diff options
Diffstat (limited to 'gcc/config/sh/sh.h')
-rwxr-xr-x | gcc/config/sh/sh.h | 2232 |
1 files changed, 2232 insertions, 0 deletions
diff --git a/gcc/config/sh/sh.h b/gcc/config/sh/sh.h new file mode 100755 index 0000000..eff316a --- /dev/null +++ b/gcc/config/sh/sh.h @@ -0,0 +1,2232 @@ +/* Definitions of target machine for GNU compiler for Hitachi Super-H. + Copyright (C) 1993-1998 Free Software Foundation, Inc. + Contributed by Steve Chamberlain (sac@cygnus.com). + Improved by Jim Wilson (wilson@cygnus.com). + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +#define TARGET_VERSION \ + fputs (" (Hitachi SH)", stderr); + +/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't + include it here, because hconfig.h is also included by gencodes.c . */ +extern int code_for_indirect_jump_scratch; + +/* Generate SDB debugging information. */ + +#define SDB_DEBUGGING_INFO + +/* Output DBX (stabs) debugging information if doing -gstabs. */ + +#include "dbxcoff.h" + +#define SDB_DELIM ";" + +#define CPP_SPEC "%{ml:-D__LITTLE_ENDIAN__} \ +%{m1:-D__sh1__} \ +%{m2:-D__sh2__} \ +%{m3:-D__sh3__} \ +%{m3e:-D__SH3E__} \ +%{m4-single-only:-D__SH4_SINGLE_ONLY__} \ +%{m4-single:-D__SH4_SINGLE__} \ +%{m4:-D__SH4__} \ +%{!m1:%{!m2:%{!m3:%{!m3e:%{!m4:%{!m4-single:%{!m4-single-only:-D__sh1__}}}}}}}" + +#define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)" + +#define ASM_SPEC "%{ml:-little} %{mrelax:-relax}" + +#define LINK_SPEC "%{ml:-m shl} %{mrelax:-relax}" + +/* We can not debug without a frame pointer. */ +/* #define CAN_DEBUG_WITHOUT_FP */ + +#define CONDITIONAL_REGISTER_USAGE \ + if (! TARGET_SH4 || ! TARGET_FMOVD) \ + { \ + int regno; \ + for (regno = FIRST_XD_REG; regno <= LAST_XD_REG; regno++) \ + fixed_regs[regno] = call_used_regs[regno] = 1; \ + if (! TARGET_SH4) \ + { \ + if (! TARGET_SH3E) \ + { \ + int regno; \ + for (regno = FIRST_FP_REG; regno <= LAST_FP_REG; regno++) \ + fixed_regs[regno] = call_used_regs[regno] = 1; \ + fixed_regs[FPUL_REG] = call_used_regs[FPUL_REG] = 1; \ + } \ + } \ + } \ + /* Hitachi saves and restores mac registers on call. */ \ + if (TARGET_HITACHI) \ + { \ + call_used_regs[MACH_REG] = 0; \ + call_used_regs[MACL_REG] = 0; \ + } + +/* ??? Need to write documentation for all SH options and add it to the + invoke.texi file. */ + +/* Run-time compilation parameters selecting different hardware subsets. */ + +extern int target_flags; +#define ISIZE_BIT (1<<1) +#define DALIGN_BIT (1<<6) +#define SH1_BIT (1<<8) +#define SH2_BIT (1<<9) +#define SH3_BIT (1<<10) +#define SH3E_BIT (1<<11) +#define HARD_SH4_BIT (1<<5) +#define FPU_SINGLE_BIT (1<<7) +#define SH4_BIT (1<<12) +#define FMOVD_BIT (1<<4) +#define SPACE_BIT (1<<13) +#define BIGTABLE_BIT (1<<14) +#define RELAX_BIT (1<<15) +#define HITACHI_BIT (1<<22) +#define PADSTRUCT_BIT (1<<28) +#define LITTLE_ENDIAN_BIT (1<<29) +#define IEEE_BIT (1<<30) + +/* Nonzero if we should dump out instruction size info. */ +#define TARGET_DUMPISIZE (target_flags & ISIZE_BIT) + +/* Nonzero to align doubles on 64 bit boundaries. */ +#define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT) + +/* Nonzero if we should generate code using type 1 insns. */ +#define TARGET_SH1 (target_flags & SH1_BIT) + +/* Nonzero if we should generate code using type 2 insns. */ +#define TARGET_SH2 (target_flags & SH2_BIT) + +/* Nonzero if we should generate code using type 3 insns. */ +#define TARGET_SH3 (target_flags & SH3_BIT) + +/* Nonzero if we should generate code using type 3E insns. */ +#define TARGET_SH3E (target_flags & SH3E_BIT) + +/* Nonzero if the cache line size is 32. */ +#define TARGET_CACHE32 (target_flags & HARD_SH4_BIT) + +/* Nonzero if we schedule for a superscalar implementation. */ +#define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT) + +/* Nonzero if the target has separate instruction and data caches. */ +#define TARGET_HARVARD (target_flags & HARD_SH4_BIT) + +/* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */ +#define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT) + +/* Nonzero if the default precision of th FPU is single */ +#define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT) + +/* Nonzero if we should generate code using type 4 insns. */ +#define TARGET_SH4 (target_flags & SH4_BIT) + +/* Nonzero if we should generate fmovd. */ +#define TARGET_FMOVD (target_flags & FMOVD_BIT) + +/* Nonzero if we respect NANs. */ +#define TARGET_IEEE (target_flags & IEEE_BIT) + +/* Nonzero if we should generate smaller code rather than faster code. */ +#define TARGET_SMALLCODE (target_flags & SPACE_BIT) + +/* Nonzero to use long jump tables. */ +#define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT) + +/* Nonzero to generate pseudo-ops needed by the assembler and linker + to do function call relaxing. */ +#define TARGET_RELAX (target_flags & RELAX_BIT) + +/* Nonzero if using Hitachi's calling convention. */ +#define TARGET_HITACHI (target_flags & HITACHI_BIT) + +/* Nonzero if padding structures to a multiple of 4 bytes. This is + incompatible with Hitachi's compiler, and gives unusual structure layouts + which confuse programmers. + ??? This option is not useful, but is retained in case there are people + who are still relying on it. It may be deleted in the future. */ +#define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT) + +/* Nonzero if generating code for a little endian SH. */ +#define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT) + +#define TARGET_SWITCHES \ +{ {"1", SH1_BIT}, \ + {"2", SH2_BIT}, \ + {"3", SH3_BIT|SH2_BIT}, \ + {"3e", SH3E_BIT|SH3_BIT|SH2_BIT|FPU_SINGLE_BIT}, \ + {"4-single-only", SH3E_BIT|SH3_BIT|SH2_BIT|SH3E_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT}, \ + {"4-single", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT},\ + {"4", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|HARD_SH4_BIT}, \ + {"b", -LITTLE_ENDIAN_BIT}, \ + {"bigtable", BIGTABLE_BIT}, \ + {"dalign", DALIGN_BIT}, \ + {"fmovd", FMOVD_BIT}, \ + {"hitachi", HITACHI_BIT}, \ + {"ieee", IEEE_BIT}, \ + {"isize", ISIZE_BIT}, \ + {"l", LITTLE_ENDIAN_BIT}, \ + {"no-ieee", -IEEE_BIT}, \ + {"padstruct", PADSTRUCT_BIT}, \ + {"relax", RELAX_BIT}, \ + {"space", SPACE_BIT}, \ + SUBTARGET_SWITCHES \ + {"", TARGET_DEFAULT} \ +} + +/* This are meant to be redefined in the host dependent files */ +#define SUBTARGET_SWITCHES + +#define TARGET_DEFAULT (0) + +#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \ +do { \ + if (LEVEL) \ + flag_omit_frame_pointer = -1; \ + if (LEVEL) \ + sh_flag_remove_dead_before_cse = 1; \ + if (SIZE) \ + target_flags |= SPACE_BIT; \ +} while (0) + +#define ASSEMBLER_DIALECT assembler_dialect + +extern int assembler_dialect; + +#define OVERRIDE_OPTIONS \ +do { \ + sh_cpu = CPU_SH1; \ + assembler_dialect = 0; \ + if (TARGET_SH2) \ + sh_cpu = CPU_SH2; \ + if (TARGET_SH3) \ + sh_cpu = CPU_SH3; \ + if (TARGET_SH3E) \ + sh_cpu = CPU_SH3E; \ + if (TARGET_SH4) \ + { \ + assembler_dialect = 1; \ + sh_cpu = CPU_SH4; \ + } \ + if (! TARGET_SH4 || ! TARGET_FMOVD) \ + { \ + /* Prevent usage of explicit register names for variables \ + for registers not present / not addressable in the \ + target architecture. */ \ + int regno; \ + for (regno = (TARGET_SH3E) ? 17 : 0; \ + regno <= 24; regno++) \ + fp_reg_names[regno][0] = 0; \ + } \ + if (flag_omit_frame_pointer < 0) \ + /* The debugging information is sufficient, \ + but gdb doesn't implement this yet */ \ + if (0) \ + flag_omit_frame_pointer \ + = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \ + || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \ + else \ + flag_omit_frame_pointer = 0; \ + \ + /* Never run scheduling before reload, since that can \ + break global alloc, and generates slower code anyway due \ + to the pressure on R0. */ \ + flag_schedule_insns = 0; \ + sh_addr_diff_vec_mode = TARGET_BIGTABLE ? SImode : HImode; \ +} while (0) + +/* Target machine storage layout. */ + +/* Define to use software floating point emulator for REAL_ARITHMETIC and + decimal <-> binary conversion. */ +#define REAL_ARITHMETIC + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. */ + +#define BITS_BIG_ENDIAN 0 + +/* Define this if most significant byte of a word is the lowest numbered. */ +#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0) + +/* Define this if most significant word of a multiword number is the lowest + numbered. */ +#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0) + +/* Define this to set the endianness to use in libgcc2.c, which can + not depend on target_flags. */ +#if defined(__LITTLE_ENDIAN__) +#define LIBGCC2_WORDS_BIG_ENDIAN 0 +#else +#define LIBGCC2_WORDS_BIG_ENDIAN 1 +#endif + +/* Number of bits in an addressable storage unit. */ +#define BITS_PER_UNIT 8 + +/* Width in bits of a "word", which is the contents of a machine register. + Note that this is not necessarily the width of data type `int'; + if using 16-bit ints on a 68000, this would still be 32. + But on a machine with 16-bit registers, this would be 16. */ +#define BITS_PER_WORD 32 +#define MAX_BITS_PER_WORD 32 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD 4 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +#define POINTER_SIZE 32 + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY 32 + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY BIGGEST_ALIGNMENT + +/* The log (base 2) of the cache line size, in bytes. Processors prior to + SH3 have no actual cache, but they fetch code in chunks of 4 bytes. */ +#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH3 ? 4 : 2) + +/* Allocation boundary (in *bits*) for the code of a function. + 32 bit alignment is faster, because instructions are always fetched as a + pair from a longword boundary. */ +#define FUNCTION_BOUNDARY (TARGET_SMALLCODE ? 16 : (1 << CACHE_LOG) * 8) + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32) + +/* The best alignment to use in cases where we have a choice. */ +#define FASTEST_ALIGNMENT 32 + +/* Make strings word-aligned so strcpy from constants will be faster. */ +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ + ((TREE_CODE (EXP) == STRING_CST \ + && (ALIGN) < FASTEST_ALIGNMENT) \ + ? FASTEST_ALIGNMENT : (ALIGN)) + +#ifndef MAX_OFILE_ALIGNMENT +#define MAX_OFILE_ALIGNMENT 128 +#endif + +/* Make arrays of chars word-aligned for the same reasons. */ +#define DATA_ALIGNMENT(TYPE, ALIGN) \ + (TREE_CODE (TYPE) == ARRAY_TYPE \ + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ + && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) + +/* Number of bits which any structure or union's size must be a + multiple of. Each structure or union's size is rounded up to a + multiple of this. */ +#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8) + +/* Set this nonzero if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT 1 + +/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */ +#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \ + barrier_align (LABEL_AFTER_BARRIER) + +#define LOOP_ALIGN(A_LABEL) \ + ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \ + ? 0 : sh_loop_align (A_LABEL)) + +#define LABEL_ALIGN(A_LABEL) \ +( \ + (PREV_INSN (A_LABEL) \ + && GET_CODE (PREV_INSN (A_LABEL)) == INSN \ + && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \ + && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == 1) \ + /* explicit alignment insn in constant tables. */ \ + ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \ + : 0) + +/* Jump tables must be 32 bit aligned, no matter the size of the element. */ +#define ADDR_VEC_ALIGN(ADDR_VEC) 2 + +/* The base two logarithm of the known minimum alignment of an insn length. */ +#define INSN_LENGTH_ALIGNMENT(A_INSN) \ + (GET_CODE (A_INSN) == INSN \ + ? 1 \ + : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \ + ? 1 \ + : CACHE_LOG) + +/* Standard register usage. */ + +/* Register allocation for the Hitachi calling convention: + + r0 arg return + r1..r3 scratch + r4..r7 args in + r8..r13 call saved + r14 frame pointer/call saved + r15 stack pointer + ap arg pointer (doesn't really exist, always eliminated) + pr subroutine return address + t t bit + mach multiply/accumulate result, high part + macl multiply/accumulate result, low part. + fpul fp/int communication register + rap return address pointer register + fr0 fp arg return + fr1..fr3 scratch floating point registers + fr4..fr11 fp args in + fr12..fr15 call saved floating point registers */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. */ + +#define AP_REG 16 +#define PR_REG 17 +#define T_REG 18 +#define GBR_REG 19 +#define MACH_REG 20 +#define MACL_REG 21 +#define SPECIAL_REG(REGNO) ((REGNO) >= 18 && (REGNO) <= 21) +#define FPUL_REG 22 +#define RAP_REG 23 +#define FIRST_FP_REG 24 +#define LAST_FP_REG 39 +#define FIRST_XD_REG 40 +#define LAST_XD_REG 47 +#define FPSCR_REG 48 + +#define FIRST_PSEUDO_REGISTER 49 + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + + Mach register is fixed 'cause it's only 10 bits wide for SH1. + It is 32 bits wide for SH2. */ + +#define FIXED_REGISTERS \ + { 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 0, 0, 0, 1, \ + 1, 1, 1, 1, \ + 1, 1, 0, 1, \ + 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 0, 0, 0, 0, \ + 1, \ +} + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ + +#define CALL_USED_REGISTERS \ + { 1, 1, 1, 1, \ + 1, 1, 1, 1, \ + 0, 0, 0, 0, \ + 0, 0, 0, 1, \ + 1, 0, 1, 1, \ + 1, 1, 1, 1, \ + 1, 1, 1, 1, \ + 1, 1, 1, 1, \ + 1, 1, 1, 1, \ + 0, 0, 0, 0, \ + 1, 1, 1, 1, \ + 1, 1, 0, 0, \ + 1, \ +} + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. + This is ordinarily the length in words of a value of mode MODE + but can be less for certain modes in special long registers. + + On the SH all but the XD regs are UNITS_PER_WORD bits wide. */ + +#define HARD_REGNO_NREGS(REGNO, MODE) \ + ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG \ + ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \ + : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \ + +/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. + We can allow any mode in any general register. The special registers + only allow SImode. Don't allow any mode in the PR. */ + +/* We cannot hold DCmode values in the XD registers because alter_reg + handles subregs of them incorrectly. We could work around this by + spacing the XD registers like the DR registers, but this would require + additional memory in every compilation to hold larger register vectors. + We could hold SFmode / SCmode values in XD registers, but that + would require a tertiary reload when reloading from / to memory, + and a secondary reload to reload from / to general regs; that + seems to be a loosing proposition. */ +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + (SPECIAL_REG (REGNO) ? (MODE) == SImode \ + : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \ + : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG && (MODE) == SFmode \ + ? 1 \ + : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG \ + ? ((MODE) == SFmode \ + || (TARGET_SH3E && (MODE) == SCmode) \ + || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode) \ + && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \ + : (REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG \ + ? (MODE) == DFmode \ + : (REGNO) == PR_REG ? 0 \ + : (REGNO) == FPSCR_REG ? (MODE) == PSImode \ + : 1) + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ + +#define MODES_TIEABLE_P(MODE1, MODE2) \ + ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* Define this if the program counter is overloaded on a register. */ +/* #define PC_REGNUM 15*/ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 15 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 14 + +/* Fake register that holds the address on the stack of the + current function's return address. */ +#define RETURN_ADDRESS_POINTER_REGNUM 23 + +/* Value should be nonzero if functions must have frame pointers. + Zero means the frame pointer need not be set up (and parms may be accessed + via the stack pointer) in functions that seem suitable. */ + +#define FRAME_POINTER_REQUIRED 0 + +/* Definitions for register eliminations. + + We have three registers that can be eliminated on the SH. First, the + frame pointer register can often be eliminated in favor of the stack + pointer register. Secondly, the argument pointer register can always be + eliminated; it is replaced with either the stack or frame pointer. + Third, there is the return address pointer, which can also be replaced + with either the stack or the frame pointer. */ + +/* This is an array of structures. Each structure initializes one pair + of eliminable registers. The "from" register number is given first, + followed by "to". Eliminations of the same "from" register are listed + in order of preference. */ + +/* If you add any registers here that are not actually hard registers, + and that have any alternative of elimination that doesn't always + apply, you need to amend calc_live_regs to exclude it, because + reload spills all eliminable registers where it sees an + can_eliminate == 0 entry, thus making them 'live' . + If you add any hard registers that can be eliminated in different + ways, you have to patch reload to spill them only when all alternatives + of elimination fail. */ + +#define ELIMINABLE_REGS \ +{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},} + +/* Given FROM and TO register numbers, say whether this elimination + is allowed. */ +#define CAN_ELIMINATE(FROM, TO) \ + (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)) + +/* Define the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ + +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ + OFFSET = initial_elimination_offset ((FROM), (TO)) + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 16 + +/* Register in which the static-chain is passed to a function. */ +#define STATIC_CHAIN_REGNUM 13 + +/* The register in which a struct value address is passed. */ + +#define STRUCT_VALUE_REGNUM 2 + +/* If the structure value address is not passed in a register, define + `STRUCT_VALUE' as an expression returning an RTX for the place + where the address is passed. If it returns 0, the address is + passed as an "invisible" first argument. */ + +/*#define STRUCT_VALUE ((rtx)0)*/ + +/* Don't default to pcc-struct-return, because we have already specified + exactly how to return structures in the RETURN_IN_MEMORY macro. */ + +#define DEFAULT_PCC_STRUCT_RETURN 0 + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +/* The SH has two sorts of general registers, R0 and the rest. R0 can + be used as the destination of some of the arithmetic ops. There are + also some special purpose registers; the T bit register, the + Procedure Return Register and the Multiply Accumulate Registers. */ +/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by + reg_class_subunion. We don't want to have an actual union class + of these, because it would only be used when both classes are calculated + to give the same cost, but there is only one FPUL register. + Besides, regclass fails to notice the different REGISTER_MOVE_COSTS + applying to the actual instruction alternative considered. E.g., the + y/r alternative of movsi_ie is considered to have no more cost that + the r/r alternative, which is patently untrue. */ + +enum reg_class +{ + NO_REGS, + R0_REGS, + PR_REGS, + T_REGS, + MAC_REGS, + FPUL_REGS, + GENERAL_REGS, + FP0_REGS, + FP_REGS, + DF_REGS, + FPSCR_REGS, + GENERAL_FP_REGS, + ALL_REGS, + LIM_REG_CLASSES +}; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ +#define REG_CLASS_NAMES \ +{ \ + "NO_REGS", \ + "R0_REGS", \ + "PR_REGS", \ + "T_REGS", \ + "MAC_REGS", \ + "FPUL_REGS", \ + "GENERAL_REGS", \ + "FP0_REGS", \ + "FP_REGS", \ + "DF_REGS", \ + "FPSCR_REGS", \ + "GENERAL_FP_REGS", \ + "ALL_REGS", \ +} + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ \ + { 0x00000000, 0x00000000 }, /* NO_REGS */ \ + { 0x00000001, 0x00000000 }, /* R0_REGS */ \ + { 0x00020000, 0x00000000 }, /* PR_REGS */ \ + { 0x00040000, 0x00000000 }, /* T_REGS */ \ + { 0x00300000, 0x00000000 }, /* MAC_REGS */ \ + { 0x00400000, 0x00000000 }, /* FPUL_REGS */ \ + { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS */ \ + { 0x01000000, 0x00000000 }, /* FP0_REGS */ \ + { 0xFF000000, 0x000000FF }, /* FP_REGS */ \ + { 0xFF000000, 0x0000FFFF }, /* DF_REGS */ \ + { 0x00000000, 0x00010000 }, /* FPSCR_REGS */ \ + { 0xFF81FFFF, 0x0000FFFF }, /* GENERAL_FP_REGS */ \ + { 0xFFFFFFFF, 0x0001FFFF }, /* ALL_REGS */ \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +extern int regno_reg_class[]; +#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)] + +/* When defined, the compiler allows registers explicitly used in the + rtl to be used as spill registers but prevents the compiler from + extending the lifetime of these registers. */ + +#define SMALL_REGISTER_CLASSES 1 + +/* The order in which register should be allocated. */ +/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo, + and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be + spilled or used otherwise, we better have the FP_REGS allocated first. */ +#define REG_ALLOC_ORDER \ + { 25,26,27,28,29,30,31,24,32,33,34,35,36,37,38,39, \ + 40,41,42,43,44,45,46,47,48, \ + 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14, \ + 22,15,16,17,18,19,20,21,23 } + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS R0_REGS +#define BASE_REG_CLASS GENERAL_REGS + +/* Get reg_class from a letter such as appears in the machine + description. */ +extern enum reg_class reg_class_from_letter[]; + +#define REG_CLASS_FROM_LETTER(C) \ + ( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS ) + +/* The letters I, J, K, L and M in a register constraint string + can be used to stand for particular ranges of immediate operands. + This macro defines what the ranges are. + C is the letter, and VALUE is a constant value. + Return 1 if VALUE is in the range specified by C. + I: arithmetic operand -127..128, as used in add, sub, etc + K: shift operand 1,2,8 or 16 + L: logical operand 0..255, as used in and, or, etc. + M: constant 1 + N: constant 0 */ + +#define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \ + && ((HOST_WIDE_INT)(VALUE)) <= 127) +#define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16) +#define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \ + && ((HOST_WIDE_INT)(VALUE)) <= 255) +#define CONST_OK_FOR_M(VALUE) ((VALUE)==1) +#define CONST_OK_FOR_N(VALUE) ((VALUE)==0) +#define CONST_OK_FOR_LETTER_P(VALUE, C) \ + ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \ + : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \ + : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \ + : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \ + : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \ + : 0) + +/* Similar, but for floating constants, and defining letters G and H. + Here VALUE is the CONST_DOUBLE rtx itself. */ + +#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ +((C) == 'G' ? fp_zero_operand (VALUE) \ + : (C) == 'H' ? fp_one_operand (VALUE) \ + : (C) == 'F') + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. */ + +#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS) + +#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \ + ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS \ + || (CLASS) == DF_REGS) \ + && (GET_CODE (X) == REG && REGNO (X) <= AP_REG)) \ + || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \ + && GET_CODE (X) == REG \ + && REGNO (X) >= FIRST_FP_REG && REGNO (X) <= LAST_FP_REG)) \ + && MODE == SFmode) \ + ? FPUL_REGS \ + : ((CLASS) == FPUL_REGS \ + && (GET_CODE (X) == MEM \ + || (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER)))\ + ? GENERAL_REGS \ + : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \ + && GET_CODE (X) == REG && REGNO (X) > 15 \ + && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \ + ? GENERAL_REGS : NO_REGS) + +#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \ + ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS) \ + && immediate_operand ((X), (MODE)) \ + && ! ((fp_zero_operand (X) || fp_one_operand (X)) && (MODE) == SFmode))\ + ? R0_REGS \ + : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \ + ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X)) \ + ? GENERAL_REGS \ + : R0_REGS) \ + : (CLASS == FPSCR_REGS \ + && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ + || GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)) \ + ? GENERAL_REGS \ + : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X))) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. + + On SH this is the size of MODE in words. */ +#define CLASS_MAX_NREGS(CLASS, MODE) \ + ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* If defined, gives a class of registers that cannot be used as the + operand of a SUBREG that changes the size of the object. */ + +#define CLASS_CANNOT_CHANGE_SIZE DF_REGS + +/* Stack layout; function entry, exit and calling. */ + +/* Define the number of registers that can hold parameters. + These macros are used only in other macro definitions below. */ + +#define NPARM_REGS(MODE) \ + (TARGET_SH3E && (MODE) == SFmode \ + ? 8 \ + : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ + ? 8 \ + : 4) + +#define FIRST_PARM_REG 4 +#define FIRST_RET_REG 0 + +#define FIRST_FP_PARM_REG (FIRST_FP_REG + 4) +#define FIRST_FP_RET_REG FIRST_FP_REG + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Define this macro if the addresses of local variable slots are at + negative offsets from the frame pointer. + + The SH only has positive indexes, so grow the frame up. */ +/* #define FRAME_GROWS_DOWNWARD */ + +/* Offset from the frame pointer to the first local variable slot to + be allocated. */ +#define STARTING_FRAME_OFFSET 0 + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. */ +/* Don't define PUSH_ROUNDING, since the hardware doesn't do this. + When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to + do correct alignment. */ +#if 0 +#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3) +#endif + +/* Offset of first parameter from the argument pointer register value. */ +#define FIRST_PARM_OFFSET(FNDECL) 0 + +/* Value is the number of byte of arguments automatically + popped when returning from a subroutine call. + FUNDECL is the declaration node of the function (as a tree), + FUNTYPE is the data type of the function (as a tree), + or for a library call it is an identifier node for the subroutine name. + SIZE is the number of bytes of arguments passed on the stack. + + On the SH, the caller does not pop any of its arguments that were passed + on the stack. */ +#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 + +/* Nonzero if we do not know how to pass TYPE solely in registers. + Values that come in registers with inconvenient padding are stored + to memory at the function start. */ + +#define MUST_PASS_IN_STACK(MODE,TYPE) \ + ((TYPE) != 0 \ + && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \ + || TREE_ADDRESSABLE (TYPE))) +/* Some subroutine macros specific to this machine. */ + +#define BASE_RETURN_VALUE_REG(MODE) \ + ((TARGET_SH3E && ((MODE) == SFmode)) \ + ? FIRST_FP_RET_REG \ + : TARGET_SH3E && (MODE) == SCmode \ + ? FIRST_FP_RET_REG \ + : (TARGET_SH4 \ + && ((MODE) == DFmode || (MODE) == SFmode \ + || (MODE) == DCmode || (MODE) == SCmode )) \ + ? FIRST_FP_RET_REG \ + : FIRST_RET_REG) + +#define BASE_ARG_REG(MODE) \ + ((TARGET_SH3E && ((MODE) == SFmode)) \ + ? FIRST_FP_PARM_REG \ + : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\ + ? FIRST_FP_PARM_REG \ + : FIRST_PARM_REG) + +/* Define how to find the value returned by a function. + VALTYPE is the data type of the value (as a tree). + If the precise function being called is known, FUNC is its FUNCTION_DECL; + otherwise, FUNC is 0. + For the SH, this is like LIBCALL_VALUE, except that we must change the + mode like PROMOTE_MODE does. + ??? PROMOTE_MODE is ignored for non-scalar types. The set of types + tested here has to be kept in sync with the one in explow.c:promote_mode. */ + +#define FUNCTION_VALUE(VALTYPE, FUNC) \ + gen_rtx (REG, \ + ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \ + && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \ + && (TREE_CODE (VALTYPE) == INTEGER_TYPE \ + || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \ + || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \ + || TREE_CODE (VALTYPE) == CHAR_TYPE \ + || TREE_CODE (VALTYPE) == REAL_TYPE \ + || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \ + ? SImode : TYPE_MODE (VALTYPE)), \ + BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE))) + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ +#define LIBCALL_VALUE(MODE) \ + gen_rtx (REG, (MODE), BASE_RETURN_VALUE_REG (MODE)) + +/* 1 if N is a possible register number for a function value. */ +#define FUNCTION_VALUE_REGNO_P(REGNO) \ + ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG)) + +/* 1 if N is a possible register number for function argument passing. */ +#define FUNCTION_ARG_REGNO_P(REGNO) \ + (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4)) \ + || (TARGET_SH3E \ + && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG + 8))) + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On SH, this is a single integer, which is a number of words + of arguments scanned so far (including the invisible argument, + if any, which holds the structure-value-address). + Thus NARGREGS or more means all following args should go on the stack. */ + +enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 }; +struct sh_args { + int arg_count[2]; +}; + +#define CUMULATIVE_ARGS struct sh_args + +#define GET_SH_ARG_CLASS(MODE) \ + ((TARGET_SH3E && (MODE) == SFmode) \ + ? SH_ARG_FLOAT \ + : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \ + || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \ + ? SH_ARG_FLOAT : SH_ARG_INT) + +#define ROUND_ADVANCE(SIZE) \ + (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* Round a register number up to a proper boundary for an arg of mode + MODE. + + The SH doesn't care about double alignment, so we only + round doubles to even regs when asked to explicitly. */ + +#define ROUND_REG(CUM, MODE) \ + (((TARGET_ALIGN_DOUBLE \ + || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \ + && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\ + && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \ + ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \ + + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \ + : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]) + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. + + On SH, the offset always starts at 0: the first parm reg is always + the same reg for a given argument class. */ + +#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \ + do { \ + (CUM).arg_count[(int) SH_ARG_INT] = 0; \ + (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \ + } while (0) + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be + available.) */ + +#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ + if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \ + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \ + = (ROUND_REG ((CUM), (MODE)) \ + + ((MODE) == BLKmode \ + ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \ + : ROUND_ADVANCE (GET_MODE_SIZE (MODE))))) + +/* Return boolean indicating arg of mode MODE will be passed in a reg. + This macro is only used in this file. */ + +#define PASS_IN_REG_P(CUM, MODE, TYPE) \ + (((TYPE) == 0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \ + && (TARGET_SH3E \ + ? ((MODE) == BLKmode \ + ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \ + + int_size_in_bytes (TYPE)) \ + <= NPARM_REGS (SImode) * UNITS_PER_WORD) \ + : ((ROUND_REG((CUM), (MODE)) \ + + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \ + <= NPARM_REGS (MODE))) \ + : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE))) + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On SH the first args are normally in registers + and the rest are pushed. Any arg that starts within the first + NPARM_REGS words is at least partially passed in a register unless + its data type forbids. */ + +extern int current_function_varargs; + +#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ + ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \ + && ((NAMED) || TARGET_SH3E || ! current_function_varargs)) \ + ? gen_rtx (REG, (MODE), \ + ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) \ + ^ ((MODE) == SFmode && TARGET_SH4 \ + && TARGET_LITTLE_ENDIAN != 0))) \ + : 0) + +/* For an arg passed partly in registers and partly in memory, + this is the number of registers used. + For args passed entirely in registers or entirely in memory, zero. + + We sometimes split args. */ + +#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ + ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \ + && ! TARGET_SH4 \ + && (ROUND_REG ((CUM), (MODE)) \ + + ((MODE) != BLKmode \ + ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \ + : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \ + - NPARM_REGS (MODE) > 0)) \ + ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \ + : 0) + +extern int current_function_anonymous_args; + +/* Perform any needed actions needed for a function that is receiving a + variable number of arguments. */ + +#define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \ + current_function_anonymous_args = 1; + +/* Call the function profiler with a given profile label. + We use two .aligns, so as to make sure that both the .long is aligned + on a 4 byte boundary, and that the .long is a fixed distance (2 bytes) + from the trapa instruction. */ + +#define FUNCTION_PROFILER(STREAM,LABELNO) \ +{ \ + fprintf((STREAM), "\t.align\t2\n"); \ + fprintf((STREAM), "\ttrapa\t#33\n"); \ + fprintf((STREAM), "\t.align\t2\n"); \ + asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \ +} + +/* Define this macro if the code for function profiling should come + before the function prologue. Normally, the profiling code comes + after. */ + +#define PROFILE_BEFORE_PROLOGUE + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. The value is tested only in + functions that have frame pointers. + No definition is equivalent to always zero. */ + +#define EXIT_IGNORE_STACK 1 + +/* Generate the assembly code for function exit + Just dump out any accumulated constant table. */ + +#define FUNCTION_EPILOGUE(STREAM, SIZE) function_epilogue ((STREAM), (SIZE)) + +/* + On the SH, the trampoline looks like + 2 0002 DD02 mov.l l2,r13 + 1 0000 D301 mov.l l1,r3 + 3 0004 4D2B jmp @r13 + 4 0006 0009 nop + 5 0008 00000000 l1: .long function + 6 000c 00000000 l2: .long area */ + +/* Length in units of the trampoline for entering a nested function. */ +#define TRAMPOLINE_SIZE 16 + +/* Alignment required for a trampoline in bits . */ +#define TRAMPOLINE_ALIGNMENT \ + ((CACHE_LOG < 3 || TARGET_SMALLCODE && ! TARGET_HARVARD) ? 32 : 64) + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ +{ \ + emit_move_insn (gen_rtx (MEM, SImode, (TRAMP)), \ + GEN_INT (TARGET_LITTLE_ENDIAN ? 0xd301dd02 : 0xdd02d301));\ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 4)), \ + GEN_INT (TARGET_LITTLE_ENDIAN ? 0x00094d2b : 0x4d2b0009));\ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \ + (CXT)); \ + emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \ + (FNADDR)); \ + if (TARGET_HARVARD) \ + emit_insn (gen_ic_invalidate_line (TRAMP)); \ +} + +/* A C expression whose value is RTL representing the value of the return + address for the frame COUNT steps up from the current frame. + FRAMEADDR is already the frame pointer of the COUNT frame, so we + can ignore COUNT. */ + +#define RETURN_ADDR_RTX(COUNT, FRAME) \ + (((COUNT) == 0) \ + ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM)) \ + : (rtx) 0) + +/* Generate necessary RTL for __builtin_saveregs(). + ARGLIST is the argument list; see expr.c. */ +extern struct rtx_def *sh_builtin_saveregs (); +#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sh_builtin_saveregs (ARGLIST) + +/* Addressing modes, and classification of registers for them. */ +#define HAVE_POST_INCREMENT 1 +/*#define HAVE_PRE_INCREMENT 1*/ +/*#define HAVE_POST_DECREMENT 1*/ +#define HAVE_PRE_DECREMENT 1 + +#define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \ + ? 0 : 1) +#define USE_LOAD_PRE_DECREMENT(mode) 0 +#define USE_STORE_POST_INCREMENT(mode) 0 +#define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \ + ? 0 : 1) + +#define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \ + < (TARGET_SMALLCODE ? 2 : \ + ((ALIGN >= 4) ? 16 : 2))) + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_BASE_P(REGNO) \ + ((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG) +#define REGNO_OK_FOR_INDEX_P(REGNO) \ + ((REGNO) == 0 || (unsigned) reg_renumber[(REGNO)] == 0) + +/* Maximum number of registers that can appear in a valid memory + address. */ + +#define MAX_REGS_PER_ADDRESS 2 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF) + +/* Nonzero if the constant value X is a legitimate general operand. */ + +#define LEGITIMATE_CONSTANT_P(X) \ + (GET_CODE (X) != CONST_DOUBLE \ + || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \ + || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X)))) + +/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx + and check its validity for a certain class. + We have two alternate definitions for each of them. + The usual definition accepts all pseudo regs; the other rejects + them unless they have been allocated suitable hard regs. + The symbol REG_OK_STRICT causes the latter definition to be used. */ + +#ifndef REG_OK_STRICT + +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg. */ +#define REG_OK_FOR_BASE_P(X) \ + (REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg. */ +#define REG_OK_FOR_INDEX_P(X) \ + (REGNO (X) == 0 || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +/* Nonzero if X/OFFSET is a hard reg that can be used as an index + or if X is a pseudo reg. */ +#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \ + ((REGNO (X) == 0 && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER) + +#else + +/* Nonzero if X is a hard reg that can be used as a base reg. */ +#define REG_OK_FOR_BASE_P(X) \ + REGNO_OK_FOR_BASE_P (REGNO (X)) + +/* Nonzero if X is a hard reg that can be used as an index. */ +#define REG_OK_FOR_INDEX_P(X) \ + REGNO_OK_FOR_INDEX_P (REGNO (X)) + +/* Nonzero if X/OFFSET is a hard reg that can be used as an index. */ +#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \ + (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0) + +#endif + +/* The 'Q' constraint is a pc relative load operand. */ +#define EXTRA_CONSTRAINT_Q(OP) \ + (GET_CODE (OP) == MEM && \ + ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \ + || (GET_CODE (XEXP ((OP), 0)) == CONST \ + && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \ + && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT))) + +#define EXTRA_CONSTRAINT(OP, C) \ + ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \ + : 0) + +/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression + that is a valid memory address for an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + + The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */ + +#define MODE_DISP_OK_4(X,MODE) \ +(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \ + && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode)) + +#define MODE_DISP_OK_8(X,MODE) \ +((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \ + && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode)) + +#define BASE_REGISTER_RTX_P(X) \ + ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ + || (GET_CODE (X) == SUBREG \ + && GET_CODE (SUBREG_REG (X)) == REG \ + && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) + +/* Since this must be r0, which is a single register class, we must check + SUBREGs more carefully, to be sure that we don't accept one that extends + outside the class. */ +#define INDEX_REGISTER_RTX_P(X) \ + ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ + || (GET_CODE (X) == SUBREG \ + && GET_CODE (SUBREG_REG (X)) == REG \ + && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_WORD (X)))) + +/* Jump to LABEL if X is a valid address RTX. This must also take + REG_OK_STRICT into account when deciding about valid registers, but it uses + the above macros so we are in luck. + + Allow REG + REG+disp + REG+r0 + REG++ + --REG */ + +/* ??? The SH3e does not have the REG+disp addressing mode when loading values + into the FRx registers. We implement this by setting the maximum offset + to zero when the value is SFmode. This also restricts loading of SFmode + values into the integer registers, but that can't be helped. */ + +/* The SH allows a displacement in a QI or HI amode, but only when the + other operand is R0. GCC doesn't handle this very well, so we forgo + all of that. + + A legitimate index for a QI or HI is 0, SI can be any number 0..63, + DI can be any number 0..60. */ + +#define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \ + do { \ + if (GET_CODE (OP) == CONST_INT) \ + { \ + if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \ + if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \ + } \ + } while(0) + +#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ +{ \ + if (BASE_REGISTER_RTX_P (X)) \ + goto LABEL; \ + else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \ + && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \ + goto LABEL; \ + else if (GET_CODE (X) == PLUS \ + && ((MODE) != PSImode || reload_completed)) \ + { \ + rtx xop0 = XEXP ((X), 0); \ + rtx xop1 = XEXP ((X), 1); \ + if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \ + GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \ + if (GET_MODE_SIZE (MODE) <= 4 \ + || TARGET_SH4 && TARGET_FMOVD && MODE == DFmode) \ + { \ + if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\ + goto LABEL; \ + if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\ + goto LABEL; \ + } \ + } \ +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + This macro is used in only one place: `memory_address' in explow.c. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE and WIN are passed so that this macro can use + GO_IF_LEGITIMATE_ADDRESS. + + It is always safe for this macro to do nothing. It exists to recognize + opportunities to optimize the output. + + For the SH, if X is almost suitable for indexing, but the offset is + out of range, convert it into a normal form so that cse has a chance + of reducing the number of address registers used. */ + +#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ +{ \ + if (GET_CODE (X) == PLUS \ + && (GET_MODE_SIZE (MODE) == 4 \ + || GET_MODE_SIZE (MODE) == 8) \ + && GET_CODE (XEXP ((X), 1)) == CONST_INT \ + && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \ + && ! (TARGET_SH4 && (MODE) == DFmode) \ + && ! (TARGET_SH3E && (MODE) == SFmode)) \ + { \ + rtx index_rtx = XEXP ((X), 1); \ + HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \ + rtx sum; \ + \ + GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \ + /* On rare occasions, we might get an unaligned pointer \ + that is indexed in a way to give an aligned address. \ + Therefore, keep the lower two bits in offset_base. */ \ + /* Instead of offset_base 128..131 use 124..127, so that \ + simple add suffices. */ \ + if (offset > 127) \ + { \ + offset_base = ((offset + 4) & ~60) - 4; \ + } \ + else \ + offset_base = offset & ~60; \ + /* Sometimes the normal form does not suit DImode. We \ + could avoid that by using smaller ranges, but that \ + would give less optimized code when SImode is \ + prevalent. */ \ + if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \ + { \ + sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \ + GEN_INT (offset_base), NULL_RTX, 0, \ + OPTAB_LIB_WIDEN); \ + \ + (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base)); \ + goto WIN; \ + } \ + } \ +} + +/* A C compound statement that attempts to replace X, which is an address + that needs reloading, with a valid memory address for an operand of + mode MODE. WIN is a C statement label elsewhere in the code. + + Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form + of the address. That will allow inheritance of the address reloads. */ + +#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ +{ \ + if (GET_CODE (X) == PLUS \ + && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && BASE_REGISTER_RTX_P (XEXP (X, 0)) \ + && ! (TARGET_SH4 && (MODE) == DFmode) \ + && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \ + { \ + rtx index_rtx = XEXP (X, 1); \ + HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \ + rtx sum; \ + \ + if (TARGET_SH3E && MODE == SFmode) \ + { \ + X = copy_rtx (X); \ + push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL_PTR, \ + INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \ + (TYPE)); \ + goto WIN; \ + } \ + /* Instead of offset_base 128..131 use 124..127, so that \ + simple add suffices. */ \ + if (offset > 127) \ + { \ + offset_base = ((offset + 4) & ~60) - 4; \ + } \ + else \ + offset_base = offset & ~60; \ + /* Sometimes the normal form does not suit DImode. We \ + could avoid that by using smaller ranges, but that \ + would give less optimized code when SImode is \ + prevalent. */ \ + if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \ + { \ + sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \ + GEN_INT (offset_base)); \ + X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\ + push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL_PTR, \ + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \ + (TYPE)); \ + goto WIN; \ + } \ + } \ + /* We must re-recognize what we created before. */ \ + else if (GET_CODE (X) == PLUS \ + && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \ + && GET_CODE (XEXP (X, 0)) == PLUS \ + && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ + && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \ + && GET_CODE (XEXP (X, 1)) == CONST_INT \ + && ! (TARGET_SH3E && MODE == SFmode)) \ + { \ + /* Because this address is so complex, we know it must have \ + been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \ + it is already unshared, and needs no further unsharing. */ \ + push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL_PTR, \ + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\ + goto WIN; \ + } \ +} + +/* Go to LABEL if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + + ??? Strictly speaking, we should also include all indexed addressing, + because the index scale factor is the length of the operand. + However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to + high if we did that. So we rely on reload to fix things up. */ + +#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ +{ \ + if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \ + goto LABEL; \ +} + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode) + +#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \ +((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \ + ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \ + : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \ + ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \ + : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \ + : SImode) + +/* Define as C expression which evaluates to nonzero if the tablejump + instruction expects the table to contain offsets from the address of the + table. + Do not define this if the table should contain absolute addresses. */ +#define CASE_VECTOR_PC_RELATIVE 1 + +/* Specify the tree operation to be used to convert reals to integers. */ +#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR + +/* This is the kind of divide that is easiest to do in the general case. */ +#define EASY_DIV_EXPR TRUNC_DIV_EXPR + +/* Since the SH3e has only `float' support, it is desirable to make all + floating point types equivalent to `float'. */ +#define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64) + +/* 'char' is signed by default. */ +#define DEFAULT_SIGNED_CHAR 1 + +/* The type of size_t unsigned int. */ +#define SIZE_TYPE "unsigned int" + +#define WCHAR_TYPE "short unsigned int" +#define WCHAR_TYPE_SIZE 16 + +/* Don't cse the address of the function being compiled. */ +/*#define NO_RECURSIVE_FUNCTION_CSE 1*/ + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX 4 + +/* Max number of bytes we want move_by_pieces to be able to copy + efficiently. */ +#define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4) + +/* Define if operations between registers always perform the operation + on the full register even if a narrower mode is specified. */ +#define WORD_REGISTER_OPERATIONS + +/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD + will either zero-extend or sign-extend. The value of this macro should + be the code that says which one of the two operations is implicitly + done, NIL if none. */ +#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND + +/* Define if loading short immediate values into registers sign extends. */ +#define SHORT_IMMEDIATES_SIGN_EXTEND + +/* Define this if zero-extension is slow (more than one real instruction). + On the SH, it's only one instruction. */ +/* #define SLOW_ZERO_EXTEND */ + +/* Nonzero if access to memory by bytes is slow and undesirable. */ +#define SLOW_BYTE_ACCESS 0 + +/* We assume that the store-condition-codes instructions store 0 for false + and some other value for true. This is the value stored for true. */ + +#define STORE_FLAG_VALUE 1 + +/* Immediate shift counts are truncated by the output routines (or was it + the assembler?). Shift counts in a register are truncated by SH. Note + that the native compiler puts too large (> 32) immediate shift counts + into a register and shifts by the register, letting the SH decide what + to do instead of doing that itself. */ +/* ??? The library routines in lib1funcs.asm truncate the shift count. + However, the SH3 has hardware shifts that do not truncate exactly as gcc + expects - the sign bit is significant - so it appears that we need to + leave this zero for correct SH3 code. */ +#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3) + +/* All integers have the same format so truncation is easy. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1 + +/* Define this if addresses of constant functions + shouldn't be put through pseudo regs where they can be cse'd. + Desirable on machines where ordinary constants are expensive + but a CALL with constant address is cheap. */ +/*#define NO_FUNCTION_CSE 1*/ + +/* Chars and shorts should be passed as ints. */ +#define PROMOTE_PROTOTYPES 1 + +/* The machine modes of pointers and functions. */ +#define Pmode SImode +#define FUNCTION_MODE Pmode + +/* The relative costs of various types of constants. Note that cse.c defines + REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */ + +#define CONST_COSTS(RTX, CODE, OUTER_CODE) \ + case CONST_INT: \ + if (INTVAL (RTX) == 0) \ + return 0; \ + else if (CONST_OK_FOR_I (INTVAL (RTX))) \ + return 1; \ + else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \ + && CONST_OK_FOR_L (INTVAL (RTX))) \ + return 1; \ + else \ + return 8; \ + case CONST: \ + case LABEL_REF: \ + case SYMBOL_REF: \ + return 5; \ + case CONST_DOUBLE: \ + return 10; + +#define RTX_COSTS(X, CODE, OUTER_CODE) \ + case PLUS: \ + return (COSTS_N_INSNS (1) \ + + rtx_cost (XEXP ((X), 0), PLUS) \ + + (rtx_equal_p (XEXP ((X), 0), XEXP ((X), 1))\ + ? 0 : rtx_cost (XEXP ((X), 1), PLUS)));\ + case AND: \ + return COSTS_N_INSNS (andcosts (X)); \ + case MULT: \ + return COSTS_N_INSNS (multcosts (X)); \ + case ASHIFT: \ + case ASHIFTRT: \ + case LSHIFTRT: \ + /* Add one extra unit for the matching constraint. \ + Otherwise loop strength reduction would think that\ + a shift with different sourc and destination is \ + as cheap as adding a constant to a register. */ \ + return (COSTS_N_INSNS (shiftcosts (X)) \ + + rtx_cost (XEXP ((X), 0), (CODE)) \ + + 1); \ + case DIV: \ + case UDIV: \ + case MOD: \ + case UMOD: \ + return COSTS_N_INSNS (20); \ + case FLOAT: \ + case FIX: \ + return 100; + +/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2 + are actually function calls with some special constraints on arguments + and register usage. + + These macros tell reorg that the references to arguments and + register clobbers for insns of type sfunc do not appear to happen + until after the millicode call. This allows reorg to put insns + which set the argument registers into the delay slot of the millicode + call -- thus they act more like traditional CALL_INSNs. + + get_attr_is_sfunc will try to recognize the given insn, so make sure to + filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns + in particular. */ + +#define INSN_SETS_ARE_DELAYED(X) \ + ((GET_CODE (X) == INSN \ + && GET_CODE (PATTERN (X)) != SEQUENCE \ + && GET_CODE (PATTERN (X)) != USE \ + && GET_CODE (PATTERN (X)) != CLOBBER \ + && get_attr_is_sfunc (X))) + +#define INSN_REFERENCES_ARE_DELAYED(X) \ + ((GET_CODE (X) == INSN \ + && GET_CODE (PATTERN (X)) != SEQUENCE \ + && GET_CODE (PATTERN (X)) != USE \ + && GET_CODE (PATTERN (X)) != CLOBBER \ + && get_attr_is_sfunc (X))) + +/* Compute the cost of an address. For the SH, all valid addresses are + the same cost. */ +/* ??? Perhaps we should make reg+reg addresses have higher cost because + they add to register pressure on r0. */ + +#define ADDRESS_COST(RTX) 1 + +/* Compute extra cost of moving data between one register class + and another. */ + +/* Regclass always uses 2 for moves in the same register class; + If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, + it uses this information. Hence, the general register <-> floating point + register information here is not used for SFmode. */ +#define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \ + ((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REG)) ? 10 \ + : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \ + && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \ + || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS) \ + && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS \ + || (SRCCLASS) == DF_REGS))) \ + ? TARGET_FMOVD ? 8 : 12 \ + : (((DSTCLASS) == FPUL_REGS \ + && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \ + || (SRCCLASS == FPUL_REGS \ + && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS))) \ + ? 5 \ + : (((DSTCLASS) == FPUL_REGS \ + && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS)) \ + || ((SRCCLASS) == FPUL_REGS \ + && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS))) \ + ? 7 \ + : 2) + +/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This + would be so that people would slow memory systems could generate + different code that does fewer memory accesses. */ + +/* Assembler output control. */ + +/* A C string constant describing how to begin a comment in the target + assembler language. The compiler assumes that the comment will end at + the end of the line. */ +#define ASM_COMMENT_START "!" + +/* The text to go at the start of the assembler file. */ +#define ASM_FILE_START(STREAM) \ + output_file_start (STREAM) + +#define ASM_FILE_END(STREAM) + +#define ASM_APP_ON "" +#define ASM_APP_OFF "" +#define FILE_ASM_OP "\t.file\n" +#define IDENT_ASM_OP "\t.ident\n" +#define SET_ASM_OP ".set" + +/* How to change between sections. */ + +#define TEXT_SECTION_ASM_OP "\t.text" +#define DATA_SECTION_ASM_OP "\t.data" +#define CTORS_SECTION_ASM_OP "\t.section\t.ctors\n" +#define DTORS_SECTION_ASM_OP "\t.section\t.dtors\n" +#define EXTRA_SECTIONS in_ctors, in_dtors +#define EXTRA_SECTION_FUNCTIONS \ +void \ +ctors_section() \ +{ \ + if (in_section != in_ctors) \ + { \ + fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \ + in_section = in_ctors; \ + } \ +} \ +void \ +dtors_section() \ +{ \ + if (in_section != in_dtors) \ + { \ + fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \ + in_section = in_dtors; \ + } \ +} + +/* If defined, a C expression whose value is a string containing the + assembler operation to identify the following data as + uninitialized global data. If not defined, and neither + `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined, + uninitialized global data will be output in the data section if + `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be + used. */ +#ifndef BSS_SECTION_ASM_OP +#define BSS_SECTION_ASM_OP ".section\t.bss" +#endif + +/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a + separate, explicit argument. If you define this macro, it is used + in place of `ASM_OUTPUT_BSS', and gives you more flexibility in + handling the required alignment of the variable. The alignment is + specified as the number of bits. + + Try to use function `asm_output_aligned_bss' defined in file + `varasm.c' when defining this macro. */ +#ifndef ASM_OUTPUT_ALIGNED_BSS +#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ + asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN) +#endif + +/* Define this so that jump tables go in same section as the current function, + which could be text or it could be a user defined section. */ +#define JUMP_TABLES_IN_TEXT_SECTION 1 + +/* A C statement to output something to the assembler file to switch to section + NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or + NULL_TREE. Some target formats do not support arbitrary sections. Do not + define this macro in such cases. */ + +#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \ + do { fprintf (FILE, ".section\t%s\n", NAME); } while (0) + +#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \ + do { ctors_section(); asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0) + +#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \ + do { dtors_section(); asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0) + +#undef DO_GLOBAL_CTORS_BODY + +#define DO_GLOBAL_CTORS_BODY \ +{ \ + typedef (*pfunc)(); \ + extern pfunc __ctors[]; \ + extern pfunc __ctors_end[]; \ + pfunc *p; \ + for (p = __ctors_end; p > __ctors; ) \ + { \ + (*--p)(); \ + } \ +} + +#undef DO_GLOBAL_DTORS_BODY +#define DO_GLOBAL_DTORS_BODY \ +{ \ + typedef (*pfunc)(); \ + extern pfunc __dtors[]; \ + extern pfunc __dtors_end[]; \ + pfunc *p; \ + for (p = __dtors; p < __dtors_end; p++) \ + { \ + (*p)(); \ + } \ +} + +#define ASM_OUTPUT_REG_PUSH(file, v) \ + fprintf ((file), "\tmov.l\tr%s,-@r15\n", (v)); + +#define ASM_OUTPUT_REG_POP(file, v) \ + fprintf ((file), "\tmov.l\t@r15+,r%s\n", (v)); + +/* The assembler's names for the registers. RFP need not always be used as + the Real framepointer; it can also be used as a normal general register. + Note that the name `fp' is horribly misleading since `fp' is in fact only + the argument-and-return-context pointer. */ + +extern char fp_reg_names[][5]; + +#define REGISTER_NAMES \ +{ \ + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ + "ap", "pr", "t", "gbr", "mach","macl", fp_reg_names[16], "rap", \ + fp_reg_names[0], fp_reg_names[1] , fp_reg_names[2], fp_reg_names[3], \ + fp_reg_names[4], fp_reg_names[5], fp_reg_names[6], fp_reg_names[7], \ + fp_reg_names[8], fp_reg_names[9], fp_reg_names[10], fp_reg_names[11], \ + fp_reg_names[12], fp_reg_names[13], fp_reg_names[14], fp_reg_names[15], \ + fp_reg_names[17], fp_reg_names[18], fp_reg_names[19], fp_reg_names[20], \ + fp_reg_names[21], fp_reg_names[22], fp_reg_names[23], fp_reg_names[24], \ + "fpscr", \ +} + +#define DEBUG_REGISTER_NAMES \ +{ \ + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ + "ap", "pr", "t", "gbr", "mach","macl", "fpul","rap", \ + "fr0","fr1","fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \ + "fr8","fr9","fr10","fr11","fr12","fr13","fr14","fr15",\ + "xd0","xd2","xd4", "xd6", "xd8", "xd10","xd12","xd14", \ + "fpscr", \ +} + +/* DBX register number for a given compiler register number. */ +/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers + to match gdb. */ +#define DBX_REGISTER_NUMBER(REGNO) \ + (((REGNO) >= 22 && (REGNO) <= 39) ? ((REGNO) + 1) : (REGNO)) + +/* Output a label definition. */ +#define ASM_OUTPUT_LABEL(FILE,NAME) \ + do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0) + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) != 0) \ + fprintf ((FILE), "\t.align %d\n", (LOG)) + +/* Output a function label definition. */ +#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \ + ASM_OUTPUT_LABEL((STREAM), (NAME)) + +/* Output a globalising directive for a label. */ +#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \ + (fprintf ((STREAM), "\t.global\t"), \ + assemble_name ((STREAM), (NAME)), \ + fputc ('\n', (STREAM))) + +/* The prefix to add to user-visible assembler symbols. */ + +#define USER_LABEL_PREFIX "_" + +/* The prefix to add to an internally generated label. */ + +#define LOCAL_LABEL_PREFIX "" + +/* Make an internal label into a string. */ +#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \ + sprintf ((STRING), "*%s%s%d", LOCAL_LABEL_PREFIX, (PREFIX), (NUM)) + +/* Output an internal label definition. */ +#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ + asm_fprintf ((FILE), "%L%s%d:\n", (PREFIX), (NUM)) + +/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */ + +/* Construct a private name. */ +#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \ + ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \ + sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER))) + +/* Output a relative address table. */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \ + switch (GET_MODE (BODY)) \ + { \ + case SImode: \ + asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \ + break; \ + case HImode: \ + asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \ + break; \ + case QImode: \ + asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \ + break; \ + } + +/* Output an absolute table element. */ + +#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \ + if (TARGET_BIGTABLE) \ + asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \ + else \ + asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE)); \ + +/* Output various types of constants. */ + +/* This is how to output an assembler line defining a `double'. */ + +#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ +do { char dstr[30]; \ + REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \ + fprintf ((FILE), "\t.double %s\n", dstr); \ + } while (0) + +/* This is how to output an assembler line defining a `float' constant. */ +#define ASM_OUTPUT_FLOAT(FILE,VALUE) \ +do { char dstr[30]; \ + REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \ + fprintf ((FILE), "\t.float %s\n", dstr); \ + } while (0) + +#define ASM_OUTPUT_INT(STREAM, EXP) \ + (fprintf ((STREAM), "\t.long\t"), \ + output_addr_const ((STREAM), (EXP)), \ + fputc ('\n', (STREAM))) + +#define ASM_OUTPUT_SHORT(STREAM, EXP) \ + (fprintf ((STREAM), "\t.short\t"), \ + output_addr_const ((STREAM), (EXP)), \ + fputc ('\n', (STREAM))) + +#define ASM_OUTPUT_CHAR(STREAM, EXP) \ + (fprintf ((STREAM), "\t.byte\t"), \ + output_addr_const ((STREAM), (EXP)), \ + fputc ('\n', (STREAM))) + +#define ASM_OUTPUT_BYTE(STREAM, VALUE) \ + fprintf ((STREAM), "\t.byte\t%d\n", (VALUE)) \ + +/* The next two are used for debug info when compiling with -gdwarf. */ +#define UNALIGNED_SHORT_ASM_OP ".uaword" +#define UNALIGNED_INT_ASM_OP ".ualong" + +/* Loop alignment is now done in machine_dependent_reorg, so that + branch shortening can know about it. */ + +/* This is how to output an assembler line + that says to advance the location counter by SIZE bytes. */ + +#define ASM_OUTPUT_SKIP(FILE,SIZE) \ + fprintf ((FILE), "\t.space %d\n", (SIZE)) + +/* This says how to output an assembler line + to define a global common symbol. */ + +#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ +( fputs ("\t.comm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* This says how to output an assembler line + to define a local common symbol. */ + +#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ +( fputs ("\t.lcomm ", (FILE)), \ + assemble_name ((FILE), (NAME)), \ + fprintf ((FILE), ",%d\n", (SIZE))) + +/* The assembler's parentheses characters. */ +#define ASM_OPEN_PAREN "(" +#define ASM_CLOSE_PAREN ")" + +/* Target characters. */ +#define TARGET_BELL 007 +#define TARGET_BS 010 +#define TARGET_TAB 011 +#define TARGET_NEWLINE 012 +#define TARGET_VT 013 +#define TARGET_FF 014 +#define TARGET_CR 015 + +/* A C statement to be executed just prior to the output of + assembler code for INSN, to modify the extracted operands so + they will be output differently. + + Here the argument OPVEC is the vector containing the operands + extracted from INSN, and NOPERANDS is the number of elements of + the vector which contain meaningful data for this insn. + The contents of this vector are what will be used to convert the insn + template into assembler code, so you can change the assembler output + by changing the contents of the vector. */ + +#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ + final_prescan_insn ((INSN), (OPVEC), (NOPERANDS)) + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +#define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE)) + +/* Print a memory address as an operand to reference that memory location. */ + +#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X)) + +#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ + ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \ + || (CHAR) == '$') + +extern struct rtx_def *sh_compare_op0; +extern struct rtx_def *sh_compare_op1; +extern struct rtx_def *prepare_scc_operands(); + +/* Which processor to schedule for. The elements of the enumeration must + match exactly the cpu attribute in the sh.md file. */ + +enum processor_type { + PROCESSOR_SH1, + PROCESSOR_SH2, + PROCESSOR_SH3, + PROCESSOR_SH3E, + PROCESSOR_SH4 +}; + +#define sh_cpu_attr ((enum attr_cpu)sh_cpu) +extern enum processor_type sh_cpu; + +extern enum machine_mode sh_addr_diff_vec_mode; + +extern int optimize; /* needed for gen_casesi. */ + +/* Declare functions defined in sh.c and used in templates. */ + +extern char *output_branch(); +extern char *output_ieee_ccmpeq(); +extern char *output_branchy_insn(); +extern char *output_shift(); +extern char *output_movedouble(); +extern char *output_movepcrel(); +extern char *output_jump_label_table(); +extern char *output_far_jump(); + +enum mdep_reorg_phase_e +{ + SH_BEFORE_MDEP_REORG, + SH_INSERT_USES_LABELS, + SH_SHORTEN_BRANCHES0, + SH_FIXUP_PCLOAD, + SH_SHORTEN_BRANCHES1, + SH_AFTER_MDEP_REORG +}; + +extern enum mdep_reorg_phase_e mdep_reorg_phase; + +void machine_dependent_reorg (); +struct rtx_def *sfunc_uses_reg (); +int barrier_align (); +int sh_loop_align (); + +#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X) + +/* Generate calls to memcpy, memcmp and memset. */ + +#define TARGET_MEM_FUNCTIONS + +/* Define this macro if you want to implement any pragmas. If defined, it + is a C expression whose value is 1 if the pragma was handled by the + macro, zero otherwise. */ +#define HANDLE_PRAGMA(GETC, UNGETC, NODE) sh_handle_pragma (GETC, UNGETC, NODE) +extern int sh_handle_pragma (); + +/* Set when processing a function with pragma interrupt turned on. */ + +extern int pragma_interrupt; + +/* Set to an RTX containing the address of the stack to switch to + for interrupt functions. */ +extern struct rtx_def *sp_switch; + +/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS + is a valid machine specific attribute for DECL. + The attributes in ATTRIBUTES have previously been assigned to DECL. */ +extern int sh_valid_machine_decl_attribute (); +#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \ +sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS) + +extern void sh_pragma_insert_attributes (); +#define PRAGMA_INSERT_ATTRIBUTES(node, pattr, prefix_attr) \ + sh_pragma_insert_attributes (node, pattr, prefix_attr) + +extern int sh_flag_remove_dead_before_cse; +extern int rtx_equal_function_value_matters; +extern struct rtx_def *fpscr_rtx; +extern struct rtx_def *get_fpscr_rtx (); + + +/* Instructions with unfilled delay slots take up an extra two bytes for + the nop in the delay slot. */ + +#define ADJUST_INSN_LENGTH(X, LENGTH) \ + if (((GET_CODE (X) == INSN \ + && GET_CODE (PATTERN (X)) != USE \ + && GET_CODE (PATTERN (X)) != CLOBBER) \ + || GET_CODE (X) == CALL_INSN \ + || (GET_CODE (X) == JUMP_INSN \ + && GET_CODE (PATTERN (X)) != ADDR_DIFF_VEC \ + && GET_CODE (PATTERN (X)) != ADDR_VEC)) \ + && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (X)))) != SEQUENCE \ + && get_attr_needs_delay_slot (X) == NEEDS_DELAY_SLOT_YES) \ + (LENGTH) += 2; + +/* Define the codes that are matched by predicates in sh.c. */ +#define PREDICATE_CODES \ + {"arith_operand", {SUBREG, REG, CONST_INT}}, \ + {"arith_reg_operand", {SUBREG, REG}}, \ + {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \ + {"binary_float_operator", {PLUS, MULT}}, \ + {"commutative_float_operator", {PLUS, MULT}}, \ + {"fp_arith_reg_operand", {SUBREG, REG}}, \ + {"fp_extended_operand", {SUBREG, REG, FLOAT_EXTEND}}, \ + {"fpscr_operand", {REG}}, \ + {"general_movsrc_operand", {SUBREG, REG, CONST_INT, MEM}}, \ + {"general_movdst_operand", {SUBREG, REG, CONST_INT, MEM}}, \ + {"logical_operand", {SUBREG, REG, CONST_INT}}, \ + {"noncommutative_float_operator", {MINUS, DIV}}, \ + {"register_operand", {SUBREG, REG}}, + +/* Define this macro if it is advisable to hold scalars in registers + in a wider mode than that declared by the program. In such cases, + the value is constrained to be within the bounds of the declared + type, but kept valid in the wider mode. The signedness of the + extension may differ from that of the type. + + Leaving the unsignedp unchanged gives better code than always setting it + to 0. This is despite the fact that we have only signed char and short + load instructions. */ +#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ + if (GET_MODE_CLASS (MODE) == MODE_INT \ + && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ + (MODE) = SImode; + +/* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign + extensions applied to char/short functions arguments. Defining + PROMOTE_FUNCTION_RETURN does the same for function returns. */ + +#define PROMOTE_FUNCTION_ARGS +#define PROMOTE_FUNCTION_RETURN + +/* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing + and poping arguments. However, we do have push/pop instructions, and + rather limited offsets (4 bits) in load/store instructions, so it isn't + clear if this would give better code. If implemented, should check for + compatibility problems. */ + +/* A C statement (sans semicolon) to update the integer variable COST + based on the relationship between INSN that is dependent on + DEP_INSN through the dependence LINK. The default is to make no + adjustment to COST. This can be used for example to specify to + the scheduler that an output- or anti-dependence does not incur + the same cost as a data-dependence. */ + +#define ADJUST_COST(insn,link,dep_insn,cost) \ +do { \ + rtx reg; \ + \ + if (GET_CODE(insn) == CALL_INSN) \ + { \ + /* The only input for a call that is timing-critical is the \ + function's address. */ \ + rtx call = PATTERN (insn); \ + \ + if (GET_CODE (call) == PARALLEL) \ + call = XVECEXP (call, 0 ,0); \ + if (GET_CODE (call) == SET) \ + call = SET_SRC (call); \ + if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM \ + && ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn)) \ + (cost) = 0; \ + } \ + /* All sfunc calls are parallels with at least four components. \ + Exploit this to avoid unnecessary calls to sfunc_uses_reg. */ \ + else if (GET_CODE (PATTERN (insn)) == PARALLEL \ + && XVECLEN (PATTERN (insn), 0) >= 4 \ + && (reg = sfunc_uses_reg (insn))) \ + { \ + /* Likewise, the most timing critical input for an sfuncs call \ + is the function address. However, sfuncs typically start \ + using their arguments pretty quickly. \ + Assume a four cycle delay before they are needed. */ \ + if (! reg_set_p (reg, dep_insn)) \ + cost -= TARGET_SUPERSCALAR ? 40 : 4; \ + } \ + /* Adjust load_si / pcload_si type insns latency. Use the known \ + nominal latency and form of the insn to speed up the check. */ \ + else if (cost == 3 \ + && GET_CODE (PATTERN (dep_insn)) == SET \ + /* Latency for dmpy type insns is also 3, so check the that \ + it's actually a move insn. */ \ + && general_movsrc_operand (SET_SRC (PATTERN (dep_insn)), SImode))\ + cost = 2; \ + else if (cost == 30 \ + && GET_CODE (PATTERN (dep_insn)) == SET \ + && GET_MODE (SET_SRC (PATTERN (dep_insn))) == SImode) \ + cost = 20; \ +} while (0) \ + +/* For the sake of libgcc2.c, indicate target supports atexit. */ +#define HAVE_ATEXIT + +#define SH_DYNAMIC_SHIFT_COST \ + (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20) |