + (match_operand:QI 1 "" "r")) + (clobber (match_operand:SI 2 "" "=&b"))])] + "" + "") + +;; Finally, the HI instructions. +(define_expand "movhi" + [(set (match_operand:HI 0 "general_operand" "") + (match_operand:HI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storehi (operands[0], force_reg (HImode, operands[1]))); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=b") + (match_operand:HI 1 "symbolic_memory_operand" "m"))] + "" + "loadha %0,%1" + [(set_attr "type" "load")]) + + +;; use cal16 instead of cal for constant source because combine requires +;; the high bits of the register to be 0 after a HImode load of a constant + +(define_insn "" + [(set (match_operand:HI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,r,r,b,Q") + (match_operand:HI 1 "romp_operand" "r,I,n,s,Q,m,r"))] + "register_operand (operands[0], HImode) + || register_operand (operands[1], HImode)" + "@ + cas %0,%1,r0 + lis %0,%1 + cal16 %0,%L1(r0) + get %0,$%1 + lh%N1 %0,%1 + loadh %0,%1 + sth%M0 %1,%0" + [(set_attr "type" "address,address,address,misc,loadz,loadz,store") + (set_attr "length" "2,2,4,8,*,*,*")]) + +(define_insn "storehi" + [(set (match_operand:HI 0 "memory_operand" "=Q,m") + (match_operand:HI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + sth%M0 %1,%0 + storeh %1,%0,%2" + [(set_attr "type" "store")]) + +(define_expand "reload_outhi" + [(parallel [(set (match_operand:HI 0 "symbolic_memory_operand" "=m") + (match_operand:HI 1 "" "r")) + (clobber (match_operand:SI 2 "" "=&b"))])] + "" + "") + +;; For DI move, if we have a constant, break the operation apart into +;; two SImode moves because the optimizer may be able to do a better job +;; with the resulting code. +;; +;; For memory stores, make the required pseudo for a temporary in case we +;; are storing into an absolute address. +;; +;; We need to be careful about the cases where the output is a register that is +;; the second register of the input. + +(define_expand "movdi" + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" ""))] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (CONSTANT_P (op1)) + { + rtx insns; + + start_sequence (); + emit_move_insn (operand_subword (op0, 0, 1, DImode), + operand_subword (op1, 0, 1, DImode)); + emit_move_insn (operand_subword (op0, 1, 1, DImode), + operand_subword (op1, 1, 1, DImode)); + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, op0, op1, 0, op1); + DONE; + } + + if (GET_CODE (op0) == MEM && ! reload_in_progress) + { + emit_insn (gen_storedi (operands[0], force_reg (DImode, operands[1]))); + DONE; + } +}") + +(define_insn "" + [(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,Q") + (match_operand:DI 1 "reg_or_mem_operand" "r,Q,m,r"))] + "register_operand (operands[0], DImode) + || register_operand (operands[1], DImode)" + "* +{ + switch (which_alternative) + { + case 0: + if (REGNO (operands[0]) == REGNO (operands[1]) + 1) + return \"cas %O0,%O1,r0\;cas %0,%1,r0\"; + else + return \"cas %0,%1,r0\;cas %O0,%O1,r0\"; + case 1: + /* Here we must see which word to load first. We default to the + low-order word unless it occurs in the address. */ + if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + return \"l%M1 %O0,%O1\;l%M1 %0,%1\"; + else + return \"l%M1 %0,%1\;l%M1 %O0,%O1\"; + case 2: + return \"get %O0,$%1\;ls %0,0(%O0)\;ls %O0,4(%O0)\"; + case 3: + return \"st%M0 %1,%0\;st%M0 %O1,%O0\"; + } +}" + [(set_attr "type" "multi") + (set_attr "cc" "change0,change0,change0,none") + (set_attr "length" "4,12,8,8")]) + +(define_insn "storedi" + [(set (match_operand:DI 0 "memory_operand" "=Q,m") + (match_operand:DI 1 "register_operand" "r,r")) + (clobber (match_scratch:SI 2 "=X,&b"))] + "" + "@ + st%M0 %1,%0\;st%M0 %O1,%O0 + get %2,$%0\;sts %1,0(%2)\;sts %O1,4(%2)" + [(set_attr "type" "multi,multi") + (set_attr "cc" "none,none") + (set_attr "length" "8,12")]) + +(define_expand "reload_outdi" + [(parallel [(set (match_operand:DI 0 "symbolic_memory_operand" "=m") + (match_operand:DI 1 "" "r")) + (clobber (match_operand:SI 2 "" "=&b"))])] + "" + "") + +;; Split symbolic memory operands differently. We first load the address +;; into a register and then do the two loads or stores. We can only do +;; this if operand_subword won't produce a SUBREG, which is only when +;; operands[0] is a hard register. Thus, these won't be used during the +;; first insn scheduling pass. +(define_split + [(set (match_operand:DI 0 "register_operand" "") + (match_operand:DI 1 "symbolic_memory_operand" ""))] + "GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5)) + (set (match_dup 6) (match_dup 7))] + " +{ operands[2] = operand_subword (operands[0], 1, 0, DImode); + operands[3] = XEXP (operands[1], 0); + operands[4] = operand_subword (operands[0], 0, 0, DImode); + operands[5] = gen_rtx (MEM, SImode, operands[2]); + operands[6] = operands[2]; + operands[7] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, operands[2], + GEN_INT (4))); + + if (operands[2] == 0 || operands[4] == 0) + FAIL; +}") + +(define_split + [(set (match_operand:DI 0 "symbolic_memory_operand" "") + (match_operand:DI 1 "register_operand" "")) + (clobber (match_operand:SI 2 "register_operand" ""))] + "GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5)) + (set (match_dup 6) (match_dup 7))] + " +{ operands[3] = XEXP (operands[0], 0); + operands[4] = gen_rtx (MEM, SImode, operands[2]); + operands[5] = operand_subword (operands[1], 0, 0, DImode); + operands[6] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, operands[2], + GEN_INT (4))); + operands[7] = operand_subword (operands[1], 1, 0, DImode); + + if (operands[5] == 0 || operands[7] == 0) + FAIL; +}") + +;; If the output is a register and the input is memory, we have to be careful +;; and see which word needs to be loaded first. +;; +;; Note that this case doesn't have a CLOBBER. Therefore, we must either +;; be after reload or operand[0] must not be a MEM. So we don't need a +;; CLOBBER on the new insns either. +;; +;; Due to a bug in sched.c, we do not want to split this insn if both +;; operands are registers and they overlap unless reload has completed. +(define_split + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" ""))] + "! symbolic_memory_operand (operands[0], DImode) + && ! symbolic_memory_operand (operands[1], DImode) + && ! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG + && ! reload_completed + && reg_overlap_mentioned_p (operands[0], operands[1]))" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5))] + " +{ if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + { + operands[2] = operand_subword (operands[0], 0, 0, DImode); + operands[3] = operand_subword (operands[1], 0, 0, DImode); + operands[4] = operand_subword (operands[0], 1, 0, DImode); + operands[5] = operand_subword (operands[1], 1, 0, DImode); + } + else + { + operands[2] = operand_subword (operands[0], 1, 0, DImode); + operands[3] = operand_subword (operands[1], 1, 0, DImode); + operands[4] = operand_subword (operands[0], 0, 0, DImode); + operands[5] = operand_subword (operands[1], 0, 0, DImode); + } + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; +}") + +(define_split + [(set (match_operand:DI 0 "general_operand" "") + (match_operand:DI 1 "general_operand" "")) + (clobber (match_operand:SI 6 "register_operand" ""))] + "! symbolic_memory_operand (operands[0], DImode) + && ! symbolic_memory_operand (operands[1], DImode) + && ! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) + && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG + && ! reload_completed + && reg_overlap_mentioned_p (operands[0], operands[1]))" + [(parallel [(set (match_dup 2) (match_dup 3)) + (clobber (match_dup 7))]) + (parallel [(set (match_dup 4) (match_dup 5)) + (clobber (match_dup 8))])] + " +{ if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + { + operands[2] = operand_subword (operands[0], 0, 0, DImode); + operands[3] = operand_subword (operands[1], 0, 0, DImode); + operands[4] = operand_subword (operands[0], 1, 0, DImode); + operands[5] = operand_subword (operands[1], 1, 0, DImode); + } + else + { + operands[2] = operand_subword (operands[0], 1, 0, DImode); + operands[3] = operand_subword (operands[1], 1, 0, DImode); + operands[4] = operand_subword (operands[0], 0, 0, DImode); + operands[5] = operand_subword (operands[1], 0, 0, DImode); + } + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; + + /* We must be sure to make two different SCRATCH operands, since they + are not allowed to be shared. After reload, however, we only have + a SCRATCH if we won't use the operand, so it is allowed to share it + then. */ + if (reload_completed || GET_CODE (operands[6]) != SCRATCH) + operands[7] = operands[8] = operands[6]; + else + { + operands[7] = gen_rtx (SCRATCH, SImode); + operands[8] = gen_rtx (SCRATCH, SImode); + } +}") + +;; Define move insns for SF, and DF. +;; +;; For register-register copies or a copy of something to itself, emit a +;; single SET insn since it will likely be optimized away. +;; +;; Otherwise, emit a floating-point move operation unless both input and +;; output are either constant, memory, or a non-floating-point hard register. +(define_expand "movdf" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (match_operand:DF 1 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (op0 == op1) + { + emit_insn (gen_rtx (SET, VOIDmode, op0, op1)); + DONE; + } + + if ((GET_CODE (op0) == MEM + || (GET_CODE (op0) == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op0)))) + && (GET_CODE (op1) == MEM + || GET_CODE (op1) == CONST_DOUBLE + || (GET_CODE (op1) == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op1)) && ! rtx_equal_p (op0, op1)))) + { + rtx insns; + + if (GET_CODE (op1) == CONST_DOUBLE) + op1 = force_const_mem (DFmode, op1); + + start_sequence (); + if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1]), 0) + { + emit_move_insn (operand_subword (op0, 0, 1, DFmode), + operand_subword_force (op1, 0, DFmode)); + emit_move_insn (operand_subword (op0, 1, 1, DFmode), + operand_subword_force (op1, 1, DFmode)); + } + else + { + emit_move_insn (operand_subword (op0, 1, 1, DFmode), + operand_subword_force (op1, 1, DFmode)); + emit_move_insn (operand_subword (op0, 0, 1, DFmode), + operand_subword_force (op1, 0, DFmode)); + } + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, op0, op1, 0, op1); + DONE; + } +}") + +(define_expand "movsf" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + " +{ rtx op0 = operands[0]; + rtx op1 = operands[1]; + + if (op0 == op1) + { + emit_insn (gen_rtx (SET, VOIDmode, op0, op1)); + DONE; + } + + if ((GET_CODE (op0) == MEM + || (GET_CODE (op0) == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op0)))) + && (GET_CODE (op1) == MEM + || GET_CODE (op1) == CONST_DOUBLE + || (GET_CODE (op1) == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER + && ! FP_REGNO_P (REGNO (op1))))) + { + rtx last; + + if (GET_CODE (op1) == CONST_DOUBLE) + op1 = force_const_mem (SFmode, op1); + + last = emit_move_insn (operand_subword (op0, 0, 1, SFmode), + operand_subword_force (op1, 0, SFmode)); + + REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, op1, REG_NOTES (last)); + DONE; + } +}") + +;; Define the move insns for SF and DF. Check for all general regs +;; in the FP insns and make them non-FP if so. Do the same if the input and +;; output are the same (the insn will be deleted in this case and we don't +;; want to think there are FP insns when there might not be). +(define_insn "" + [(set (match_operand:SF 0 "general_operand" "=*frg") + (match_dup 0))] + "" + "nopr r0" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +(define_insn "" + [(set (match_operand:SF 0 "general_operand" "=r,*fr,r,r,Q,m,frg") + (match_operand:SF 1 "general_operand" "r,0,Q,m,r,r,frg")) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z,z,z,z,z,z,z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t,t,t,t,t,t,t"))] + "" + "* +{ switch (which_alternative) + { + case 0: + return \"cas %0,%1,r0\"; + case 1: + return \"nopr r0\"; + case 2: + return \"l%M1 %0,%1\"; + case 3: + return \"load %0,%1\"; + case 4: + return \"st%M0 %1,%0\"; + case 5: + return \"store %1,%0,%3\"; + default: + return output_fpop (SET, operands[0], operands[1], 0, insn); + } +}" + [(set_attr "type" "address,address,load,load,store,store,fp") + (set_attr "length" "2,2,*,*,*,*,*")]) + +(define_insn "" + [(set (match_operand:DF 0 "general_operand" "=*frg") + (match_dup 0))] + "" + "nopr r0" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +(define_insn "" + [(set (match_operand:DF 0 "general_operand" "=r,*fr,r,r,Q,m,frg") + (match_operand:DF 1 "general_operand" "r,0,Q,m,r,r,*frg")) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z,z,z,z,z,z,z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t,t,t,t,t,t,t"))] + "" + "* +{ switch (which_alternative) + { + case 0: + if (REGNO (operands[0]) == REGNO (operands[1]) + 1) + return \"cas %O0,%O1,r0\;cas %0,%1,r0\"; + else + return \"cas %0,%1,r0\;cas %O0,%O1,r0\"; + case 1: + return \"nopr r0\"; + case 2: + /* Here we must see which word to load first. We default to the + low-order word unless it occurs in the address. */ + if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + return \"l%M1 %O0,%O1\;l%M1 %0,%1\"; + else + return \"l%M1 %0,%1\;l%M1 %O0,%O1\"; + case 3: + return \"get %3,$%1\;ls %0,0(%3)\;ls %O0,4(%3)\"; + case 4: + return \"st%M0 %1,%0\;st%M0 %O1,%O0\"; + case 5: + return \"get %3,$%0\;sts %1,0(%3)\;sts %O1,4(%3)\"; + default: + return output_fpop (SET, operands[0], operands[1], 0, insn); + } +}" + [(set_attr "type" "address,multi,multi,multi,multi,multi,fp") + (set_attr "length" "2,4,*,*,*,*,*")]) + +;; Split all the above cases that involve multiple insns and no floating-point +;; data block. If before reload, we can make a SCRATCH. Otherwise, use +;; register 15. + +(define_split + [(set (match_operand:DF 0 "register_operand" "") + (match_operand:DF 1 "symbolic_memory_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 16" + [(set (reg:SI 15) (match_dup 2)) + (set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6))] + " +{ operands[2] = XEXP (operands[1], 0); + operands[3] = operand_subword (operands[0], 0, 0, DFmode); + operands[4] = gen_rtx (MEM, SImode, gen_rtx (REG, SImode, 15)); + operands[5] = operand_subword (operands[0], 1, 0, DFmode); + operands[6] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 15), + GEN_INT (4))); + + if (operands[3] == 0 || operands[5] == 0) + FAIL; +}") + +(define_split + [(set (match_operand:DF 0 "symbolic_memory_operand" "") + (match_operand:DF 1 "register_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 16" + [(set (reg:SI 15) (match_dup 2)) + (set (match_dup 3) (match_dup 4)) + (set (match_dup 5) (match_dup 6))] + " +{ operands[2] = XEXP (operands[0], 0); + operands[3] = gen_rtx (MEM, SImode, gen_rtx (REG, SImode, 15)); + operands[4] = operand_subword (operands[1], 0, 0, DFmode); + operands[5] = gen_rtx (MEM, SImode, + gen_rtx (PLUS, SImode, gen_rtx (REG, SImode, 15), + GEN_INT (4))); + operands[6] = operand_subword (operands[1], 1, 0, DFmode); + + if (operands[4] == 0 || operands[6] == 0) + FAIL; +}") + +;; If the output is a register and the input is memory, we have to be careful +;; and see which word needs to be loaded first. We also cannot to the +;; split if the input is a constant because it would result in invalid +;; insns. When the output is a MEM, we must put a CLOBBER on each of the +;; resulting insn, when it is not a MEM, we must not. +(define_split + [(set (match_operand:DF 0 "memory_operand" "") + (match_operand:DF 1 "register_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 15" + [(parallel [(set (match_dup 2) (match_dup 3)) + (clobber (match_dup 6))]) + (parallel [(set (match_dup 4) (match_dup 5)) + (clobber (match_dup 7))])] + " +{ operands[2] = operand_subword (operands[0], 0, 0, DFmode); + operands[3] = operand_subword (operands[1], 0, 0, DFmode); + operands[4] = operand_subword (operands[0], 1, 0, DFmode); + operands[5] = operand_subword (operands[1], 1, 0, DFmode); + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; + + if (reload_completed) + operands[6] = operands[7] = gen_rtx (REG, SImode, 15); + else + { + operands[6] = gen_rtx (SCRATCH, SImode); + operands[7] = gen_rtx (SCRATCH, SImode); + } +}") + +(define_split + [(set (match_operand:DF 0 "nonmemory_operand" "") + (match_operand:DF 1 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "! symbolic_memory_operand (operands[1], DFmode) + && GET_CODE (operands[1]) != CONST_DOUBLE + && (GET_CODE (operands[0]) != REG || REGNO (operands[0]) < 15) + && (GET_CODE (operands[1]) != REG || REGNO (operands[1]) < 15) + && (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG) + && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG + && ! reload_completed + && reg_overlap_mentioned_p (operands[0], operands[1]))" + [(set (match_dup 2) (match_dup 3)) + (set (match_dup 4) (match_dup 5))] + " +{ if (GET_CODE (operands[0]) != REG + || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, + operands[1], 0)) + { + operands[2] = operand_subword (operands[0], 0, 0, DFmode); + operands[3] = operand_subword (operands[1], 0, 0, DFmode); + operands[4] = operand_subword (operands[0], 1, 0, DFmode); + operands[5] = operand_subword (operands[1], 1, 0, DFmode); + } + else + { + operands[2] = operand_subword (operands[0], 1, 0, DFmode); + operands[3] = operand_subword (operands[1], 1, 0, DFmode); + operands[4] = operand_subword (operands[0], 0, 0, DFmode); + operands[5] = operand_subword (operands[1], 0, 0, DFmode); + } + + if (operands[2] == 0 || operands[3] == 0 + || operands[4] == 0 || operands[5] == 0) + FAIL; +}") + +;; Conversions from one integer mode to another. +;; It is possible sometimes to sign- or zero-extend while fetching from memory. +;; +;; First, sign-extensions: +(define_expand "extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (sign_extend:SI (match_operand:HI 1 "symbolic_memory_operand" "m")))] + "" + "loadha %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,b") + (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + exts %0,%1 + lha%M1 %0,%1 + loadha %0,%1" + [(set_attr "type" "arith,load,load") + (set_attr "length" "2,*,*")]) + +(define_expand "extendqisi2" + [(set (match_dup 2) + (ashift:SI (match_operand:QI 1 "register_operand" "") + (const_int 24))) + (set (match_operand:SI 0 "register_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 24)))] + "" + " +{ operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +(define_expand "extendqihi2" + [(set (match_dup 2) + (ashift:SI (match_operand:QI 1 "register_operand" "") + (const_int 24))) + (set (match_operand:HI 0 "register_operand" "") + (ashiftrt:SI (match_dup 2) + (const_int 24)))] + "" + " +{ operands[0] = gen_lowpart (SImode, operands[0]); + operands[1] = gen_lowpart (SImode, operands[1]); + operands[2] = gen_reg_rtx (SImode); }") + +;; Define peepholes to eliminate an instruction when we are doing a sign +;; extension but cannot clobber the input. +;; +;; In this case we will shift left 24 bits, but need a copy first. The shift +;; can be replaced by a "mc03" instruction, but this can only be done if +;; followed by the right shift of 24 or more bits. +(define_peephole + [(set (match_operand:SI 0 "register_operand" "") + (subreg:SI (match_operand:QI 1 "register_operand" "") 0)) + (set (match_dup 0) + (ashift:SI (match_dup 0) + (const_int 24))) + (set (match_dup 0) + (ashiftrt:SI (match_dup 0) + (match_operand:SI 2 "const_int_operand" "")))] + "INTVAL (operands[2]) >= 24" + "mc03 %0,%1\;sari16 %0,%S2" + [(set_attr "type" "multi") + (set_attr "length" "4") + (set_attr "cc" "sets")]) + +;; Now zero extensions: +(define_expand "zero_extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:HI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (zero_extend:SI (match_operand:HI 1 "symbolic_memory_operand" "m")))] + "" + "loadh %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,b") + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + nilz %0,%1,65535 + lh%N1 %0,%1 + loadh %0,%1" + [(set_attr "type" "arith,loadz,load")]) + +(define_expand "zero_extendqisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:QI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (zero_extend:SI (match_operand:QI 1 "symbolic_memory_operand" "m")))] + "" + "loadc %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,b") + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + nilz %0,%1,255 + lc%M1 %0,%1 + loadc %0,%1" + [(set_attr "type" "arith,load,load")]) + +(define_expand "zero_extendqihi2" + [(set (match_operand:HI 0 "register_operand" "") + (zero_extend:HI (match_operand:QI 1 "register_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=b") + (zero_extend:HI (match_operand:QI 1 "symbolic_memory_operand" "m")))] + "" + "loadc %0,%1" + [(set_attr "type" "load")]) + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=r,r,b") + (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "r,Q,m")))] + "" + "@ + nilz %0,%1,255 + lc%M1 %0,%1 + loadc %0,%1" + [(set_attr "type" "arith,load,load")]) + +;; Various extract and insertion operations. +(define_expand "extzv" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extract:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "const_int_operand" "") + (match_operand:SI 3 "const_int_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 8) + FAIL; + + if (GET_CODE (operands[3]) != CONST_INT) + FAIL; + + if (INTVAL (operands[3]) != 0 && INTVAL (operands[3]) != 8 + && INTVAL (operands[3]) != 16 && INTVAL (operands[3]) != 24) + FAIL; +}") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=&r") + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (const_int 8) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 7) == 0" + "lis %0,0\;mc3%B2 %0,%1" + [(set_attr "type" "multi") + (set_attr "cc" "change0")]) + +(define_split + [(set (match_operand:SI 0 "register_operand" "=&r") + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (const_int 8) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 7) == 0" + [(set (match_dup 0) (const_int 0)) + (set (zero_extract:SI (match_dup 0) (const_int 8) (const_int 24)) + (zero_extract:SI (match_dup 1) (const_int 8) (match_dup 2)))] + "") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") + (const_int 8) + (const_int 24)) + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (const_int 8) + (match_operand:SI 2 "const_int_operand" "n")))] + "(INTVAL (operands[2]) & 7) == 0" + "mc3%B2 %0,%1" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +(define_expand "insv" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "const_int_operand" "") + (match_operand:SI 2 "const_int_operand" "")) + (match_operand:SI 3 "register_operand" ""))] + "" + " +{ + if (GET_CODE (operands[2]) != CONST_INT) + FAIL; + + if (GET_CODE (operands[1]) != CONST_INT) + FAIL; + + if (INTVAL (operands[1]) == 1) + { + emit_insn (gen_bit_insv (operands[0], operands[1], operands[2], + operands[3])); + DONE; + } + else if (INTVAL (operands[1]) == 8 + && (INTVAL (operands[2]) % 8 == 0)) + ; /* Accept aligned byte-wide field. */ + else + FAIL; +}") + +;; For a single-bit insert, it is better to explicitly generate references +;; to the T bit. We will call the T bit "CC0" because it can be clobbered +;; by some CC0 sets (single-bit tests). + +(define_expand "bit_insv" + [(set (cc0) + (zero_extract:SI (match_operand:SI 3 "register_operand" "") + (const_int 1) + (const_int 31))) + (parallel [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "const_int_operand" "") + (match_operand:SI 2 "const_int_operand" "")) + (ne (cc0) (const_int 0))) + (clobber (match_scratch:SI 4 ""))])] + "" + "") + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") + (const_int 8) + (match_operand:SI 1 "const_int_operand" "n")) + (match_operand:SI 2 "register_operand" "r"))] + "(INTVAL (operands[1]) & 7) == 0" + "mc%B1%.3 %0,%2" + [(set_attr "type" "address") + (set_attr "length" "2")]) + +;; This pattern cannot have any input reloads since if references CC0. +;; So we have to add code to support memory, which is the only other +;; thing that a "register_operand" can become. There is still a problem +;; if the address isn't valid and *it* needs a reload, but there is no +;; way to solve that problem, so let's hope it never happens. + +(define_insn "" + [(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r,m") + (const_int 1) + (match_operand:SI 1 "const_int_operand" "n,m")) + (ne (cc0) (const_int 0))) + (clobber (match_scratch:SI 2 "=X,b"))] + "" + "@ + mftbi%t1 %0,%S1 + l%M0 %2,%0\;mftb%t1 %2,%S1\;st%M0 %2,%0" + [(set_attr "type" "*,multi") + (set_attr "cc" "none,none") + (set_attr "length" "2,10")]) + +;; Arithmetic instructions. First, add and subtract. +;; +;; It may be that the second input is either large or small enough that +;; the operation cannot be done in a single insn. In that case, emit two. +(define_expand "addsi3" + [(set (match_operand:SI 0 "register_operand" "") + (plus:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "nonmemory_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT + && (unsigned) (INTVAL (operands[2]) + 0x8000) >= 0x10000 + && (INTVAL (operands[2]) & 0xffff) != 0) + { + int low = INTVAL (operands[2]) & 0xffff; + int high = (unsigned) INTVAL (operands[2]) >> 16; + + if (low & 0x8000) + high++, low |= 0xffff0000; + + emit_insn (gen_addsi3 (operands[0], operands[1], + GEN_INT (high << 16))); + operands[1] = operands[0]; + operands[2] = GEN_INT (low); + } +}") + +;; Put the insn to add a symbolic constant to a register separately to +;; improve register allocation since it has different register requirements. +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=b") + (plus:SI (match_operand:SI 1 "register_operand" "%b") + (match_operand:SI 2 "romp_symbolic_operand" "s")))] + "" + "get %0,$%2(%1)" + [(set_attr "type" "address") + (set_attr "length" "8")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r,r,b") + (plus:SI (match_operand:SI 1 "reg_or_add_operand" "%0,0,r,b,0,r,b") + (match_operand:SI 2 "reg_or_add_operand" "I,J,K,M,r,b,s")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + ais %0,%2 + sis %0,%n2 + ail %0,%1,%2 + cau %0,%H2(%1) + a %0,%2 + cas %0,%1,%2 + get %0,$%2(%1)" + [(set_attr "type" "arith,arith,arith,address,arith,address,misc") + (set_attr "length" "2,2,4,4,2,2,8")]) + +;; Now subtract. +;; +;; 1. If third operand is constant integer, convert it to add of the negative +;; of that integer. +;; 2. If the second operand is not a valid constant integer, force it into a +;; register. +(define_expand "subsi3" + [(set (match_operand:SI 0 "register_operand" "") + (minus:SI (match_operand:SI 1 "reg_or_any_cint_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands [2]) == CONST_INT) + { + emit_insn (gen_addsi3 (operands[0], operands[1], + GEN_INT (- INTVAL (operands[2])))); + DONE; + } + else + operands[2] = force_reg (SImode, operands[2]); + + if (GET_CODE (operands[1]) != CONST_INT + || (unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000) + operands[1] = force_reg (SImode, operands[1]); +}") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (minus:SI (match_operand:SI 1 "reg_or_D_operand" "K,0,r") + (match_operand:SI 2 "register_operand" "r,r,0")))] + "" + "@ + sfi %0,%2,%1 + s %0,%2 + sf %0,%1" + [(set_attr "length" "4,2,2")]) + +;; Multiply either calls a special RT routine or is done in-line, depending +;; on the value of a -m flag. +;; +;; First define the way we call the subroutine. +(define_expand "mulsi3_subr" + [(set (reg:SI 2) (match_operand:SI 1 "register_operand" "")) + (set (reg:SI 3) (match_operand:SI 2 "register_operand" "")) + (parallel [(set (reg:SI 2) (mult:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))]) + (set (match_operand:SI 0 "register_operand" "") + (reg:SI 2))] + "" + "") + +(define_expand "mulsi3" + [(set (match_operand:SI 0 "register_operand" "") + (mult:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" "")))] + "" + " +{ + if (! TARGET_IN_LINE_MUL) + { + emit_insn (gen_mulsi3_subr (operands[0], operands[1], operands[2])); + DONE; + } +}") + +;; Define the patterns to match. +;; We would like to provide a delay slot for the insns that call internal +;; routines, but doing so is risky since reorg will think that the use of +;; r2 and r3 is completed in the insn needing the delay slot. Also, it +;; won't know that the cc will be clobbered. So take the safe approach +;; and don't give them delay slots. +(define_insn "" + [(set (reg:SI 2) + (mult:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "! TARGET_IN_LINE_MUL" + "bali%# r15,lmul$$" + [(set_attr "type" "misc") + (set_attr "in_delay_slot" "no")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=&r") + (mult:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "register_operand" "r")))] + "TARGET_IN_LINE_MUL" + "* +{ return output_in_line_mul (); }" + [(set_attr "length" "38") + (set_attr "type" "multi")]) + +;; Handle divide and modulus. The same function returns both values, +;; so use divmodsi4. This divides arg 1 by arg 2 with quotient to go +;; into arg 0 and remainder in arg 3. +;; +;; We want to put REG_EQUAL notes for the two outputs. So we need a +;; function to do everything else. +(define_expand "divmodsi4_doit" + [(set (reg:SI 2) + (match_operand:SI 0 "register_operand" "")) + (set (reg:SI 3) + (match_operand:SI 1 "register_operand" "")) + (parallel [(set (reg:SI 2) (div:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) (mod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "divmodsi4" + [(parallel [(set (match_operand:SI 0 "register_operand" "") + (div:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" ""))) + (set (match_operand:SI 3 "register_operand" "") + (mod:SI (match_dup 1) (match_dup 2)))])] + "" + " +{ + rtx insn; + + emit_insn (gen_divmodsi4_doit (operands[1], operands[2])); + insn = emit_move_insn (operands[0], gen_rtx (REG, SImode, 2)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (DIV, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + insn = emit_move_insn (operands[3], gen_rtx (REG, SImode, 3)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (MOD, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + DONE; +}") + +(define_insn "" + [(set (reg:SI 2) + (div:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) + (mod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "" + "bali%# r15,ldiv$$" + [(set_attr "type" "misc") + (set_attr "in_delay_slot" "no")]) + +;; Similarly for unsigned divide. +(define_expand "udivmodsi4_doit" + [(set (reg:SI 2) + (match_operand:SI 0 "register_operand" "")) + (set (reg:SI 3) + (match_operand:SI 1 "register_operand" "")) + (parallel [(set (reg:SI 2) (udiv:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) (umod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "udivmodsi4" + [(parallel [(set (match_operand:SI 0 "register_operand" "") + (udiv:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "register_operand" ""))) + (set (match_operand:SI 3 "register_operand" "") + (umod:SI (match_dup 1) (match_dup 2)))])] + "" + " +{ + rtx insn; + + emit_insn (gen_udivmodsi4_doit (operands[1], operands[2])); + insn = emit_move_insn (operands[0], gen_rtx (REG, SImode, 2)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (UDIV, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + insn = emit_move_insn (operands[3], gen_rtx (REG, SImode, 3)); + REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, + gen_rtx (UMOD, SImode, operands[1], + operands[2]), + REG_NOTES (insn)); + DONE; +}") + +(define_insn "" + [(set (reg:SI 2) + (udiv:SI (reg:SI 2) (reg:SI 3))) + (set (reg:SI 3) + (umod:SI (reg:SI 2) (reg:SI 3))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))] + "" + "bali%# r15,uldiv$$" + [(set_attr "type" "misc") + (set_attr "in_delay_slot" "no")]) + +;; Define DImode arithmetic operations. +;; +;; It is possible to do certain adds and subtracts with constants in a single +;; insn, but it doesn't seem worth the trouble. +;; +;; Don't use DEFINE_SPLIT on these because the dependency on CC can't be +;; easily tracked in that case! +(define_insn "adddi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_operand:DI 1 "register_operand" "%0") + (match_operand:DI 2 "register_operand" "r")))] + "" + "a %O0,%O2\;ae %0,%2" + [(set_attr "type" "multi")]) + +(define_insn "subdi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (minus:DI (match_operand:DI 1 "register_operand" "0") + (match_operand:DI 2 "register_operand" "r")))] + "" + "s %O0,%O2\;se %0,%2" + [(set_attr "type" "multi")]) + +(define_insn "negdi2" + [(set (match_operand:DI 0 "register_operand" "=r,&r") + (neg:DI (match_operand:DI 1 "register_operand" "0,r")))] + "" + "twoc %O0,%O1\;onec %0,%1\;aei %0,%0,0" + [(set_attr "type" "multi") + (set_attr "length" "8")]) + +;; Unary arithmetic operations. +(define_insn "abssi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (abs:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "abs %0,%1" + [(set_attr "length" "2")]) + +(define_insn "negsi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "twoc %0,%1" + [(set_attr "length" "2")]) + +(define_insn "one_cmplsi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (not:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "onec %0,%1" + [(set_attr "length" "2")]) + + +;; Logical insns: AND, IOR, and XOR +;; +;; If the operation is being performed on a 32-bit constant such that +;; it cannot be done in one insn, do it in two. We may lose a bit on +;; CSE in pathological cases, but it seems better doing it this way. +(define_expand "andsi3" + [(set (match_operand:SI 0 "register_operand" "") + (and:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + int top = (unsigned) INTVAL (operands[2]) >> 16; + int bottom = INTVAL (operands[2]) & 0xffff; + + if (top != 0 && top != 0xffff && bottom != 0 && bottom != 0xffff) + { + emit_insn (gen_andsi3 (operands[0], operands[1], + GEN_INT ((top << 16) | 0xffff))); + operands[1] = operands[0]; + operands[2] = GEN_INT (0xffff0000 | bottom); + } + } +}"); + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (and:SI (match_operand:SI 1 "reg_or_and_operand" "%0,r,0") + (match_operand:SI 2 "reg_or_and_operand" "P,LMO,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + clrb%k2 %0,%b2 + ni%z2 %0,%1,%Z2 + n %0,%2" + [(set_attr "length" "2,4,2")]) + +;; logical OR (IOR) +(define_expand "iorsi3" + [(set (match_operand:SI 0 "register_operand" "") + (ior:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + int top = (unsigned) INTVAL (operands[2]) >> 16; + int bottom = INTVAL (operands[2]) & 0xffff; + + if (top != 0 && bottom != 0) + { + emit_insn (gen_iorsi3 (operands[0], operands[1], + GEN_INT ((top << 16)))); + operands[1] = operands[0]; + operands[2] = GEN_INT (bottom); + } + } +}"); + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (ior:SI (match_operand:SI 1 "reg_or_cint_operand" "%0,r,0") + (match_operand:SI 2 "reg_or_cint_operand" "N,LM,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + setb%h2 %0,%b2 + oi%h2 %0,%1,%H2 + o %0,%2" + [(set_attr "length" "2,4,2")]) + +;; exclusive-or (XOR) +(define_expand "xorsi3" + [(set (match_operand:SI 0 "register_operand" "") + (xor:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "reg_or_any_cint_operand" "")))] + "" + " +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + int top = (unsigned) INTVAL (operands[2]) >> 16; + int bottom = INTVAL (operands[2]) & 0xffff; + + if (top == 0xffff && bottom == 0xffff) + { + emit_insn (gen_one_cmplsi2 (operands[0], operands[1])); + DONE; + } + else if (top != 0 && bottom != 0) + { + emit_insn (gen_xorsi3 (operands[0], operands[1], + GEN_INT ((top << 16)))); + operands[1] = operands[0]; + operands[2] = GEN_INT (bottom); + } + } +}"); + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (xor:SI (match_operand:SI 1 "reg_or_cint_operand" "%r,0") + (match_operand:SI 2 "reg_or_cint_operand" "LM,r")))] + "register_operand (operands[1], SImode) + || register_operand (operands[2], SImode)" + "@ + xi%h2 %0,%1,%H2 + x %0,%2" + [(set_attr "length" "4,2")]) + +;; Various shift insns +(define_insn "ashrsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0") + (match_operand:SI 2 "reg_or_cint_operand" "r,n")))] + "" + "@ + sar %0,%2 + sari%s2 %0,%S2" + [(set_attr "length" "2")]) + +(define_insn "lshrsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0") + (match_operand:SI 2 "reg_or_cint_operand" "r,n")))] + "" + "@ + sr %0,%2 + sri%s2 %0,%S2" + [(set_attr "length" "2")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r") + (ashift:SI (match_operand:SI 1 "register_operand" "b") + (const_int 1)))] + "" + "cas %0,%1,%1" + [(set_attr "length" "2") + (set_attr "type" "address")]) + +(define_insn "ashlsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (ashift:SI (match_operand:SI 1 "register_operand" "0,0") + (match_operand:SI 2 "reg_or_cint_operand" "r,n")))] + "" + "@ + sl %0,%2 + sli%s2 %0,%S2" + [(set_attr "length" "2")]) + +;; Function call insns: +;; +;; On the ROMP, &fcn is actually a pointer to the data area, which is passed +;; to the function in r0. &.fcn is the actual starting address of the +;; function. Also, the word at &fcn contains &.fcn. +;; +;; For both functions that do and don't return values, there are two cases: +;; where the function's address is a constant, and where it isn't. +;; +;; Operand 1 (2 for `call_value') is the number of arguments and is not used. +(define_expand "call" + [(use (match_operand:SI 0 "address_operand" "")) + (use (match_operand 1 "" ""))] + "" + " +{ + rtx reg0 = gen_rtx (REG, SImode, 0); + rtx call_insn; + + if (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != CONST_INT) + abort(); + + operands[0] = XEXP (operands[0], 0); + if (GET_CODE (operands[0]) == SYMBOL_REF) + { + extern rtx get_symref (); + char *real_fcnname = + (char *) alloca (strlen (XSTR (operands[0], 0)) + 2); + + /* Copy the data area address to r0. */ + emit_move_insn (reg0, force_reg (SImode, operands[0])); + strcpy (real_fcnname, \".\"); + strcat (real_fcnname, XSTR (operands[0], 0)); + operands[0] = get_symref (real_fcnname); + } + else + { + rtx data_access; + + emit_move_insn (reg0, force_reg (SImode, operands[0])); + data_access = gen_rtx (MEM, SImode, operands[0]); + RTX_UNCHANGING_P (data_access) = 1; + operands[0] = copy_to_reg (data_access); + } + + call_insn = emit_call_insn (gen_call_internal (operands[0], operands[1])); + use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), reg0); + DONE; +}") + +(define_insn "call_internal" + [(call (mem:SI (match_operand:SI 0 "register_operand" "b")) + (match_operand 1 "" "g")) + (clobber (reg:SI 15))] + "" + "balr%# r15,%0" + [(set_attr "type" "call") + (set_attr "length" "2")]) + +(define_insn "" + [(call (mem:SI (match_operand:SI 0 "romp_symbolic_operand" "i")) + (match_operand 1 "" "g")) + (clobber (reg:SI 15))] + "GET_CODE (operands[0]) == SYMBOL_REF" + "bali%# r15,%0" + [(set_attr "type" "call")]) + +;; Call a function and return a value. +(define_expand "call_value" + [(use (match_operand 0 "" "")) + (use (match_operand:SI 1 "address_operand" "")) + (use (match_operand 2 "" ""))] + "" + " +{ + rtx reg0 = gen_rtx (REG, SImode, 0); + rtx call_insn; + + if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != CONST_INT) + abort(); + + operands[1] = XEXP (operands[1], 0); + if (GET_CODE (operands[1]) == SYMBOL_REF) + { + extern rtx get_symref (); + char *real_fcnname = + (char *) alloca (strlen (XSTR (operands[1], 0)) + 2); + + /* Copy the data area address to r0. */ + emit_move_insn (reg0,force_reg (SImode, operands[1])); + strcpy (real_fcnname, \".\"); + strcat (real_fcnname, XSTR (operands[1], 0)); + operands[1] = get_symref (real_fcnname); + } + else + { + rtx data_access; + + emit_move_insn (reg0,force_reg (SImode, operands[1])); + data_access = gen_rtx (MEM, SImode, operands[1]); + RTX_UNCHANGING_P (data_access) = 1; + operands[1] = copy_to_reg (data_access); + } + + call_insn = emit_call_insn (gen_call_value_internal (operands[0], + operands[1], + operands[2])); + use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), reg0); + DONE; +}") + +(define_insn "call_value_internal" + [(set (match_operand 0 "" "=fg") + (call (mem:SI (match_operand:SI 1 "register_operand" "b")) + (match_operand 2 "" "g"))) + (clobber (reg:SI 15))] + "" + "balr%# r15,%1" + [(set_attr "length" "2") + (set_attr "type" "call")]) + +(define_insn "" + [(set (match_operand 0 "" "=fg") + (call (mem:SI (match_operand:SI 1 "romp_symbolic_operand" "i")) + (match_operand 2 "" "g"))) + (clobber (reg:SI 15))] + "GET_CODE (operands[1]) == SYMBOL_REF" + "bali%# r15,%1" + [(set_attr "type" "call")]) + +;; Call subroutine returning any type. + +(define_expand "untyped_call" + [(parallel [(call (match_operand 0 "" "") + (const_int 0)) + (match_operand 1 "" "") + (match_operand 2 "" "")])] + "" + " +{ + int i; + + emit_call_insn (gen_call (operands[0], const0_rtx, NULL, const0_rtx)); + + for (i = 0; i < XVECLEN (operands[2], 0); i++) + { + rtx set = XVECEXP (operands[2], 0, i); + emit_move_insn (SET_DEST (set), SET_SRC (set)); + } + + /* The optimizer does not know that the call sets the function value + registers we stored in the result block. We avoid problems by + claiming that all hard registers are used and clobbered at this + point. */ + emit_insn (gen_blockage ()); + + DONE; +}") + +;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and +;; all of memory. This blocks insns from being moved across this point. + +(define_insn "blockage" + [(unspec_volatile [(const_int 0)] 0)] + "" + "") + +;; No operation insn. +(define_insn "nop" + [(const_int 0)] + "" + "nopr r0" + [(set_attr "type" "address") + (set_attr "length" "2") + (set_attr "cc" "none")]) + +;; Here are the floating-point operations. +;; +;; Start by providing DEFINE_EXPAND for each operation. +;; The insns will be handled with MATCH_OPERATOR; the methodology will be +;; discussed below. + +;; First the conversion operations. + +(define_expand "truncdfsf2" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (float_truncate:SF (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "extendsfdf2" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (float_extend:DF (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "floatsisf2" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (float:SF (match_operand:SI 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "floatsidf2" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (float:DF (match_operand:SI 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "fix_truncsfsi2" + [(parallel [(set (match_operand:SI 0 "general_operand" "") + (fix:SI (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "fix_truncdfsi2" + [(parallel [(set (match_operand:SI 0 "general_operand" "") + (fix:SI (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; Now the binary operations. + +(define_expand "addsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (plus:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "adddf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (plus:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "subsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (minus:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "subdf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (minus:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "mulsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (mult:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "muldf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (mult:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "divsf3" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (div:SF (match_operand:SF 1 "general_operand" "") + (match_operand:SF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "divdf3" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (div:DF (match_operand:DF 1 "general_operand" "") + (match_operand:DF 2 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; Unary floating-point operations. +;; +;; Negations can be done without floating-point, since this is IEEE. +;; But we cannot do this if an operand is a hard FP register, since +;; the SUBREG we create would not be valid. +(define_expand "negsf2" + [(set (match_operand:SF 0 "register_operand" "") + (neg:SF (match_operand:SF 1 "register_operand" "")))] + "" + " +{ + if (! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[0]))) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[1])))) + { + rtx result; + rtx target = operand_subword (operands[0], 0, 1, SFmode); + + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, SFmode), + GEN_INT (0x80000000), + target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + /* Make a place for REG_EQUAL. */ + emit_move_insn (operands[0], operands[0]); + DONE; + } +}") + +(define_expand "negdf2" + [(set (match_operand:DF 0 "register_operand" "") + (neg:DF (match_operand:DF 1 "register_operand" "")))] + "" + " +{ + if (! (GET_CODE (operands[0]) == REG + && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[0]))) + && ! (GET_CODE (operands[1]) == REG + && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER + && FP_REGNO_P (REGNO (operands[1])))) + { + rtx result; + rtx target = operand_subword (operands[0], 0, 1, DFmode); + rtx insns; + + start_sequence (); + result = expand_binop (SImode, xor_optab, + operand_subword_force (operands[1], 0, DFmode), + GEN_INT (0x80000000), + target, 0, OPTAB_WIDEN); + if (result == 0) + abort (); + + if (result != target) + emit_move_insn (result, target); + + emit_move_insn (operand_subword (operands[0], 1, 1, DFmode), + operand_subword_force (operands[1], 1, DFmode)); + + insns = get_insns (); + end_sequence (); + + emit_no_conflict_block (insns, operands[0], operands[1], 0, 0); + DONE; + } +}") + +(define_expand "abssf2" + [(parallel [(set (match_operand:SF 0 "general_operand" "") + (abs:SF (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "absdf2" + [(parallel [(set (match_operand:DF 0 "general_operand" "") + (abs:DF (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; Any floating-point operation can be either SFmode or DFmode, and each +;; operand (including the output) can be either a normal operand or a +;; conversion from a normal operand. +;; +;; We use MATCH_OPERATOR to match a floating-point binary or unary operator +;; and input and output conversions. So we need 2^N patterns for each type +;; of operation, where N is the number of operands, including the output. +;; There are thus a total of 14 patterns, 8 for binary operations, 4 for +;; unary operations and two for conversion/move operations (only one +;; operand can have a conversion for move operations). In addition, we have +;; to be careful that a floating-point reload register doesn't get allocated +;; for an integer. We take care of this for inputs with PREFERRED_RELOAD_CLASS +;; but need to have two different constraints for outputs. This means that +;; we have to duplicate each pattern where the output could be an integer. +;; This adds another 7 patterns, for a total of 21. + +;; Start with conversion operations (moves are done above). + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operand 2 "general_operand" "frg")])) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (SET, operands[0], operands[2], 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operand 2 "general_operand" "frg")])) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (SET, operands[0], operands[2], 0, insn); +}" + [(set_attr "type" "fp")]) + +;; Next, binary floating-point operations. + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operand 2 "general_operand" "frg") + (match_operand 3 "general_operand" "frg")])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[2], operands[3])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[2], operands[3], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operand 2 "general_operand" "frg") + (match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[2], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[2], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")]) + (match_operand 4 "general_operand" "frg")])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[3], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_binary" + [(match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")]) + (match_operator 4 "float_conversion" + [(match_operand 5 "general_operand" "frg")])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[3], operands[5])" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], + operands[3], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operand 4 "general_operand" "frg")])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operand 4 "general_operand" "frg")])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[4], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operator 4 "float_conversion" + [(match_operand 5 "general_operand" "frg")])])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operand 3 "general_operand" "frg") + (match_operator 4 "float_conversion" + [(match_operand 5 "general_operand" "frg")])])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], operands[4])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[3], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operand 5 "general_operand" "frg")])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[5])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operand 5 "general_operand" "frg")])])) + (clobber (match_operand:SI 6 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 7 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[5])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[5], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operator 5 "float_conversion" + [(match_operand 6 "general_operand" "frg")])])])) + (clobber (match_operand:SI 7 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 8 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[6])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[6], insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_binary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")]) + (match_operator 5 "float_conversion" + [(match_operand 6 "general_operand" "frg")])])])) + (clobber (match_operand:SI 7 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 8 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], operands[6])" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], + operands[4], operands[6], insn); +}" + [(set_attr "type" "fp")]) + +;; Unary floating-point operations. + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_unary" + [(match_operand 2 "general_operand" "frg")])) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[2], 0)" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], operands[2], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_unary" + [(match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")])])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[1]), operands[3], 0)" + "* +{ return output_fpop (GET_CODE (operands[1]), operands[0], operands[3], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operand 3 "general_operand" "frg")])])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[3], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operand 3 "general_operand" "frg")])])) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[3], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[3], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand:SI 0 "general_operand" "=g") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")])])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[4], + 0, insn); +}" + [(set_attr "type" "fp")]) + +(define_insn "" + [(set (match_operand 0 "general_operand" "=frg") + (match_operator 1 "float_conversion" + [(match_operator 2 "float_unary" + [(match_operator 3 "float_conversion" + [(match_operand 4 "general_operand" "frg")])])])) + (clobber (match_operand:SI 5 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 6 "reg_15_operand" "=&t"))] + "check_precision (GET_MODE (operands[2]), operands[4], 0)" + "* +{ return output_fpop (GET_CODE (operands[2]), operands[0], operands[4], + 0, insn); +}" + [(set_attr "type" "fp")]) + +;; Compare insns are next. Note that the ROMP has two types of compares, +;; signed & unsigned, and one type of branch. Use the routine +;; `next_insn_tests_no_unsigned' to see which type to use. +(define_expand "tstsi" + [(set (cc0) + (match_operand:SI 0 "register_operand" "r"))] + "" + "") + +(define_expand "cmpsi" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "reg_or_cint_operand" "")))] + "" + "") + +;; Signed compare, `test' first. + +(define_insn "" + [(set (cc0) + (match_operand:SI 0 "register_operand" "r"))] + "next_insn_tests_no_unsigned (insn)" + "cis %0,0" + [(set_attr "length" "2") + (set_attr "type" "compare")]) + +(define_insn "" + [(set (cc0) (match_operand:SI 0 "register_operand" "r,r,r")) + (set (match_operand:SI 1 "reg_or_nonsymb_mem_operand" "=0,r,Q") + (match_dup 0))] + "next_insn_tests_no_unsigned (insn)" + "@ + cis %1,0 + nilo %1,%0,65535 + st%M1 %0,%1\;cis %0,0" + [(set_attr "type" "compare,compare,store") + (set_attr "length" "2,4,6") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "r,r,r") + (match_operand:SI 1 "reg_or_cint_operand" "I,K,r")))] + "next_insn_tests_no_unsigned (insn)" + "@ + cis %0,%1 + cil %0,%1 + c %0,%1" + [(set_attr "length" "2,4,2") + (set_attr "type" "compare")]) + +;; Unsigned comparisons, `test' first, again. +(define_insn "" + [(set (cc0) + (match_operand:SI 0 "register_operand" "r"))] + "! next_insn_tests_no_unsigned (insn)" + "clil %0,0" + [(set_attr "type" "compare")]) + +(define_insn "" + [(set (cc0) + (compare (match_operand:SI 0 "register_operand" "r,r") + (match_operand:SI 1 "reg_or_cint_operand" "K,r")))] + "! next_insn_tests_no_unsigned (insn)" + "@ + clil %0,%1 + cl %0,%1" + [(set_attr "length" "4,2") + (set_attr "type" "compare")]) + +;; Bit test insn. Many cases are converted into this by combine. This +;; uses the ROMP test bit. + +(define_insn "" + [(set (cc0) + (zero_extract (match_operand:SI 0 "register_operand" "r,r") + (const_int 1) + (match_operand:SI 1 "reg_or_any_cint_operand" "r,n")))] + "next_insn_tests_no_inequality (insn)" + "@ + mttb %0,%1 + mttbi%t1 %0,%S1" + [(set_attr "length" "2") + (set_attr "type" "compare") + (set_attr "cc" "tbit")]) + +;; Floating-point comparisons. There are two, equality and order. +;; The difference will be that a trap for NaN will be given on the orderr +;; comparisons only. + +(define_expand "cmpsf" + [(parallel [(set (cc0) (compare (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "cmpdf" + [(parallel [(set (cc0) (compare (match_operand:DF 0 "general_operand" "") + (match_operand:DF 1 "general_operand" ""))) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "tstsf" + [(parallel [(set (cc0) (match_operand:SF 0 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +(define_expand "tstdf" + [(parallel [(set (cc0) (match_operand:DF 0 "general_operand" "")) + (clobber (reg:SI 0)) + (clobber (reg:SI 15))])] + "" + "") + +;; There are four cases for compare and two for test. These correspond +;; to each input having a floating-point conversion or not. + +(define_insn "" + [(set (cc0) (compare (match_operand 0 "general_operand" "frg") + (match_operand 1 "general_operand" "frg"))) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t"))] + "GET_MODE (operands[1]) == SFmode || GET_MODE (operands[1]) == DFmode" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[0], operands[1], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (compare (match_operand 0 "general_operand" "frg") + (match_operator 1 "float_conversion" + [(match_operand 2 "general_operand" "frg")]))) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[0], operands[2], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (compare (match_operator 0 "float_conversion" + [(match_operand 1 "general_operand" "frg")]) + (match_operand 2 "general_operand" "frg"))) + (clobber (match_operand:SI 3 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 4 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[1], operands[2], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (compare (match_operator 0 "float_conversion" + [(match_operand 1 "general_operand" "frg")]) + (match_operator 2 "float_conversion" + [(match_operand 3 "general_operand" "frg")]))) + (clobber (match_operand:SI 4 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 5 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[1], operands[3], 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (match_operand 0 "general_operand" "frg")) + (clobber (match_operand:SI 1 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 2 "reg_15_operand" "=&t"))] + "GET_MODE (operands[0]) == SFmode || GET_MODE (operands[0]) == DFmode" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[0], CONST0_RTX (GET_MODE (operands[0])), + 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +(define_insn "" + [(set (cc0) (match_operator 0 "float_conversion" + [(match_operand 1 "general_operand" "frg")])) + (clobber (match_operand:SI 2 "reg_0_operand" "=&z")) + (clobber (match_operand:SI 3 "reg_15_operand" "=&t"))] + "" + "* +{ return output_fpop (next_insn_tests_no_inequality (insn) ? EQ : GE, + operands[1], CONST0_RTX (GET_MODE (operands[1])), + 0, insn); +}" + [(set_attr "type" "fp") + (set_attr "cc" "compare")]) + +;; Branch insns. Unsigned vs. signed have already +;; been taken care of. The only insns that need to be concerned about the +;; test bit are beq and bne because the rest are either always true, +;; always false, or converted to EQ or NE. + +;; For conditional branches, we use `define_expand' and just have two patterns +;; that match them. Operand printing does most of the work. + +(define_expand "beq" + [(set (pc) + (if_then_else (eq (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bne" + [(set (pc) + (if_then_else (ne (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgt" + [(set (pc) + (if_then_else (gt (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgtu" + [(set (pc) + (if_then_else (gtu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "blt" + [(set (pc) + (if_then_else (lt (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bltu" + [(set (pc) + (if_then_else (ltu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bge" + [(set (pc) + (if_then_else (ge (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bgeu" + [(set (pc) + (if_then_else (geu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "ble" + [(set (pc) + (if_then_else (le (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +(define_expand "bleu" + [(set (pc) + (if_then_else (leu (cc0) + (const_int 0)) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "") + +;; Define both directions of branch and return. + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(cc0) (const_int 0)]) + (label_ref (match_operand 0 "" "")) + (pc)))] + "" + "* +{ + if (restore_compare_p (operands[1])) + return 0; + else if (get_attr_length (insn) == 2) + return \"j%j1 %l0\"; + else + return \"b%j1%# %l0\"; +}" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(cc0) (const_int 0)]) + (return) + (pc)))] + "null_epilogue ()" + "* +{ + if (restore_compare_p (operands[0])) + return 0; + else + return \"b%j0r%# r15\"; +}" + [(set_attr "type" "return")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(cc0) (const_int 0)]) + (pc) + (label_ref (match_operand 0 "" ""))))] + "" + "* +{ + if (restore_compare_p (operands[1])) + return 0; + else if (get_attr_length (insn) == 2) + return \"j%J1 %l0\"; + else + return \"b%J1%# %l0\"; +}" + [(set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(cc0) (const_int 0)]) + (pc) + (return)))] + "null_epilogue ()" + "* +{ + if (restore_compare_p (operands[0])) + return 0; + else + return \"b%J0r%# r15\"; +}" + [(set_attr "type" "return")]) + +;; Unconditional branch and return. + +(define_insn "jump" + [(set (pc) + (label_ref (match_operand 0 "" "")))] + "" + "* +{ + if (get_attr_length (insn) == 2) + return \"j %l0\"; + else + return \"b%# %l0\"; +}" + [(set_attr "type" "branch")]) + +(define_insn "return" + [(return)] + "null_epilogue ()" + "br%# r15" + [(set_attr "type" "return")]) + +(define_insn "indirect_jump" + [(set (pc) (match_operand:SI 0 "register_operand" "r"))] + "" + "br%# %0" + [(set_attr "type" "ibranch")]) + +;; Table jump for switch statements: +(define_insn "tablejump" + [(set (pc) + (match_operand:SI 0 "register_operand" "r")) + (use (label_ref (match_operand 1 "" "")))] + "" + "br%# %0" + [(set_attr "type" "ibranch")]) diff --git a/gcc/config/romp/x-mach b/gcc/config/romp/x-mach new file mode 100755 index 0000000..a181e1b --- /dev/null +++ b/gcc/config/romp/x-mach @@ -0,0 +1,5 @@ +# Ensure that CPATH is used and suppress lots of warnings. +CC=hc2 -Hcpp -w + +# The default `make' on the RT doesn't define MAKE, so do it here. +MAKE=make diff --git a/gcc/config/romp/x-romp b/gcc/config/romp/x-romp new file mode 100755 index 0000000..82f9e64 --- /dev/null +++ b/gcc/config/romp/x-romp @@ -0,0 +1,11 @@ +# obstack.h assumes that if __STDC__ is defined an ANSI C preprocessor is +# being used. -Hnocpp makes hc use its builtin preprocessor instead of +# /lib/cpp. gcc doesn't use <sys/ioctl.h>, so it doesn't matter whether +# fixincludes has been run. +# +# hc's warnings do nothing but obscure the output, hence the -w. +# +CC=hc -Hnocpp -w -U__STDC__ + +# The default `make' on the RT doesn't define MAKE, so do it here. +MAKE=make diff --git a/gcc/config/romp/xm-romp.h b/gcc/config/romp/xm-romp.h new file mode 100755 index 0000000..37de6de --- /dev/null +++ b/gcc/config/romp/xm-romp.h @@ -0,0 +1,54 @@ +/* Configuration for GNU C-compiler for IBM RT PC. + Copyright (C) 1989, 1991, 1993 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +/* #defines that need visibility everywhere. */ +#define FALSE 0 +#define TRUE 1 + +/* This describes the machine the compiler is hosted on. */ +#define HOST_BITS_PER_CHAR 8 +#define HOST_BITS_PER_SHORT 16 +#define HOST_BITS_PER_INT 32 +#define HOST_BITS_PER_LONG 32 +#define HOST_BITS_PER_LONGLONG 64 + +#define HOST_WORDS_BIG_ENDIAN + +/* target machine dependencies. + tm.h is a symbolic link to the actual target specific file. */ +#include "tm.h" + +/* Arguments to use with `exit'. */ +#define SUCCESS_EXIT_CODE 0 +#define FATAL_EXIT_CODE 33 + +/* If compiled with hc, use the built-in alloca and memcpy. + These definitions assume hc version 2. */ +#ifdef __HIGHC__ +#define alloca _Alloca +#define bcopy(s,d,l) memcpy(d,s,l) +#define FUNCTION_CONVERSION_BUG +#endif + +/* We cannot allow cccp.o to contain a copy of BCOPY as this will + cause multiple definitions since BLT and BCOPY share an object file + in libc.a and the library references BLT. */ +#define BSTRING |