diff options
Diffstat (limited to 'gcc/flow.c')
-rwxr-xr-x | gcc/flow.c | 4486 |
1 files changed, 4486 insertions, 0 deletions
diff --git a/gcc/flow.c b/gcc/flow.c new file mode 100755 index 0000000..a9dc272 --- /dev/null +++ b/gcc/flow.c @@ -0,0 +1,4486 @@ +/* Data flow analysis for GNU compiler. + Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc. + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU CC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + + +/* This file contains the data flow analysis pass of the compiler. + It computes data flow information + which tells combine_instructions which insns to consider combining + and controls register allocation. + + Additional data flow information that is too bulky to record + is generated during the analysis, and is used at that time to + create autoincrement and autodecrement addressing. + + The first step is dividing the function into basic blocks. + find_basic_blocks does this. Then life_analysis determines + where each register is live and where it is dead. + + ** find_basic_blocks ** + + find_basic_blocks divides the current function's rtl + into basic blocks. It records the beginnings and ends of the + basic blocks in the vectors basic_block_head and basic_block_end, + and the number of blocks in n_basic_blocks. + + find_basic_blocks also finds any unreachable loops + and deletes them. + + ** life_analysis ** + + life_analysis is called immediately after find_basic_blocks. + It uses the basic block information to determine where each + hard or pseudo register is live. + + ** live-register info ** + + The information about where each register is live is in two parts: + the REG_NOTES of insns, and the vector basic_block_live_at_start. + + basic_block_live_at_start has an element for each basic block, + and the element is a bit-vector with a bit for each hard or pseudo + register. The bit is 1 if the register is live at the beginning + of the basic block. + + Two types of elements can be added to an insn's REG_NOTES. + A REG_DEAD note is added to an insn's REG_NOTES for any register + that meets both of two conditions: The value in the register is not + needed in subsequent insns and the insn does not replace the value in + the register (in the case of multi-word hard registers, the value in + each register must be replaced by the insn to avoid a REG_DEAD note). + + In the vast majority of cases, an object in a REG_DEAD note will be + used somewhere in the insn. The (rare) exception to this is if an + insn uses a multi-word hard register and only some of the registers are + needed in subsequent insns. In that case, REG_DEAD notes will be + provided for those hard registers that are not subsequently needed. + Partial REG_DEAD notes of this type do not occur when an insn sets + only some of the hard registers used in such a multi-word operand; + omitting REG_DEAD notes for objects stored in an insn is optional and + the desire to do so does not justify the complexity of the partial + REG_DEAD notes. + + REG_UNUSED notes are added for each register that is set by the insn + but is unused subsequently (if every register set by the insn is unused + and the insn does not reference memory or have some other side-effect, + the insn is deleted instead). If only part of a multi-word hard + register is used in a subsequent insn, REG_UNUSED notes are made for + the parts that will not be used. + + To determine which registers are live after any insn, one can + start from the beginning of the basic block and scan insns, noting + which registers are set by each insn and which die there. + + ** Other actions of life_analysis ** + + life_analysis sets up the LOG_LINKS fields of insns because the + information needed to do so is readily available. + + life_analysis deletes insns whose only effect is to store a value + that is never used. + + life_analysis notices cases where a reference to a register as + a memory address can be combined with a preceding or following + incrementation or decrementation of the register. The separate + instruction to increment or decrement is deleted and the address + is changed to a POST_INC or similar rtx. + + Each time an incrementing or decrementing address is created, + a REG_INC element is added to the insn's REG_NOTES list. + + life_analysis fills in certain vectors containing information about + register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length, + reg_n_calls_crosses and reg_basic_block. + + life_analysis sets current_function_sp_is_unchanging if the function + doesn't modify the stack pointer. */ + +#include "config.h" +#include "system.h" +#include "rtl.h" +#include "basic-block.h" +#include "insn-config.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "flags.h" +#include "output.h" +#include "except.h" +#include "toplev.h" +#include "recog.h" + +#include "obstack.h" +#define obstack_chunk_alloc xmalloc +#define obstack_chunk_free free + +#define XNMALLOC(TYPE, COUNT) ((TYPE *) xmalloc ((COUNT) * sizeof (TYPE))) + +/* The contents of the current function definition are allocated + in this obstack, and all are freed at the end of the function. + For top-level functions, this is temporary_obstack. + Separate obstacks are made for nested functions. */ + +extern struct obstack *function_obstack; + +/* List of labels that must never be deleted. */ +extern rtx forced_labels; + +/* Get the basic block number of an insn. + This info should not be expected to remain available + after the end of life_analysis. */ + +/* This is the limit of the allocated space in the following two arrays. */ + +static int max_uid_for_flow; + +#define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)] + +/* This is where the BLOCK_NUM values are really stored. + This is set up by find_basic_blocks and used there and in life_analysis, + and then freed. */ + +int *uid_block_number; + +/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */ + +#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)] +static char *uid_volatile; + +/* Nonzero if the second flow pass has completed. */ +int flow2_completed; + +/* Number of basic blocks in the current function. */ + +int n_basic_blocks; + +/* Maximum register number used in this function, plus one. */ + +int max_regno; + +/* Indexed by n, giving various register information */ + +varray_type reg_n_info; + +/* Size of the reg_n_info table. */ + +unsigned int reg_n_max; + +/* Element N is the next insn that uses (hard or pseudo) register number N + within the current basic block; or zero, if there is no such insn. + This is valid only during the final backward scan in propagate_block. */ + +static rtx *reg_next_use; + +/* Size of a regset for the current function, + in (1) bytes and (2) elements. */ + +int regset_bytes; +int regset_size; + +/* Element N is first insn in basic block N. + This info lasts until we finish compiling the function. */ + +rtx *x_basic_block_head; + +/* Element N is last insn in basic block N. + This info lasts until we finish compiling the function. */ + +rtx *x_basic_block_end; + +/* Element N indicates whether basic block N can be reached through a + computed jump. */ + +char *basic_block_computed_jump_target; + +/* Element N is a regset describing the registers live + at the start of basic block N. + This info lasts until we finish compiling the function. */ + +regset *basic_block_live_at_start; + +/* Regset of regs live when calls to `setjmp'-like functions happen. */ + +regset regs_live_at_setjmp; + +/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers + that have to go in the same hard reg. + The first two regs in the list are a pair, and the next two + are another pair, etc. */ +rtx regs_may_share; + +/* Pointer to head of predecessor/successor block list. */ +static int_list_block *flow_int_list_blocks; + +/* Element N is the list of successors of basic block N. */ +static int_list_ptr *basic_block_succ; + +/* Element N is the list of predecessors of basic block N. */ +static int_list_ptr *basic_block_pred; + +/* Element N is depth within loops of the last insn in basic block number N. + Freed after life_analysis. */ + +static short *basic_block_loop_depth; + +/* Depth within loops of basic block being scanned for lifetime analysis, + plus one. This is the weight attached to references to registers. */ + +static int loop_depth; + +/* During propagate_block, this is non-zero if the value of CC0 is live. */ + +static int cc0_live; + +/* During propagate_block, this contains a list of all the MEMs we are + tracking for dead store elimination. + + ?!? Note we leak memory by not free-ing items on this list. We need to + write some generic routines to operate on memory lists since cse, gcse, + loop, sched, flow and possibly other passes all need to do basically the + same operations on these lists. */ + +static rtx mem_set_list; + +/* Set of registers that may be eliminable. These are handled specially + in updating regs_ever_live. */ + +static HARD_REG_SET elim_reg_set; + +/* Forward declarations */ +static void find_basic_blocks_1 PROTO((rtx, rtx)); +static void add_edge PROTO((int, int)); +static void add_edge_to_label PROTO((int, rtx)); +static void make_edges PROTO((int)); +static void mark_label_ref PROTO((int, rtx)); +static void delete_unreachable_blocks PROTO((void)); +static int delete_block PROTO((int)); +static void life_analysis_1 PROTO((rtx, int)); +static void propagate_block PROTO((regset, rtx, rtx, int, + regset, int)); +static int set_noop_p PROTO((rtx)); +static int noop_move_p PROTO((rtx)); +static void record_volatile_insns PROTO((rtx)); +static void mark_regs_live_at_end PROTO((regset)); +static int insn_dead_p PROTO((rtx, regset, int, rtx)); +static int libcall_dead_p PROTO((rtx, regset, rtx, rtx)); +static void mark_set_regs PROTO((regset, regset, rtx, + rtx, regset)); +static void mark_set_1 PROTO((regset, regset, rtx, + rtx, regset)); +#ifdef AUTO_INC_DEC +static void find_auto_inc PROTO((regset, rtx, rtx)); +static int try_pre_increment_1 PROTO((rtx)); +static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT)); +#endif +static void mark_used_regs PROTO((regset, regset, rtx, int, rtx)); +void dump_flow_info PROTO((FILE *)); +static void add_pred_succ PROTO ((int, int, int_list_ptr *, + int_list_ptr *, int *, int *)); +static int_list_ptr alloc_int_list_node PROTO ((int_list_block **)); +static int_list_ptr add_int_list_node PROTO ((int_list_block **, + int_list **, int)); +/* CYGNUS LOCAL LRS */ +void init_regset_vector PROTO ((regset *, int, + struct obstack *)); +static void count_reg_sets_1 PROTO ((rtx)); +static void count_reg_sets PROTO ((rtx)); +static void count_reg_references PROTO ((rtx)); +static void notice_stack_pointer_modification PROTO ((rtx, rtx)); +static void invalidate_mems_from_autoinc PROTO ((rtx)); + +/* Find basic blocks of the current function. + F is the first insn of the function and NREGS the number of register numbers + in use. */ + +void +find_basic_blocks (f, nregs, file) + rtx f; + int nregs; + FILE *file; +{ + register rtx insn; + register int i; + rtx nonlocal_label_list = nonlocal_label_rtx_list (); + + /* Avoid leaking memory if this is called multiple times per compiled + function. */ + free_bb_memory (); + + /* Count the basic blocks. Also find maximum insn uid value used. */ + + { + rtx prev_call = 0; + register RTX_CODE prev_code = JUMP_INSN; + register RTX_CODE code; + int eh_region = 0; + int call_had_abnormal_edge = 0; + + for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) + { + code = GET_CODE (insn); + + /* A basic block starts at label, or after something that can jump. */ + if (code == CODE_LABEL + || (GET_RTX_CLASS (code) == 'i' + && (prev_code == JUMP_INSN + || (prev_code == CALL_INSN && call_had_abnormal_edge) + || prev_code == BARRIER))) + { + i++; + + /* If the previous insn was a call that did not create an + abnormal edge, we want to add a nop so that the CALL_INSN + itself is not at basic block end. This allows us to easily + distinguish between normal calls and those which create + abnormal edges in the flow graph. */ + + if (i > 0 && !call_had_abnormal_edge && prev_call != 0) + { + rtx nop = gen_rtx_USE (VOIDmode, const0_rtx); + emit_insn_after (nop, prev_call); + } + } + + if (code == CALL_INSN) + { + rtx note = find_reg_note(insn, REG_EH_REGION, NULL_RTX); + + /* We change the code of the CALL_INSN, so that it won't start a + new block. */ + if (note && XINT (XEXP (note, 0), 0) == 0) + code = INSN; + else + { + prev_call = insn; + call_had_abnormal_edge = (nonlocal_label_list != 0 + || eh_region); + } + } + + else if (code != NOTE && code != BARRIER) + prev_call = 0; + + if (code != NOTE) + prev_code = code; + else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) + ++eh_region; + else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) + --eh_region; + } + } + + n_basic_blocks = i; + + max_uid_for_flow = get_max_uid (); +#ifdef AUTO_INC_DEC + /* Leave space for insns life_analysis makes in some cases for auto-inc. + These cases are rare, so we don't need too much space. */ + max_uid_for_flow += max_uid_for_flow / 10; +#endif + + /* Allocate some tables that last till end of compiling this function + and some needed only in find_basic_blocks and life_analysis. */ + + x_basic_block_head = XNMALLOC (rtx, n_basic_blocks); + x_basic_block_end = XNMALLOC (rtx, n_basic_blocks); + basic_block_succ = XNMALLOC (int_list_ptr, n_basic_blocks); + basic_block_pred = XNMALLOC (int_list_ptr, n_basic_blocks); + bzero ((char *)basic_block_succ, n_basic_blocks * sizeof (int_list_ptr)); + bzero ((char *)basic_block_pred, n_basic_blocks * sizeof (int_list_ptr)); + + basic_block_computed_jump_target = (char *) oballoc (n_basic_blocks); + basic_block_loop_depth = XNMALLOC (short, n_basic_blocks); + uid_block_number = XNMALLOC (int, (max_uid_for_flow + 1)); + uid_volatile = XNMALLOC (char, (max_uid_for_flow + 1)); + bzero (uid_volatile, max_uid_for_flow + 1); + + find_basic_blocks_1 (f, nonlocal_label_list); +} + +/* For communication between find_basic_blocks_1 and its subroutines. */ + +/* An array of CODE_LABELs, indexed by UID for the start of the active + EH handler for each insn in F. */ +static int *active_eh_region; +static int *nested_eh_region; + +/* Element N nonzero if basic block N can actually be reached. */ + +static char *block_live_static; + +/* List of label_refs to all labels whose addresses are taken + and used as data. */ +static rtx label_value_list; + +/* a list of non-local labels in the function. */ +static rtx nonlocal_label_list; + +/* Find all basic blocks of the function whose first insn is F. + Store the correct data in the tables that describe the basic blocks, + set up the chains of references for each CODE_LABEL, and + delete any entire basic blocks that cannot be reached. + + NONLOCAL_LABELS is a list of non-local labels in the function. + Blocks that are otherwise unreachable may be reachable with a non-local + goto. */ + +static void +find_basic_blocks_1 (f, nonlocal_labels) + rtx f, nonlocal_labels; +{ + register rtx insn; + register int i; + register char *block_live = (char *) alloca (n_basic_blocks); + register char *block_marked = (char *) alloca (n_basic_blocks); + rtx note, eh_note; + enum rtx_code prev_code, code; + int depth; + int call_had_abnormal_edge = 0; + + active_eh_region = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int)); + nested_eh_region = (int *) alloca ((max_label_num () + 1) * sizeof (int)); + nonlocal_label_list = nonlocal_labels; + + label_value_list = 0; + block_live_static = block_live; + bzero (block_live, n_basic_blocks); + bzero (block_marked, n_basic_blocks); + bzero (basic_block_computed_jump_target, n_basic_blocks); + bzero ((char *) active_eh_region, (max_uid_for_flow + 1) * sizeof (int)); + bzero ((char *) nested_eh_region, (max_label_num () + 1) * sizeof (int)); + current_function_has_computed_jump = 0; + + /* Initialize with just block 0 reachable and no blocks marked. */ + if (n_basic_blocks > 0) + block_live[0] = 1; + + /* Initialize the ref chain of each label to 0. Record where all the + blocks start and end and their depth in loops. For each insn, record + the block it is in. Also mark as reachable any blocks headed by labels + that must not be deleted. */ + + for (eh_note = NULL_RTX, insn = f, i = -1, prev_code = JUMP_INSN, depth = 1; + insn; insn = NEXT_INSN (insn)) + { + code = GET_CODE (insn); + if (code == NOTE) + { + if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) + depth++; + else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) + depth--; + } + + /* A basic block starts at label, or after something that can jump. */ + else if (code == CODE_LABEL + || (GET_RTX_CLASS (code) == 'i' + && (prev_code == JUMP_INSN + || (prev_code == CALL_INSN && call_had_abnormal_edge) + || prev_code == BARRIER))) + { + BLOCK_HEAD (++i) = insn; + BLOCK_END (i) = insn; + basic_block_loop_depth[i] = depth; + + if (code == CODE_LABEL) + { + LABEL_REFS (insn) = insn; + /* Any label that cannot be deleted + is considered to start a reachable block. */ + if (LABEL_PRESERVE_P (insn)) + block_live[i] = 1; + } + } + + else if (GET_RTX_CLASS (code) == 'i') + { + BLOCK_END (i) = insn; + basic_block_loop_depth[i] = depth; + } + + if (GET_RTX_CLASS (code) == 'i') + { + /* Make a list of all labels referred to other than by jumps. */ + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_LABEL + && XEXP (note, 0) != eh_return_stub_label) + label_value_list = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0), + label_value_list); + } + + /* Keep a lifo list of the currently active exception notes. */ + if (GET_CODE (insn) == NOTE) + { + if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) + { + if (eh_note) + nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = + NOTE_BLOCK_NUMBER (XEXP (eh_note, 0)); + else + nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = 0; + eh_note = gen_rtx_EXPR_LIST (VOIDmode, + insn, eh_note); + } + else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) + eh_note = XEXP (eh_note, 1); + } + /* If we encounter a CALL_INSN, note which exception handler it + might pass control to. + + If doing asynchronous exceptions, record the active EH handler + for every insn, since most insns can throw. */ + else if (eh_note + && (asynchronous_exceptions + || (GET_CODE (insn) == CALL_INSN))) + active_eh_region[INSN_UID (insn)] = + NOTE_BLOCK_NUMBER (XEXP (eh_note, 0)); + BLOCK_NUM (insn) = i; + + /* We change the code of the CALL_INSN, so that it won't start a + new block if it doesn't throw. */ + if (code == CALL_INSN) + { + rtx rnote = find_reg_note(insn, REG_EH_REGION, NULL_RTX); + if (rnote && XINT (XEXP (rnote, 0), 0) == 0) + code = INSN; + } + + /* Record whether this call created an edge. */ + if (code == CALL_INSN) + call_had_abnormal_edge = (nonlocal_label_list != 0 || eh_note); + + if (code != NOTE) + prev_code = code; + + } + + if (i + 1 != n_basic_blocks) + abort (); + + /* Now find which basic blocks can actually be reached + and put all jump insns' LABEL_REFS onto the ref-chains + of their target labels. */ + + if (n_basic_blocks > 0) + { + int something_marked = 1; + + /* Pass over all blocks, marking each block that is reachable + and has not yet been marked. + Keep doing this until, in one pass, no blocks have been marked. + Then blocks_live and blocks_marked are identical and correct. + In addition, all jumps actually reachable have been marked. */ + + while (something_marked) + { + something_marked = 0; + for (i = 0; i < n_basic_blocks; i++) + if (block_live[i] && !block_marked[i]) + { + int_list_ptr p; + + block_marked[i] = 1; + something_marked = 1; + + make_edges (i); + + for (p = basic_block_succ[i]; p; p = p->next) + block_live[INT_LIST_VAL (p)] = 1; + } + } + + /* This should never happen. If it does that means we've computed an + incorrect flow graph, which can lead to aborts/crashes later in the + compiler or incorrect code generation. + + We used to try and continue here, but that's just asking for trouble + later during the compile or at runtime. It's easier to debug the + problem here than later! */ + for (i = 1; i < n_basic_blocks; i++) + if (block_live[i] && basic_block_pred[i] == 0) + abort (); + + if (! reload_completed) + delete_unreachable_blocks (); + } +} + +/* Record INSN's block number as BB. */ + +void +set_block_num (insn, bb) + rtx insn; + int bb; +{ + if (INSN_UID (insn) >= max_uid_for_flow) + { + /* Add one-eighth the size so we don't keep calling xrealloc. */ + max_uid_for_flow = INSN_UID (insn) + (INSN_UID (insn) + 7) / 8; + uid_block_number = (int *) + xrealloc (uid_block_number, (max_uid_for_flow + 1) * sizeof (int)); + } + BLOCK_NUM (insn) = bb; +} + +/* Subroutines of find_basic_blocks. */ + +void +free_bb_memory () +{ + free_int_list (&flow_int_list_blocks); +} + +/* Make an edge in the cfg from block PRED to block SUCC. */ +static void +add_edge (pred, succ) + int pred, succ; +{ + int_list *p; + + for (p = basic_block_pred[succ]; p ; p = p->next) + if (p->val == pred) + return; + + add_int_list_node (&flow_int_list_blocks, basic_block_pred + succ, pred); + add_int_list_node (&flow_int_list_blocks, basic_block_succ + pred, succ); +} + +/* Make an edge in the cfg from block PRED to the block starting with + label LABEL. */ +static void +add_edge_to_label (pred, label) + int pred; + rtx label; +{ + /* If the label was never emitted, this insn is junk, + but avoid a crash trying to refer to BLOCK_NUM (label). + This can happen as a result of a syntax error + and a diagnostic has already been printed. */ + if (INSN_UID (label) == 0) + return; + + add_edge (pred, BLOCK_NUM (label)); +} + +/* Check expression X for label references. If one is found, add an edge + from basic block PRED to the block beginning with the label. */ + +static void +mark_label_ref (pred, x) + int pred; + rtx x; +{ + register RTX_CODE code; + register int i; + register char *fmt; + + code = GET_CODE (x); + if (code == LABEL_REF) + { + add_edge_to_label (pred, XEXP (x, 0)); + return; + } + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + mark_label_ref (pred, XEXP (x, i)); + if (fmt[i] == 'E') + { + register int j; + for (j = 0; j < XVECLEN (x, i); j++) + mark_label_ref (pred, XVECEXP (x, i, j)); + } + } +} + +/* For basic block I, make edges and mark live all blocks which are reachable + from it. */ +static void +make_edges (i) + int i; +{ + rtx insn, x; + rtx pending_eh_region = NULL_RTX; + + /* See if control drops into the next block. */ + if (i + 1 < n_basic_blocks) + { + for (insn = PREV_INSN (BLOCK_HEAD (i + 1)); + insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn)) + ; + + if (insn && GET_CODE (insn) != BARRIER) + add_edge (i, i + 1); + } + + insn = BLOCK_END (i); + if (GET_CODE (insn) == JUMP_INSN) + mark_label_ref (i, PATTERN (insn)); + + /* If we have any forced labels, mark them as potentially reachable from + this block. */ + for (x = forced_labels; x; x = XEXP (x, 1)) + if (! LABEL_REF_NONLOCAL_P (x)) + add_edge_to_label (i, XEXP (x, 0)); + + /* Now scan the insns for this block, we may need to make edges for some of + them to various non-obvious locations (exception handlers, nonlocal + labels, etc). */ + for (insn = BLOCK_HEAD (i); + insn != NEXT_INSN (BLOCK_END (i)); + insn = NEXT_INSN (insn)) + { + if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') + { + rtx note; + /* References to labels in non-jumping insns have REG_LABEL notes + attached to them. + + This can happen for computed gotos; we don't care about them + here since the values are also on the label_value_list and will + be marked live if we find a live computed goto. + + This can also happen when we take the address of a label to pass + as an argument to __throw. Note throw only uses the value to + determine what handler should be called -- ie the label is not + used as a jump target, it just marks regions in the code. + + In theory we should be able to ignore the REG_LABEL notes, but + we have to make sure that the label and associated insns aren't + marked dead, so we make the block in question live and create an + edge from this insn to the label. This is not strictly correct, + but it is close enough for now. + + See below for code that handles the eh_stub label specially. */ + for (note = REG_NOTES (insn); + note; + note = XEXP (note, 1)) + { + if (REG_NOTE_KIND (note) == REG_LABEL + && XEXP (note, 0) != eh_return_stub_label) + add_edge_to_label (i, XEXP (note, 0)); + } + + /* If this is a computed jump, then mark it as reaching everything + on the label_value_list and forced_labels list. */ + if (computed_jump_p (insn)) + { + current_function_has_computed_jump = 1; + for (x = label_value_list; x; x = XEXP (x, 1)) + { + int b = BLOCK_NUM (XEXP (x, 0)); + basic_block_computed_jump_target[b] = 1; + add_edge (i, b); + } + + for (x = forced_labels; x; x = XEXP (x, 1)) + { + int b = BLOCK_NUM (XEXP (x, 0)); + basic_block_computed_jump_target[b] = 1; + add_edge (i, b); + } + } + + /* If this is a call with an EH_RETHROW note, then we + know its a rethrow call, and we know exactly where + this call can end up going. */ + else if (GET_CODE (insn) == CALL_INSN + && (note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX))) + { + int region = XINT (XEXP (note, 0), 0); + /* if nested region is not 0, we know for sure it has been + processed. If it is zero, we dont know whether its an + outer region, or hasn't been seen yet, so defer it */ + if (nested_eh_region[region] != 0) + { + /* start with the first region OUTSIDE the one specified + in the rethrow parameter. (since a rethrow behaves + as if a handler in the region didn't handle the + exception, so the handlers for the next outer region + are going to get a shot at it.*/ + for ( region = nested_eh_region[region]; region; + region = nested_eh_region[region]) + { + handler_info *ptr = get_first_handler (region); + for ( ; ptr ; ptr = ptr->next) + add_edge_to_label (i, ptr->handler_label); + } + } + else + { + /* Push this region onto a list, and after we've done the + whole procedure, we'll process everything on the list */ + pending_eh_region = gen_rtx_EXPR_LIST (VOIDmode, insn, + pending_eh_region); + } + } + + /* If this is a CALL_INSN, then mark it as reaching the active EH + handler for this CALL_INSN. If we're handling asynchronous + exceptions mark every insn as reaching the active EH handler. + + Also mark the CALL_INSN as reaching any nonlocal goto sites. */ + else if (asynchronous_exceptions + || (GET_CODE (insn) == CALL_INSN + && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))) + { + int region = active_eh_region[INSN_UID (insn)]; + note = find_reg_note(insn, REG_EH_REGION, NULL_RTX); + + /* Override region if we see a REG_EH_REGION note. */ + if (note) + region = XINT (XEXP (note, 0), 0); + + if (region) + { + handler_info *ptr; + region = active_eh_region[INSN_UID (insn)]; + for ( ; region; region = nested_eh_region[region]) + { + ptr = get_first_handler (region); + for ( ; ptr ; ptr = ptr->next) + add_edge_to_label (i, ptr->handler_label); + } + } + if (! asynchronous_exceptions) + { + for (x = nonlocal_label_list; x; x = XEXP (x, 1)) + add_edge_to_label (i, XEXP (x, 0)); + } + /* ??? This could be made smarter: in some cases it's possible + to tell that certain calls will not do a nonlocal goto. + + For example, if the nested functions that do the nonlocal + gotos do not have their addresses taken, then only calls to + those functions or to other nested functions that use them + could possibly do nonlocal gotos. */ + } + } + } + + while (pending_eh_region != NULL_RTX) + { + rtx insn = XEXP (pending_eh_region, 0); + rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX); + int region = XINT (XEXP (note, 0), 0); + /* start with the first region OUTSIDE the one specified + in the rethrow parameter */ + for ( region = nested_eh_region[region]; region; + region = nested_eh_region[region]) + { + handler_info *ptr = get_first_handler (region); + for ( ; ptr ; ptr = ptr->next) + add_edge_to_label (BLOCK_NUM (insn), ptr->handler_label); + } + pending_eh_region = XEXP (pending_eh_region, 1); + } + + /* We know something about the structure of the function __throw in + libgcc2.c. It is the only function that ever contains eh_stub labels. + It modifies its return address so that the last block returns to one of + the eh_stub labels within it. So we have to make additional edges in + the flow graph. */ + if (i + 1 == n_basic_blocks && eh_return_stub_label != 0) + add_edge_to_label (i, eh_return_stub_label); +} + +/* Now delete the code for any basic blocks that can't be reached. + They can occur because jump_optimize does not recognize unreachable loops + as unreachable. */ +static void +delete_unreachable_blocks () +{ + int deleted_handler = 0; + int deleted = 0; + int i, j; + rtx insn; + int *block_num_map = XNMALLOC (int, n_basic_blocks); + + for (i = n_basic_blocks - 1; i >= 0; i--) + if (! block_live_static[i]) + deleted_handler |= delete_block (i); + + for (i = 0; i < n_basic_blocks; i++) + if (block_live_static[i]) + block_num_map[i] = i - deleted; + else + { + deleted++; + block_num_map[i] = -1; + } + + /* Eliminate all traces of the deleted blocks by renumbering the remaining + ones. */ + for (i = j = 0; i < n_basic_blocks; i++) + { + int_list_ptr p; + + if (block_num_map[i] == -1) + continue; + + for (p = basic_block_pred[i]; p; p = p->next) + INT_LIST_VAL (p) = block_num_map[INT_LIST_VAL (p)]; + for (p = basic_block_succ[i]; p; p = p->next) + INT_LIST_VAL (p) = block_num_map[INT_LIST_VAL (p)]; + + if (i != j) + { + rtx tmp = BLOCK_HEAD (i); + for (;;) + { + BLOCK_NUM (tmp) = j; + if (tmp == BLOCK_END (i)) + break; + tmp = NEXT_INSN (tmp); + } + BLOCK_HEAD (j) = BLOCK_HEAD (i); + BLOCK_END (j) = BLOCK_END (i); + basic_block_pred[j] = basic_block_pred[i]; + basic_block_succ[j] = basic_block_succ[i]; + basic_block_loop_depth[j] = basic_block_loop_depth[i]; + basic_block_computed_jump_target[j] + = basic_block_computed_jump_target[i]; + } + j++; + } + n_basic_blocks -= deleted; + free (block_num_map); + + /* If we deleted an exception handler, we may have EH region + begin/end blocks to remove as well. */ + if (deleted_handler) + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + if (GET_CODE (insn) == NOTE) + { + if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG || + NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) + { + int num = CODE_LABEL_NUMBER (insn); + /* A NULL handler indicates a region is no longer needed, + unless its the target of a rethrow. */ + if (get_first_handler (num) == NULL && !rethrow_used (num)) + { + NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (insn) = 0; + } + } + } +} + +/* Delete the insns in a (non-live) block. We physically delete every + non-note insn except the start and end (so BLOCK_HEAD/END needn't + be updated), we turn the latter into NOTE_INSN_DELETED notes. + + We use to "delete" the insns by turning them into notes, but we may be + deleting lots of insns that subsequent passes would otherwise have to + process. Secondly, lots of deleted blocks in a row can really slow down + propagate_block since it will otherwise process insn-turned-notes multiple + times when it looks for loop begin/end notes. + + Return nonzero if we deleted an exception handler. */ +static int +delete_block (i) + int i; +{ + int deleted_handler = 0; + rtx insn; + rtx kept_head = 0; + rtx kept_tail = 0; + + /* If the head of this block is a CODE_LABEL, then it might + be the label for an exception handler which can't be + reached. + + We need to remove the label from the exception_handler_label + list and remove the associated NOTE_EH_REGION_BEG and + NOTE_EH_REGION_END notes. */ + insn = BLOCK_HEAD (i); + if (GET_CODE (insn) == CODE_LABEL) + { + rtx x, *prev = &exception_handler_labels; + + for (x = exception_handler_labels; x; x = XEXP (x, 1)) + { + if (XEXP (x, 0) == insn) + { + /* Found a match, splice this label out of the + EH label list. */ + *prev = XEXP (x, 1); + XEXP (x, 1) = NULL_RTX; + XEXP (x, 0) = NULL_RTX; + + /* Remove the handler from all regions */ + remove_handler (insn); + deleted_handler = 1; + break; + } + prev = &XEXP (x, 1); + } + } + + /* Walk the insns of the block, building a chain of NOTEs that need to be + kept. */ + insn = BLOCK_HEAD (i); + for (;;) + { + if (GET_CODE (insn) == BARRIER) + abort (); + else if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED) + { + if (kept_head == 0) + kept_head = kept_tail = insn; + else + { + NEXT_INSN (kept_tail) = insn; + PREV_INSN (insn) = kept_tail; + kept_tail = insn; + } + } + if (insn == BLOCK_END (i)) + break; + insn = NEXT_INSN (insn); + } + insn = NEXT_INSN (insn); + + /* BARRIERs are between basic blocks, not part of one. + Delete a BARRIER if the preceding jump is deleted. + We cannot alter a BARRIER into a NOTE + because it is too short; but we can really delete + it because it is not part of a basic block. */ + if (insn != 0 && GET_CODE (insn) == BARRIER) + insn = NEXT_INSN (insn); + + /* Now unchain all of the block, and put the chain of kept notes in its + place. */ + if (kept_head == 0) + { + NEXT_INSN (PREV_INSN (BLOCK_HEAD (i))) = insn; + if (insn != 0) + PREV_INSN (insn) = PREV_INSN (BLOCK_HEAD (i)); + else + set_last_insn (PREV_INSN (BLOCK_HEAD(i))); + } + else + { + NEXT_INSN (PREV_INSN (BLOCK_HEAD (i))) = kept_head; + if (insn != 0) + PREV_INSN (insn) = kept_tail; + + PREV_INSN (kept_head) = PREV_INSN (BLOCK_HEAD (i)); + NEXT_INSN (kept_tail) = insn; + + /* This must happen after NEXT_INSN (kept_tail) has been reinitialized + since set_last_insn will abort if it detects a non-NULL NEXT_INSN + field in its argument. */ + if (insn == NULL_RTX) + set_last_insn (kept_tail); + } + + /* Each time we delete some basic blocks, + see if there is a jump around them that is + being turned into a no-op. If so, delete it. */ + + if (block_live_static[i - 1]) + { + register int j; + for (j = i + 1; j < n_basic_blocks; j++) + if (block_live_static[j]) + { + rtx label; + insn = BLOCK_END (i - 1); + if (GET_CODE (insn) == JUMP_INSN + /* An unconditional jump is the only possibility + we must check for, since a conditional one + would make these blocks live. */ + && simplejump_p (insn) + && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1) + && INSN_UID (label) != 0 + && BLOCK_NUM (label) == j) + { + PUT_CODE (insn, NOTE); + NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (insn) = 0; + if (GET_CODE (NEXT_INSN (insn)) != BARRIER) + abort (); + delete_insn (NEXT_INSN (insn)); + } + break; + } + } + + return deleted_handler; +} + +/* Perform data flow analysis. + F is the first insn of the function and NREGS the number of register numbers + in use. */ + +void +life_analysis (f, nregs, file) + rtx f; + int nregs; + FILE *file; +{ +#ifdef ELIMINABLE_REGS + register size_t i; + static struct {int from, to; } eliminables[] = ELIMINABLE_REGS; +#endif + + /* Record which registers will be eliminated. We use this in + mark_used_regs. */ + + CLEAR_HARD_REG_SET (elim_reg_set); + +#ifdef ELIMINABLE_REGS + for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++) + SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from); +#else + SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM); +#endif + + /* We want alias analysis information for local dead store elimination. */ + init_alias_analysis (); + life_analysis_1 (f, nregs); + end_alias_analysis (); + + if (file) + dump_flow_info (file); + + free_basic_block_vars (1); +} + +/* Free the variables allocated by find_basic_blocks. + + KEEP_HEAD_END_P is non-zero if BLOCK_HEAD and BLOCK_END + are not to be freed. */ + +void +free_basic_block_vars (keep_head_end_p) + int keep_head_end_p; +{ + if (basic_block_loop_depth) + { + free (basic_block_loop_depth); + basic_block_loop_depth = 0; + } + if (uid_block_number) + { + free (uid_block_number); + uid_block_number = 0; + } + if (uid_volatile) + { + free (uid_volatile); + uid_volatile = 0; + } + + if (! keep_head_end_p && x_basic_block_head) + { + free (x_basic_block_head); + x_basic_block_head = 0; + free (x_basic_block_end); + x_basic_block_end = 0; + } +} + +/* Return nonzero if the destination of SET equals the source. */ +static int +set_noop_p (set) + rtx set; +{ + rtx src = SET_SRC (set); + rtx dst = SET_DEST (set); + if (GET_CODE (src) == REG && GET_CODE (dst) == REG + && REGNO (src) == REGNO (dst)) + return 1; + if (GET_CODE (src) != SUBREG || GET_CODE (dst) != SUBREG + || SUBREG_WORD (src) != SUBREG_WORD (dst)) + return 0; + src = SUBREG_REG (src); + dst = SUBREG_REG (dst); + if (GET_CODE (src) == REG && GET_CODE (dst) == REG + && REGNO (src) == REGNO (dst)) + return 1; + return 0; +} + +/* Return nonzero if an insn consists only of SETs, each of which only sets a + value to itself. */ +static int +noop_move_p (insn) + rtx insn; +{ + rtx pat = PATTERN (insn); + + /* Insns carrying these notes are useful later on. */ + if (find_reg_note (insn, REG_EQUAL, NULL_RTX)) + return 0; + + if (GET_CODE (pat) == SET && set_noop_p (pat)) + return 1; + + if (GET_CODE (pat) == PARALLEL) + { + int i; + /* If nothing but SETs of registers to themselves, + this insn can also be deleted. */ + for (i = 0; i < XVECLEN (pat, 0); i++) + { + rtx tem = XVECEXP (pat, 0, i); + + if (GET_CODE (tem) == USE + || GET_CODE (tem) == CLOBBER) + continue; + + if (GET_CODE (tem) != SET || ! set_noop_p (tem)) + return 0; + } + + return 1; + } + return 0; +} + +static void +notice_stack_pointer_modification (x, pat) + rtx x; + rtx pat ATTRIBUTE_UNUSED; +{ + if (x == stack_pointer_rtx + /* The stack pointer is only modified indirectly as the result + of a push until later in flow. See the comments in rtl.texi + regarding Embedded Side-Effects on Addresses. */ + || (GET_CODE (x) == MEM + && (GET_CODE (XEXP (x, 0)) == PRE_DEC + || GET_CODE (XEXP (x, 0)) == PRE_INC + || GET_CODE (XEXP (x, 0)) == POST_DEC + || GET_CODE (XEXP (x, 0)) == POST_INC) + && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx)) + current_function_sp_is_unchanging = 0; +} + +/* Record which insns refer to any volatile memory + or for any reason can't be deleted just because they are dead stores. + Also, delete any insns that copy a register to itself. + And see if the stack pointer is modified. */ +static void +record_volatile_insns (f) + rtx f; +{ + rtx insn; + for (insn = f; insn; insn = NEXT_INSN (insn)) + { + enum rtx_code code1 = GET_CODE (insn); + if (code1 == CALL_INSN) + INSN_VOLATILE (insn) = 1; + else if (code1 == INSN || code1 == JUMP_INSN) + { + if (GET_CODE (PATTERN (insn)) != USE + && volatile_refs_p (PATTERN (insn))) + INSN_VOLATILE (insn) = 1; + + /* A SET that makes space on the stack cannot be dead. + (Such SETs occur only for allocating variable-size data, + so they will always have a PLUS or MINUS according to the + direction of stack growth.) + Even if this function never uses this stack pointer value, + signal handlers do! */ + else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET + && SET_DEST (PATTERN (insn)) == stack_pointer_rtx +#ifdef STACK_GROWS_DOWNWARD + && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS +#else + && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS +#endif + && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx) + INSN_VOLATILE (insn) = 1; + + /* Delete (in effect) any obvious no-op moves. */ + else if (noop_move_p (insn)) + { + PUT_CODE (insn, NOTE); + NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (insn) = 0; + } + } + + /* Check if insn modifies the stack pointer. */ + if ( current_function_sp_is_unchanging + && GET_RTX_CLASS (GET_CODE (insn)) == 'i') + note_stores (PATTERN (insn), notice_stack_pointer_modification); + } +} + +/* Mark those regs which are needed at the end of the function as live + at the end of the last basic block. */ +static void +mark_regs_live_at_end (set) + regset set; +{ + int i; + +#ifdef EXIT_IGNORE_STACK + if (! EXIT_IGNORE_STACK + || (! FRAME_POINTER_REQUIRED + && ! current_function_calls_alloca + && flag_omit_frame_pointer) + || current_function_sp_is_unchanging) +#endif + /* If exiting needs the right stack value, + consider the stack pointer live at the end of the function. */ + SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM); + + /* Mark the frame pointer is needed at the end of the function. If + we end up eliminating it, it will be removed from the live list + of each basic block by reload. */ + + SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM); +#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM + /* If they are different, also mark the hard frame pointer as live */ + SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM); +#endif + + + /* Mark all global registers and all registers used by the epilogue + as being live at the end of the function since they may be + referenced by our caller. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (global_regs[i] +#ifdef EPILOGUE_USES + || EPILOGUE_USES (i) +#endif + ) + SET_REGNO_REG_SET (set, i); +} + +/* Determine which registers are live at the start of each + basic block of the function whose first insn is F. + NREGS is the number of registers used in F. + We allocate the vector basic_block_live_at_start + and the regsets that it points to, and fill them with the data. + regset_size and regset_bytes are also set here. */ + +static void +life_analysis_1 (f, nregs) + rtx f; + int nregs; +{ + int first_pass; + int changed; + /* For each basic block, a bitmask of regs + live on exit from the block. */ + regset *basic_block_live_at_end; + /* For each basic block, a bitmask of regs + live on entry to a successor-block of this block. + If this does not match basic_block_live_at_end, + that must be updated, and the block must be rescanned. */ + regset *basic_block_new_live_at_end; + /* For each basic block, a bitmask of regs + whose liveness at the end of the basic block + can make a difference in which regs are live on entry to the block. + These are the regs that are set within the basic block, + possibly excluding those that are used after they are set. */ + regset *basic_block_significant; + register int i; + char save_regs_ever_live[FIRST_PSEUDO_REGISTER]; + + struct obstack flow_obstack; + + gcc_obstack_init (&flow_obstack); + + max_regno = nregs; + + /* The post-reload life analysis have (on a global basis) the same registers + live as was computed by reload itself. + + Otherwise elimination offsets and such may be incorrect. + + Reload will make some registers as live even though they do not appear + in the rtl. */ + if (reload_completed) + bcopy (regs_ever_live, save_regs_ever_live, (sizeof (regs_ever_live))); + + bzero (regs_ever_live, sizeof regs_ever_live); + + /* Allocate and zero out many data structures + that will record the data from lifetime analysis. */ + + allocate_for_life_analysis (); + + reg_next_use = (rtx *) alloca (nregs * sizeof (rtx)); + bzero ((char *) reg_next_use, nregs * sizeof (rtx)); + + /* Set up several regset-vectors used internally within this function. + Their meanings are documented above, with their declarations. */ + + basic_block_live_at_end + = (regset *) alloca (n_basic_blocks * sizeof (regset)); + + /* Don't use alloca since that leads to a crash rather than an error message + if there isn't enough space. + Don't use oballoc since we may need to allocate other things during + this function on the temporary obstack. */ + init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack); + + basic_block_new_live_at_end + = (regset *) alloca (n_basic_blocks * sizeof (regset)); + init_regset_vector (basic_block_new_live_at_end, n_basic_blocks, + &flow_obstack); + + basic_block_significant + = (regset *) alloca (n_basic_blocks * sizeof (regset)); + init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack); + + /* Assume that the stack pointer is unchanging if alloca hasn't been used. + This will be cleared by record_volatile_insns if it encounters an insn + which modifies the stack pointer. */ + current_function_sp_is_unchanging = !current_function_calls_alloca; + + record_volatile_insns (f); + + if (n_basic_blocks > 0) + { + mark_regs_live_at_end (basic_block_live_at_end[n_basic_blocks - 1]); + COPY_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], + basic_block_live_at_end[n_basic_blocks - 1]); + } + + /* Propagate life info through the basic blocks + around the graph of basic blocks. + + This is a relaxation process: each time a new register + is live at the end of the basic block, we must scan the block + to determine which registers are, as a consequence, live at the beginning + of that block. These registers must then be marked live at the ends + of all the blocks that can transfer control to that block. + The process continues until it reaches a fixed point. */ + + first_pass = 1; + changed = 1; + while (changed) + { + changed = 0; + for (i = n_basic_blocks - 1; i >= 0; i--) + { + int consider = first_pass; + int must_rescan = first_pass; + register int j; + + if (!first_pass) + { + /* Set CONSIDER if this block needs thinking about at all + (that is, if the regs live now at the end of it + are not the same as were live at the end of it when + we last thought about it). + Set must_rescan if it needs to be thought about + instruction by instruction (that is, if any additional + reg that is live at the end now but was not live there before + is one of the significant regs of this basic block). */ + + EXECUTE_IF_AND_COMPL_IN_REG_SET + (basic_block_new_live_at_end[i], + basic_block_live_at_end[i], 0, j, + { + consider = 1; + if (REGNO_REG_SET_P (basic_block_significant[i], j)) + { + must_rescan = 1; + goto done; + } + }); + done: + if (! consider) + continue; + } + + /* The live_at_start of this block may be changing, + so another pass will be required after this one. */ + changed = 1; + + if (! must_rescan) + { + /* No complete rescan needed; + just record those variables newly known live at end + as live at start as well. */ + IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i], + basic_block_new_live_at_end[i], + basic_block_live_at_end[i]); + + IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i], + basic_block_new_live_at_end[i], + basic_block_live_at_end[i]); + } + else + { + /* Update the basic_block_live_at_start + by propagation backwards through the block. */ + COPY_REG_SET (basic_block_live_at_end[i], + basic_block_new_live_at_end[i]); + COPY_REG_SET (basic_block_live_at_start[i], + basic_block_live_at_end[i]); + propagate_block (basic_block_live_at_start[i], + BLOCK_HEAD (i), BLOCK_END (i), 0, + first_pass ? basic_block_significant[i] + : (regset) 0, + i); + } + + { + int_list_ptr p; + + /* Update the basic_block_new_live_at_end's of + all the blocks that reach this one. */ + for (p = basic_block_pred[i]; p; p = p->next) + { + register int from_block = INT_LIST_VAL (p); + IOR_REG_SET (basic_block_new_live_at_end[from_block], + basic_block_live_at_start[i]); + } + } +#ifdef USE_C_ALLOCA + alloca (0); +#endif + } + first_pass = 0; + } + + /* The only pseudos that are live at the beginning of the function are + those that were not set anywhere in the function. local-alloc doesn't + know how to handle these correctly, so mark them as not local to any + one basic block. */ + + if (n_basic_blocks > 0) + EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0], + FIRST_PSEUDO_REGISTER, i, + { + REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; + }); + + /* Now the life information is accurate. + Make one more pass over each basic block + to delete dead stores, create autoincrement addressing + and record how many times each register is used, is set, or dies. + + To save time, we operate directly in basic_block_live_at_end[i], + thus destroying it (in fact, converting it into a copy of + basic_block_live_at_start[i]). This is ok now because + basic_block_live_at_end[i] is no longer used past this point. */ + + for (i = 0; i < n_basic_blocks; i++) + { + propagate_block (basic_block_live_at_end[i], + BLOCK_HEAD (i), BLOCK_END (i), 1, + (regset) 0, i); +#ifdef USE_C_ALLOCA + alloca (0); +#endif + } + +#if 0 + /* Something live during a setjmp should not be put in a register + on certain machines which restore regs from stack frames + rather than from the jmpbuf. + But we don't need to do this for the user's variables, since + ANSI says only volatile variables need this. */ +#ifdef LONGJMP_RESTORE_FROM_STACK + EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp, + FIRST_PSEUDO_REGISTER, i, + { + if (regno_reg_rtx[i] != 0 + && ! REG_USERVAR_P (regno_reg_rtx[i])) + { + REG_LIVE_LENGTH (i) = -1; + REG_BASIC_BLOCK (i) = -1; + } + }); +#endif +#endif + + /* We have a problem with any pseudoreg that + lives across the setjmp. ANSI says that if a + user variable does not change in value + between the setjmp and the longjmp, then the longjmp preserves it. + This includes longjmp from a place where the pseudo appears dead. + (In principle, the value still exists if it is in scope.) + If the pseudo goes in a hard reg, some other value may occupy + that hard reg where this pseudo is dead, thus clobbering the pseudo. + Conclusion: such a pseudo must not go in a hard reg. */ + EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp, + FIRST_PSEUDO_REGISTER, i, + { + if (regno_reg_rtx[i] != 0) + { + REG_LIVE_LENGTH (i) = -1; + REG_BASIC_BLOCK (i) = -1; + } + }); + + /* Restore regs_ever_live that was provided by reload. */ + if (reload_completed) + bcopy (save_regs_ever_live, regs_ever_live, (sizeof (regs_ever_live))); + + free_regset_vector (basic_block_live_at_end, n_basic_blocks); + free_regset_vector (basic_block_new_live_at_end, n_basic_blocks); + free_regset_vector (basic_block_significant, n_basic_blocks); + basic_block_live_at_end = (regset *)0; + basic_block_new_live_at_end = (regset *)0; + basic_block_significant = (regset *)0; + + obstack_free (&flow_obstack, NULL_PTR); +} + +/* Subroutines of life analysis. */ + +/* Allocate the permanent data structures that represent the results + of life analysis. Not static since used also for stupid life analysis. */ + +void +allocate_for_life_analysis () +{ + register int i; + + /* Recalculate the register space, in case it has grown. Old style + vector oriented regsets would set regset_{size,bytes} here also. */ + allocate_reg_info (max_regno, FALSE, FALSE); + + /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS + information, explicitly reset it here. The allocation should have + already happened on the previous reg_scan pass. Make sure in case + some more registers were allocated. */ + for (i = 0; i < max_regno; i++) + REG_N_SETS (i) = 0; + + basic_block_live_at_start + = (regset *) oballoc (n_basic_blocks * sizeof (regset)); + init_regset_vector (basic_block_live_at_start, n_basic_blocks, + function_obstack); + + regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack); + CLEAR_REG_SET (regs_live_at_setjmp); +} + +/* Make each element of VECTOR point at a regset. The vector has + NELTS elements, and space is allocated from the ALLOC_OBSTACK + obstack. */ + +/* CYGNUS LOCAL LRS */ +void +init_regset_vector (vector, nelts, alloc_obstack) + regset *vector; + int nelts; + struct obstack *alloc_obstack; +{ + register int i; + + for (i = 0; i < nelts; i++) + { + vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack); + CLEAR_REG_SET (vector[i]); + } +} + +/* Release any additional space allocated for each element of VECTOR point + other than the regset header itself. The vector has NELTS elements. */ + +void +free_regset_vector (vector, nelts) + regset *vector; + int nelts; +{ + register int i; + + for (i = 0; i < nelts; i++) + FREE_REG_SET (vector[i]); +} + +/* Compute the registers live at the beginning of a basic block + from those live at the end. + + When called, OLD contains those live at the end. + On return, it contains those live at the beginning. + FIRST and LAST are the first and last insns of the basic block. + + FINAL is nonzero if we are doing the final pass which is not + for computing the life info (since that has already been done) + but for acting on it. On this pass, we delete dead stores, + set up the logical links and dead-variables lists of instructions, + and merge instructions for autoincrement and autodecrement addresses. + + SIGNIFICANT is nonzero only the first time for each basic block. + If it is nonzero, it points to a regset in which we store + a 1 for each register that is set within the block. + + BNUM is the number of the basic block. */ + +static void +propagate_block (old, first, last, final, significant, bnum) + register regset old; + rtx first; + rtx last; + int final; + regset significant; + int bnum; +{ + register rtx insn; + rtx prev; + regset live; + regset dead; + + /* The loop depth may change in the middle of a basic block. Since we + scan from end to beginning, we start with the depth at the end of the + current basic block, and adjust as we pass ends and starts of loops. */ + loop_depth = basic_block_loop_depth[bnum]; + + dead = ALLOCA_REG_SET (); + live = ALLOCA_REG_SET (); + + cc0_live = 0; + mem_set_list = NULL_RTX; + + /* Include any notes at the end of the block in the scan. + This is in case the block ends with a call to setjmp. */ + + while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE) + { + /* Look for loop boundaries, we are going forward here. */ + last = NEXT_INSN (last); + if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG) + loop_depth++; + else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END) + loop_depth--; + } + + if (final) + { + register int i; + + /* Process the regs live at the end of the block. + Mark them as not local to any one basic block. */ + EXECUTE_IF_SET_IN_REG_SET (old, 0, i, + { + REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; + }); + } + + /* Scan the block an insn at a time from end to beginning. */ + + for (insn = last; ; insn = prev) + { + prev = PREV_INSN (insn); + + if (GET_CODE (insn) == NOTE) + { + /* Look for loop boundaries, remembering that we are going + backwards. */ + if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) + loop_depth++; + else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) + loop_depth--; + + /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. + Abort now rather than setting register status incorrectly. */ + if (loop_depth == 0) + abort (); + + /* If this is a call to `setjmp' et al, + warn if any non-volatile datum is live. */ + + if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) + IOR_REG_SET (regs_live_at_setjmp, old); + } + + /* Update the life-status of regs for this insn. + First DEAD gets which regs are set in this insn + then LIVE gets which regs are used in this insn. + Then the regs live before the insn + are those live after, with DEAD regs turned off, + and then LIVE regs turned on. */ + + else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') + { + register int i; + rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX); + int insn_is_dead + = (insn_dead_p (PATTERN (insn), old, 0, REG_NOTES (insn)) + /* Don't delete something that refers to volatile storage! */ + && ! INSN_VOLATILE (insn)); + int libcall_is_dead + = (insn_is_dead && note != 0 + && libcall_dead_p (PATTERN (insn), old, note, insn)); + + /* If an instruction consists of just dead store(s) on final pass, + "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED. + We could really delete it with delete_insn, but that + can cause trouble for first or last insn in a basic block. */ + if (final && insn_is_dead) + { + PUT_CODE (insn, NOTE); + NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (insn) = 0; + + /* CC0 is now known to be dead. Either this insn used it, + in which case it doesn't anymore, or clobbered it, + so the next insn can't use it. */ + cc0_live = 0; + + /* If this insn is copying the return value from a library call, + delete the entire library call. */ + if (libcall_is_dead) + { + rtx first = XEXP (note, 0); + rtx p = insn; + while (INSN_DELETED_P (first)) + first = NEXT_INSN (first); + while (p != first) + { + p = PREV_INSN (p); + PUT_CODE (p, NOTE); + NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (p) = 0; + } + } + goto flushed; + } + + CLEAR_REG_SET (dead); + CLEAR_REG_SET (live); + + /* See if this is an increment or decrement that can be + merged into a following memory address. */ +#ifdef AUTO_INC_DEC + { + register rtx x = single_set (insn); + + /* Does this instruction increment or decrement a register? */ + if (!reload_completed + && final && x != 0 + && GET_CODE (SET_DEST (x)) == REG + && (GET_CODE (SET_SRC (x)) == PLUS + || GET_CODE (SET_SRC (x)) == MINUS) + && XEXP (SET_SRC (x), 0) == SET_DEST (x) + && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT + /* Ok, look for a following memory ref we can combine with. + If one is found, change the memory ref to a PRE_INC + or PRE_DEC, cancel this insn, and return 1. + Return 0 if nothing has been done. */ + && try_pre_increment_1 (insn)) + goto flushed; + } +#endif /* AUTO_INC_DEC */ + + /* If this is not the final pass, and this insn is copying the + value of a library call and it's dead, don't scan the + insns that perform the library call, so that the call's + arguments are not marked live. */ + if (libcall_is_dead) + { + /* Mark the dest reg as `significant'. */ + mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant); + + insn = XEXP (note, 0); + prev = PREV_INSN (insn); + } + else if (GET_CODE (PATTERN (insn)) == SET + && SET_DEST (PATTERN (insn)) == stack_pointer_rtx + && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS + && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx + && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT) + /* We have an insn to pop a constant amount off the stack. + (Such insns use PLUS regardless of the direction of the stack, + and any insn to adjust the stack by a constant is always a pop.) + These insns, if not dead stores, have no effect on life. */ + ; + else + { + /* Any regs live at the time of a call instruction + must not go in a register clobbered by calls. + Find all regs now live and record this for them. */ + + if (GET_CODE (insn) == CALL_INSN && final) + EXECUTE_IF_SET_IN_REG_SET (old, 0, i, + { + REG_N_CALLS_CROSSED (i)++; + }); + + /* LIVE gets the regs used in INSN; + DEAD gets those set by it. Dead insns don't make anything + live. */ + + mark_set_regs (old, dead, PATTERN (insn), + final ? insn : NULL_RTX, significant); + + /* If an insn doesn't use CC0, it becomes dead since we + assume that every insn clobbers it. So show it dead here; + mark_used_regs will set it live if it is referenced. */ + cc0_live = 0; + + if (! insn_is_dead) + mark_used_regs (old, live, PATTERN (insn), final, insn); + + /* Sometimes we may have inserted something before INSN (such as + a move) when we make an auto-inc. So ensure we will scan + those insns. */ +#ifdef AUTO_INC_DEC + prev = PREV_INSN (insn); +#endif + + if (! insn_is_dead && GET_CODE (insn) == CALL_INSN) + { + register int i; + + rtx note; + + for (note = CALL_INSN_FUNCTION_USAGE (insn); + note; + note = XEXP (note, 1)) + if (GET_CODE (XEXP (note, 0)) == USE) + mark_used_regs (old, live, SET_DEST (XEXP (note, 0)), + final, insn); + + /* Each call clobbers all call-clobbered regs that are not + global or fixed. Note that the function-value reg is a + call-clobbered reg, and mark_set_regs has already had + a chance to handle it. */ + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (call_used_regs[i] && ! global_regs[i] + && ! fixed_regs[i]) + SET_REGNO_REG_SET (dead, i); + + /* The stack ptr is used (honorarily) by a CALL insn. */ + SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM); + + /* Calls may also reference any of the global registers, + so they are made live. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (global_regs[i]) + mark_used_regs (old, live, + gen_rtx_REG (reg_raw_mode[i], i), + final, insn); + + /* Calls also clobber memory. */ + mem_set_list = NULL_RTX; + } + + /* Update OLD for the registers used or set. */ + AND_COMPL_REG_SET (old, dead); + IOR_REG_SET (old, live); + + } + + /* On final pass, update counts of how many insns each reg is live + at. */ + if (final) + EXECUTE_IF_SET_IN_REG_SET (old, 0, i, + { REG_LIVE_LENGTH (i)++; }); + } + flushed: ; + if (insn == first) + break; + } + + FREE_REG_SET (dead); + FREE_REG_SET (live); +} + +/* Return 1 if X (the body of an insn, or part of it) is just dead stores + (SET expressions whose destinations are registers dead after the insn). + NEEDED is the regset that says which regs are alive after the insn. + + Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. + + If X is the entire body of an insn, NOTES contains the reg notes + pertaining to the insn. */ + +static int +insn_dead_p (x, needed, call_ok, notes) + rtx x; + regset needed; + int call_ok; + rtx notes ATTRIBUTE_UNUSED; +{ + enum rtx_code code = GET_CODE (x); + +#ifdef AUTO_INC_DEC + /* If flow is invoked after reload, we must take existing AUTO_INC + expresions into account. */ + if (reload_completed) + { + for ( ; notes; notes = XEXP (notes, 1)) + { + if (REG_NOTE_KIND (notes) == REG_INC) + { + int regno = REGNO (XEXP (notes, 0)); + + /* Don't delete insns to set global regs. */ + if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) + || REGNO_REG_SET_P (needed, regno)) + return 0; + } + } + } +#endif + + /* If setting something that's a reg or part of one, + see if that register's altered value will be live. */ + + if (code == SET) + { + rtx r = SET_DEST (x); + + /* A SET that is a subroutine call cannot be dead. */ + if (! call_ok && GET_CODE (SET_SRC (x)) == CALL) + return 0; + +#ifdef HAVE_cc0 + if (GET_CODE (r) == CC0) + return ! cc0_live; +#endif + + if (GET_CODE (r) == MEM && ! MEM_VOLATILE_P (r)) + { + rtx temp; + /* Walk the set of memory locations we are currently tracking + and see if one is an identical match to this memory location. + If so, this memory write is dead (remember, we're walking + backwards from the end of the block to the start. */ + temp = mem_set_list; + while (temp) + { + if (rtx_equal_p (XEXP (temp, 0), r)) + return 1; + temp = XEXP (temp, 1); + } + } + + while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART + || GET_CODE (r) == ZERO_EXTRACT) + r = SUBREG_REG (r); + + if (GET_CODE (r) == REG) + { + int regno = REGNO (r); + + /* Don't delete insns to set global regs. */ + if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) + /* Make sure insns to set frame pointer aren't deleted. */ + || regno == FRAME_POINTER_REGNUM +#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM + || regno == HARD_FRAME_POINTER_REGNUM +#endif +#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM + /* Make sure insns to set arg pointer are never deleted + (if the arg pointer isn't fixed, there will be a USE for + it, so we can treat it normally). */ + || (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) +#endif + || REGNO_REG_SET_P (needed, regno)) + return 0; + + /* If this is a hard register, verify that subsequent words are + not needed. */ + if (regno < FIRST_PSEUDO_REGISTER) + { + int n = HARD_REGNO_NREGS (regno, GET_MODE (r)); + + while (--n > 0) + if (REGNO_REG_SET_P (needed, regno+n)) + return 0; + } + + return 1; + } + } + + /* If performing several activities, + insn is dead if each activity is individually dead. + Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE + that's inside a PARALLEL doesn't make the insn worth keeping. */ + else if (code == PARALLEL) + { + int i = XVECLEN (x, 0); + + for (i--; i >= 0; i--) + if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER + && GET_CODE (XVECEXP (x, 0, i)) != USE + && ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok, NULL_RTX)) + return 0; + + return 1; + } + + /* A CLOBBER of a pseudo-register that is dead serves no purpose. That + is not necessarily true for hard registers. */ + else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG + && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER + && ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0)))) + return 1; + + /* We do not check other CLOBBER or USE here. An insn consisting of just + a CLOBBER or just a USE should not be deleted. */ + return 0; +} + +/* If X is the pattern of the last insn in a libcall, and assuming X is dead, + return 1 if the entire library call is dead. + This is true if X copies a register (hard or pseudo) + and if the hard return reg of the call insn is dead. + (The caller should have tested the destination of X already for death.) + + If this insn doesn't just copy a register, then we don't + have an ordinary libcall. In that case, cse could not have + managed to substitute the source for the dest later on, + so we can assume the libcall is dead. + + NEEDED is the bit vector of pseudoregs live before this insn. + NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */ + +static int +libcall_dead_p (x, needed, note, insn) + rtx x; + regset needed; + rtx note; + rtx insn; +{ + register RTX_CODE code = GET_CODE (x); + + if (code == SET) + { + register rtx r = SET_SRC (x); + if (GET_CODE (r) == REG) + { + rtx call = XEXP (note, 0); + rtx call_pat; + register int i; + + /* Find the call insn. */ + while (call != insn && GET_CODE (call) != CALL_INSN) + call = NEXT_INSN (call); + + /* If there is none, do nothing special, + since ordinary death handling can understand these insns. */ + if (call == insn) + return 0; + + /* See if the hard reg holding the value is dead. + If this is a PARALLEL, find the call within it. */ + call_pat = PATTERN (call); + if (GET_CODE (call_pat) == PARALLEL) + { + for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--) + if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET + && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL) + break; + + /* This may be a library call that is returning a value + via invisible pointer. Do nothing special, since + ordinary death handling can understand these insns. */ + if (i < 0) + return 0; + + call_pat = XVECEXP (call_pat, 0, i); + } + + return insn_dead_p (call_pat, needed, 1, REG_NOTES (call)); + } + } + return 1; +} + +/* Return 1 if register REGNO was used before it was set, i.e. if it is + live at function entry. Don't count global register variables, variables + in registers that can be used for function arg passing, or variables in + fixed hard registers. */ + +int +regno_uninitialized (regno) + int regno; +{ + if (n_basic_blocks == 0 + || (regno < FIRST_PSEUDO_REGISTER + && (global_regs[regno] + || fixed_regs[regno] + || FUNCTION_ARG_REGNO_P (regno)))) + return 0; + + return REGNO_REG_SET_P (basic_block_live_at_start[0], regno); +} + +/* 1 if register REGNO was alive at a place where `setjmp' was called + and was set more than once or is an argument. + Such regs may be clobbered by `longjmp'. */ + +int +regno_clobbered_at_setjmp (regno) + int regno; +{ + if (n_basic_blocks == 0) + return 0; + + return ((REG_N_SETS (regno) > 1 + || REGNO_REG_SET_P (basic_block_live_at_start[0], regno)) + && REGNO_REG_SET_P (regs_live_at_setjmp, regno)); +} + +/* INSN references memory, possibly using autoincrement addressing modes. + Find any entries on the mem_set_list that need to be invalidated due + to an address change. */ +static void +invalidate_mems_from_autoinc (insn) + rtx insn; +{ + rtx note = REG_NOTES (insn); + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + { + if (REG_NOTE_KIND (note) == REG_INC) + { + rtx temp = mem_set_list; + rtx prev = NULL_RTX; + + while (temp) + { + if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0))) + { + /* Splice temp out of list. */ + if (prev) + XEXP (prev, 1) = XEXP (temp, 1); + else + mem_set_list = XEXP (temp, 1); + } + else + prev = temp; + temp = XEXP (temp, 1); + } + } + } +} + +/* Process the registers that are set within X. + Their bits are set to 1 in the regset DEAD, + because they are dead prior to this insn. + + If INSN is nonzero, it is the insn being processed + and the fact that it is nonzero implies this is the FINAL pass + in propagate_block. In this case, various info about register + usage is stored, LOG_LINKS fields of insns are set up. */ + +static void +mark_set_regs (needed, dead, x, insn, significant) + regset needed; + regset dead; + rtx x; + rtx insn; + regset significant; +{ + register RTX_CODE code = GET_CODE (x); + + if (code == SET || code == CLOBBER) + mark_set_1 (needed, dead, x, insn, significant); + else if (code == PARALLEL) + { + register int i; + for (i = XVECLEN (x, 0) - 1; i >= 0; i--) + { + code = GET_CODE (XVECEXP (x, 0, i)); + if (code == SET || code == CLOBBER) + mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant); + } + } +} + +/* Process a single SET rtx, X. */ + +static void +mark_set_1 (needed, dead, x, insn, significant) + regset needed; + regset dead; + rtx x; + rtx insn; + regset significant; +{ + register int regno; + register rtx reg = SET_DEST (x); + + /* Some targets place small structures in registers for + return values of functions. We have to detect this + case specially here to get correct flow information. */ + if (GET_CODE (reg) == PARALLEL + && GET_MODE (reg) == BLKmode) + { + register int i; + + for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) + mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant); + return; + } + + /* Modifying just one hardware register of a multi-reg value + or just a byte field of a register + does not mean the value from before this insn is now dead. + But it does mean liveness of that register at the end of the block + is significant. + + Within mark_set_1, however, we treat it as if the register is + indeed modified. mark_used_regs will, however, also treat this + register as being used. Thus, we treat these insns as setting a + new value for the register as a function of its old value. This + cases LOG_LINKS to be made appropriately and this will help combine. */ + + while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT + || GET_CODE (reg) == SIGN_EXTRACT + || GET_CODE (reg) == STRICT_LOW_PART) + reg = XEXP (reg, 0); + + /* If this set is a MEM, then it kills any aliased writes. + If this set is a REG, then it kills any MEMs which use the reg. */ + if (GET_CODE (reg) == MEM + || GET_CODE (reg) == REG) + { + rtx temp = mem_set_list; + rtx prev = NULL_RTX; + + while (temp) + { + if ((GET_CODE (reg) == MEM + && output_dependence (XEXP (temp, 0), reg)) + || (GET_CODE (reg) == REG + && reg_overlap_mentioned_p (reg, XEXP (temp, 0)))) + { + /* Splice this entry out of the list. */ + if (prev) + XEXP (prev, 1) = XEXP (temp, 1); + else + mem_set_list = XEXP (temp, 1); + } + else + prev = temp; + temp = XEXP (temp, 1); + } + } + + /* If the memory reference had embedded side effects (autoincrement + address modes. Then we may need to kill some entries on the + memory set list. */ + if (insn && GET_CODE (reg) == MEM) + invalidate_mems_from_autoinc (insn); + + if (GET_CODE (reg) == MEM && ! side_effects_p (reg) + /* There are no REG_INC notes for SP, so we can't assume we'll see + everything that invalidates it. To be safe, don't eliminate any + stores though SP; none of them should be redundant anyway. */ + && ! reg_mentioned_p (stack_pointer_rtx, reg)) + mem_set_list = gen_rtx_EXPR_LIST (VOIDmode, reg, mem_set_list); + + if (GET_CODE (reg) == REG + && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM) +#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM + && regno != HARD_FRAME_POINTER_REGNUM +#endif +#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM + && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) +#endif + && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])) + /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */ + { + int some_needed = REGNO_REG_SET_P (needed, regno); + int some_not_needed = ! some_needed; + + /* Mark it as a significant register for this basic block. */ + if (significant) + SET_REGNO_REG_SET (significant, regno); + + /* Mark it as dead before this insn. */ + SET_REGNO_REG_SET (dead, regno); + + /* A hard reg in a wide mode may really be multiple registers. + If so, mark all of them just like the first. */ + if (regno < FIRST_PSEUDO_REGISTER) + { + int n; + + /* Nothing below is needed for the stack pointer; get out asap. + Eg, log links aren't needed, since combine won't use them. */ + if (regno == STACK_POINTER_REGNUM) + return; + + n = HARD_REGNO_NREGS (regno, GET_MODE (reg)); + while (--n > 0) + { + int regno_n = regno + n; + int needed_regno = REGNO_REG_SET_P (needed, regno_n); + if (significant) + SET_REGNO_REG_SET (significant, regno_n); + + SET_REGNO_REG_SET (dead, regno_n); + some_needed |= needed_regno; + some_not_needed |= ! needed_regno; + } + } + /* Additional data to record if this is the final pass. */ + if (insn) + { + register rtx y = reg_next_use[regno]; + register int blocknum = BLOCK_NUM (insn); + + /* If this is a hard reg, record this function uses the reg. */ + + if (regno < FIRST_PSEUDO_REGISTER) + { + register int i; + int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); + + for (i = regno; i < endregno; i++) + { + /* The next use is no longer "next", since a store + intervenes. */ + reg_next_use[i] = 0; + + regs_ever_live[i] = 1; + REG_N_SETS (i)++; + } + } + else + { + /* The next use is no longer "next", since a store + intervenes. */ + reg_next_use[regno] = 0; + + /* Keep track of which basic blocks each reg appears in. */ + + if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN) + REG_BASIC_BLOCK (regno) = blocknum; + else if (REG_BASIC_BLOCK (regno) != blocknum) + REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL; + + /* Count (weighted) references, stores, etc. This counts a + register twice if it is modified, but that is correct. */ + REG_N_SETS (regno)++; + + REG_N_REFS (regno) += loop_depth; + + /* The insns where a reg is live are normally counted + elsewhere, but we want the count to include the insn + where the reg is set, and the normal counting mechanism + would not count it. */ + REG_LIVE_LENGTH (regno)++; + } + + if (! some_not_needed) + { + /* Make a logical link from the next following insn + that uses this register, back to this insn. + The following insns have already been processed. + + We don't build a LOG_LINK for hard registers containing + in ASM_OPERANDs. If these registers get replaced, + we might wind up changing the semantics of the insn, + even if reload can make what appear to be valid assignments + later. */ + if (y && (BLOCK_NUM (y) == blocknum) + && (regno >= FIRST_PSEUDO_REGISTER + || asm_noperands (PATTERN (y)) < 0)) + LOG_LINKS (y) + = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y)); + } + else if (! some_needed) + { + /* Note that dead stores have already been deleted when possible + If we get here, we have found a dead store that cannot + be eliminated (because the same insn does something useful). + Indicate this by marking the reg being set as dying here. */ + REG_NOTES (insn) + = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn)); + REG_N_DEATHS (REGNO (reg))++; + } + else + { + /* This is a case where we have a multi-word hard register + and some, but not all, of the words of the register are + needed in subsequent insns. Write REG_UNUSED notes + for those parts that were not needed. This case should + be rare. */ + + int i; + + for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; + i >= 0; i--) + if (!REGNO_REG_SET_P (needed, regno + i)) + REG_NOTES (insn) + = gen_rtx_EXPR_LIST (REG_UNUSED, + gen_rtx_REG (reg_raw_mode[regno + i], + regno + i), + REG_NOTES (insn)); + } + } + } + else if (GET_CODE (reg) == REG) + reg_next_use[regno] = 0; + + /* If this is the last pass and this is a SCRATCH, show it will be dying + here and count it. */ + else if (GET_CODE (reg) == SCRATCH && insn != 0) + { + REG_NOTES (insn) + = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn)); + } +} + +#ifdef AUTO_INC_DEC + +/* X is a MEM found in INSN. See if we can convert it into an auto-increment + reference. */ + +static void +find_auto_inc (needed, x, insn) + regset needed; + rtx x; + rtx insn; +{ + rtx addr = XEXP (x, 0); + HOST_WIDE_INT offset = 0; + rtx set; + + /* Here we detect use of an index register which might be good for + postincrement, postdecrement, preincrement, or predecrement. */ + + if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT) + offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0); + + if (GET_CODE (addr) == REG) + { + register rtx y; + register int size = GET_MODE_SIZE (GET_MODE (x)); + rtx use; + rtx incr; + int regno = REGNO (addr); + + /* Is the next use an increment that might make auto-increment? */ + if ((incr = reg_next_use[regno]) != 0 + && (set = single_set (incr)) != 0 + && GET_CODE (set) == SET + && BLOCK_NUM (incr) == BLOCK_NUM (insn) + /* Can't add side effects to jumps; if reg is spilled and + reloaded, there's no way to store back the altered value. */ + && GET_CODE (insn) != JUMP_INSN + && (y = SET_SRC (set), GET_CODE (y) == PLUS) + && XEXP (y, 0) == addr + && GET_CODE (XEXP (y, 1)) == CONST_INT + && ((HAVE_POST_INCREMENT + && (INTVAL (XEXP (y, 1)) == size && offset == 0)) + || (HAVE_POST_DECREMENT + && (INTVAL (XEXP (y, 1)) == - size && offset == 0)) + || (HAVE_PRE_INCREMENT + && (INTVAL (XEXP (y, 1)) == size && offset == size)) + || (HAVE_PRE_DECREMENT + && (INTVAL (XEXP (y, 1)) == - size && offset == - size))) + /* Make sure this reg appears only once in this insn. */ + && (use = find_use_as_address (PATTERN (insn), addr, offset), + use != 0 && use != (rtx) 1)) + { + rtx q = SET_DEST (set); + enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size + ? (offset ? PRE_INC : POST_INC) + : (offset ? PRE_DEC : POST_DEC)); + + if (dead_or_set_p (incr, addr)) + { + /* This is the simple case. Try to make the auto-inc. If + we can't, we are done. Otherwise, we will do any + needed updates below. */ + if (! validate_change (insn, &XEXP (x, 0), + gen_rtx_fmt_e (inc_code, Pmode, addr), + 0)) + return; + } + else if (GET_CODE (q) == REG + /* PREV_INSN used here to check the semi-open interval + [insn,incr). */ + && ! reg_used_between_p (q, PREV_INSN (insn), incr) + /* We must also check for sets of q as q may be + a call clobbered hard register and there may + be a call between PREV_INSN (insn) and incr. */ + && ! reg_set_between_p (q, PREV_INSN (insn), incr)) + { + /* We have *p followed sometime later by q = p+size. + Both p and q must be live afterward, + and q is not used between INSN and its assignment. + Change it to q = p, ...*q..., q = q+size. + Then fall into the usual case. */ + rtx insns, temp; + + start_sequence (); + emit_move_insn (q, addr); + insns = get_insns (); + end_sequence (); + + /* If anything in INSNS have UID's that don't fit within the + extra space we allocate earlier, we can't make this auto-inc. + This should never happen. */ + for (temp = insns; temp; temp = NEXT_INSN (temp)) + { + if (INSN_UID (temp) > max_uid_for_flow) + return; + BLOCK_NUM (temp) = BLOCK_NUM (insn); + } + + /* If we can't make the auto-inc, or can't make the + replacement into Y, exit. There's no point in making + the change below if we can't do the auto-inc and doing + so is not correct in the pre-inc case. */ + + validate_change (insn, &XEXP (x, 0), + gen_rtx_fmt_e (inc_code, Pmode, q), + 1); + validate_change (incr, &XEXP (y, 0), q, 1); + if (! apply_change_group ()) + return; + + /* We now know we'll be doing this change, so emit the + new insn(s) and do the updates. */ + emit_insns_before (insns, insn); + + if (BLOCK_HEAD (BLOCK_NUM (insn)) == insn) + BLOCK_HEAD (BLOCK_NUM (insn)) = insns; + + /* INCR will become a NOTE and INSN won't contain a + use of ADDR. If a use of ADDR was just placed in + the insn before INSN, make that the next use. + Otherwise, invalidate it. */ + if (GET_CODE (PREV_INSN (insn)) == INSN + && GET_CODE (PATTERN (PREV_INSN (insn))) == SET + && SET_SRC (PATTERN (PREV_INSN (insn))) == addr) + reg_next_use[regno] = PREV_INSN (insn); + else + reg_next_use[regno] = 0; + + addr = q; + regno = REGNO (q); + + /* REGNO is now used in INCR which is below INSN, but + it previously wasn't live here. If we don't mark + it as needed, we'll put a REG_DEAD note for it + on this insn, which is incorrect. */ + SET_REGNO_REG_SET (needed, regno); + + /* If there are any calls between INSN and INCR, show + that REGNO now crosses them. */ + for (temp = insn; temp != incr; temp = NEXT_INSN (temp)) + if (GET_CODE (temp) == CALL_INSN) + REG_N_CALLS_CROSSED (regno)++; + } + else + return; + + /* If we haven't returned, it means we were able to make the + auto-inc, so update the status. First, record that this insn + has an implicit side effect. */ + + REG_NOTES (insn) + = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn)); + + /* Modify the old increment-insn to simply copy + the already-incremented value of our register. */ + if (! validate_change (incr, &SET_SRC (set), addr, 0)) + abort (); + + /* If that makes it a no-op (copying the register into itself) delete + it so it won't appear to be a "use" and a "set" of this + register. */ + if (SET_DEST (set) == addr) + { + PUT_CODE (incr, NOTE); + NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (incr) = 0; + } + + if (regno >= FIRST_PSEUDO_REGISTER) + { + /* Count an extra reference to the reg. When a reg is + incremented, spilling it is worse, so we want to make + that less likely. */ + REG_N_REFS (regno) += loop_depth; + + /* Count the increment as a setting of the register, + even though it isn't a SET in rtl. */ + REG_N_SETS (regno)++; + } + } + } +} +#endif /* AUTO_INC_DEC */ + +/* Scan expression X and store a 1-bit in LIVE for each reg it uses. + This is done assuming the registers needed from X + are those that have 1-bits in NEEDED. + + On the final pass, FINAL is 1. This means try for autoincrement + and count the uses and deaths of each pseudo-reg. + + INSN is the containing instruction. If INSN is dead, this function is not + called. */ + +static void +mark_used_regs (needed, live, x, final, insn) + regset needed; + regset live; + rtx x; + int final; + rtx insn; +{ + register RTX_CODE code; + register int regno; + int i; + + retry: + code = GET_CODE (x); + switch (code) + { + case LABEL_REF: + case SYMBOL_REF: + case CONST_INT: + case CONST: + case CONST_DOUBLE: + case PC: + case ADDR_VEC: + case ADDR_DIFF_VEC: + return; + +#ifdef HAVE_cc0 + case CC0: + cc0_live = 1; + return; +#endif + + case CLOBBER: + /* If we are clobbering a MEM, mark any registers inside the address + as being used. */ + if (GET_CODE (XEXP (x, 0)) == MEM) + mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn); + return; + + case MEM: + /* Invalidate the data for the last MEM stored, but only if MEM is + something that can be stored into. */ + if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) + ; /* needn't clear the memory set list */ + else + { + rtx temp = mem_set_list; + rtx prev = NULL_RTX; + + while (temp) + { + if (anti_dependence (XEXP (temp, 0), x)) + { + /* Splice temp out of the list. */ + if (prev) + XEXP (prev, 1) = XEXP (temp, 1); + else + mem_set_list = XEXP (temp, 1); + } + else + prev = temp; + temp = XEXP (temp, 1); + } + } + + /* If the memory reference had embedded side effects (autoincrement + address modes. Then we may need to kill some entries on the + memory set list. */ + if (insn) + invalidate_mems_from_autoinc (insn); + +#ifdef AUTO_INC_DEC + if (final) + find_auto_inc (needed, x, insn); +#endif + break; + + case SUBREG: + if (GET_CODE (SUBREG_REG (x)) == REG + && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER + && (GET_MODE_SIZE (GET_MODE (x)) + != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))) + REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1; + + /* While we're here, optimize this case. */ + x = SUBREG_REG (x); + + /* In case the SUBREG is not of a register, don't optimize */ + if (GET_CODE (x) != REG) + { + mark_used_regs (needed, live, x, final, insn); + return; + } + + /* ... fall through ... */ + + case REG: + /* See a register other than being set + => mark it as needed. */ + + regno = REGNO (x); + { + int some_needed = REGNO_REG_SET_P (needed, regno); + int some_not_needed = ! some_needed; + + SET_REGNO_REG_SET (live, regno); + + /* A hard reg in a wide mode may really be multiple registers. + If so, mark all of them just like the first. */ + if (regno < FIRST_PSEUDO_REGISTER) + { + int n; + + /* For stack ptr or fixed arg pointer, + nothing below can be necessary, so waste no more time. */ + if (regno == STACK_POINTER_REGNUM +#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM + || regno == HARD_FRAME_POINTER_REGNUM +#endif +#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM + || (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) +#endif + || regno == FRAME_POINTER_REGNUM) + { + /* If this is a register we are going to try to eliminate, + don't mark it live here. If we are successful in + eliminating it, it need not be live unless it is used for + pseudos, in which case it will have been set live when + it was allocated to the pseudos. If the register will not + be eliminated, reload will set it live at that point. */ + + if (! TEST_HARD_REG_BIT (elim_reg_set, regno)) + regs_ever_live[regno] = 1; + return; + } + /* No death notes for global register variables; + their values are live after this function exits. */ + if (global_regs[regno]) + { + if (final) + reg_next_use[regno] = insn; + return; + } + + n = HARD_REGNO_NREGS (regno, GET_MODE (x)); + while (--n > 0) + { + int regno_n = regno + n; + int needed_regno = REGNO_REG_SET_P (needed, regno_n); + + SET_REGNO_REG_SET (live, regno_n); + some_needed |= needed_regno; + some_not_needed |= ! needed_regno; + } + } + if (final) + { + /* Record where each reg is used, so when the reg + is set we know the next insn that uses it. */ + + reg_next_use[regno] = insn; + + if (regno < FIRST_PSEUDO_REGISTER) + { + /* If a hard reg is being used, + record that this function does use it. */ + + i = HARD_REGNO_NREGS (regno, GET_MODE (x)); + if (i == 0) + i = 1; + do + regs_ever_live[regno + --i] = 1; + while (i > 0); + } + else + { + /* Keep track of which basic block each reg appears in. */ + + register int blocknum = BLOCK_NUM (insn); + + if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN) + REG_BASIC_BLOCK (regno) = blocknum; + else if (REG_BASIC_BLOCK (regno) != blocknum) + REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL; + + /* Count (weighted) number of uses of each reg. */ + + REG_N_REFS (regno) += loop_depth; + } + + /* Record and count the insns in which a reg dies. + If it is used in this insn and was dead below the insn + then it dies in this insn. If it was set in this insn, + we do not make a REG_DEAD note; likewise if we already + made such a note. */ + + if (some_not_needed + && ! dead_or_set_p (insn, x) +#if 0 + && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) +#endif + ) + { + /* Check for the case where the register dying partially + overlaps the register set by this insn. */ + if (regno < FIRST_PSEUDO_REGISTER + && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1) + { + int n = HARD_REGNO_NREGS (regno, GET_MODE (x)); + while (--n >= 0) + some_needed |= dead_or_set_regno_p (insn, regno + n); + } + + /* If none of the words in X is needed, make a REG_DEAD + note. Otherwise, we must make partial REG_DEAD notes. */ + if (! some_needed) + { + REG_NOTES (insn) + = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn)); + REG_N_DEATHS (regno)++; + } + else + { + int i; + + /* Don't make a REG_DEAD note for a part of a register + that is set in the insn. */ + + for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1; + i >= 0; i--) + if (!REGNO_REG_SET_P (needed, regno + i) + && ! dead_or_set_regno_p (insn, regno + i)) + REG_NOTES (insn) + = gen_rtx_EXPR_LIST (REG_DEAD, + gen_rtx_REG (reg_raw_mode[regno + i], + regno + i), + REG_NOTES (insn)); + } + } + } + } + return; + + case SET: + { + register rtx testreg = SET_DEST (x); + int mark_dest = 0; + + /* If storing into MEM, don't show it as being used. But do + show the address as being used. */ + if (GET_CODE (testreg) == MEM) + { +#ifdef AUTO_INC_DEC + if (final) + find_auto_inc (needed, testreg, insn); +#endif + mark_used_regs (needed, live, XEXP (testreg, 0), final, insn); + mark_used_regs (needed, live, SET_SRC (x), final, insn); + return; + } + + /* Storing in STRICT_LOW_PART is like storing in a reg + in that this SET might be dead, so ignore it in TESTREG. + but in some other ways it is like using the reg. + + Storing in a SUBREG or a bit field is like storing the entire + register in that if the register's value is not used + then this SET is not needed. */ + while (GET_CODE (testreg) == STRICT_LOW_PART + || GET_CODE (testreg) == ZERO_EXTRACT + || GET_CODE (testreg) == SIGN_EXTRACT + || GET_CODE (testreg) == SUBREG) + { + if (GET_CODE (testreg) == SUBREG + && GET_CODE (SUBREG_REG (testreg)) == REG + && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER + && (GET_MODE_SIZE (GET_MODE (testreg)) + != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg))))) + REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1; + + /* Modifying a single register in an alternate mode + does not use any of the old value. But these other + ways of storing in a register do use the old value. */ + if (GET_CODE (testreg) == SUBREG + && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg))) + ; + else + mark_dest = 1; + + testreg = XEXP (testreg, 0); + } + + /* If this is a store into a register, + recursively scan the value being stored. */ + + if ((GET_CODE (testreg) == PARALLEL + && GET_MODE (testreg) == BLKmode) + || (GET_CODE (testreg) == REG + && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM) +#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM + && regno != HARD_FRAME_POINTER_REGNUM +#endif +#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM + && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) +#endif + )) + /* We used to exclude global_regs here, but that seems wrong. + Storing in them is like storing in mem. */ + { + mark_used_regs (needed, live, SET_SRC (x), final, insn); + if (mark_dest) + mark_used_regs (needed, live, SET_DEST (x), final, insn); + return; + } + } + break; + + case RETURN: + /* If exiting needs the right stack value, consider this insn as + using the stack pointer. In any event, consider it as using + all global registers and all registers used by return. */ + +#ifdef EXIT_IGNORE_STACK + if (! EXIT_IGNORE_STACK + || (! FRAME_POINTER_REQUIRED + && ! current_function_calls_alloca + && flag_omit_frame_pointer) + || current_function_sp_is_unchanging) +#endif + SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (global_regs[i] +#ifdef EPILOGUE_USES + || EPILOGUE_USES (i) +#endif + ) + SET_REGNO_REG_SET (live, i); + break; + + case ASM_OPERANDS: + case UNSPEC_VOLATILE: + case TRAP_IF: + case ASM_INPUT: + { + /* Traditional and volatile asm instructions must be considered to use + and clobber all hard registers, all pseudo-registers and all of + memory. So must TRAP_IF and UNSPEC_VOLATILE operations. + + Consider for instance a volatile asm that changes the fpu rounding + mode. An insn should not be moved across this even if it only uses + pseudo-regs because it might give an incorrectly rounded result. + + ?!? Unfortunately, marking all hard registers as live causes massive + problems for the register allocator and marking all pseudos as live + creates mountains of uninitialized variable warnings. + + So for now, just clear the memory set list and mark any regs + we can find in ASM_OPERANDS as used. */ + if (code != ASM_OPERANDS || MEM_VOLATILE_P (x)) + mem_set_list = NULL_RTX; + + /* For all ASM_OPERANDS, we must traverse the vector of input operands. + We can not just fall through here since then we would be confused + by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate + traditional asms unlike their normal usage. */ + if (code == ASM_OPERANDS) + { + int j; + + for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++) + mark_used_regs (needed, live, ASM_OPERANDS_INPUT (x, j), + final, insn); + } + break; + } + + default: + break; + } + + /* Recursively scan the operands of this expression. */ + + { + register char *fmt = GET_RTX_FORMAT (code); + register int i; + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + /* Tail recursive case: save a function call level. */ + if (i == 0) + { + x = XEXP (x, 0); + goto retry; + } + mark_used_regs (needed, live, XEXP (x, i), final, insn); + } + else if (fmt[i] == 'E') + { + register int j; + for (j = 0; j < XVECLEN (x, i); j++) + mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn); + } + } + } +} + +#ifdef AUTO_INC_DEC + +static int +try_pre_increment_1 (insn) + rtx insn; +{ + /* Find the next use of this reg. If in same basic block, + make it do pre-increment or pre-decrement if appropriate. */ + rtx x = single_set (insn); + HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1) + * INTVAL (XEXP (SET_SRC (x), 1))); + int regno = REGNO (SET_DEST (x)); + rtx y = reg_next_use[regno]; + if (y != 0 + && BLOCK_NUM (y) == BLOCK_NUM (insn) + /* Don't do this if the reg dies, or gets set in y; a standard addressing + mode would be better. */ + && ! dead_or_set_p (y, SET_DEST (x)) + && try_pre_increment (y, SET_DEST (x), amount)) + { + /* We have found a suitable auto-increment + and already changed insn Y to do it. + So flush this increment-instruction. */ + PUT_CODE (insn, NOTE); + NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; + NOTE_SOURCE_FILE (insn) = 0; + /* Count a reference to this reg for the increment + insn we are deleting. When a reg is incremented. + spilling it is worse, so we want to make that + less likely. */ + if (regno >= FIRST_PSEUDO_REGISTER) + { + REG_N_REFS (regno) += loop_depth; + REG_N_SETS (regno)++; + } + return 1; + } + return 0; +} + +/* Try to change INSN so that it does pre-increment or pre-decrement + addressing on register REG in order to add AMOUNT to REG. + AMOUNT is negative for pre-decrement. + Returns 1 if the change could be made. + This checks all about the validity of the result of modifying INSN. */ + +static int +try_pre_increment (insn, reg, amount) + rtx insn, reg; + HOST_WIDE_INT amount; +{ + register rtx use; + + /* Nonzero if we can try to make a pre-increment or pre-decrement. + For example, addl $4,r1; movl (r1),... can become movl +(r1),... */ + int pre_ok = 0; + /* Nonzero if we can try to make a post-increment or post-decrement. + For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,... + It is possible for both PRE_OK and POST_OK to be nonzero if the machine + supports both pre-inc and post-inc, or both pre-dec and post-dec. */ + int post_ok = 0; + + /* Nonzero if the opportunity actually requires post-inc or post-dec. */ + int do_post = 0; + + /* From the sign of increment, see which possibilities are conceivable + on this target machine. */ + if (HAVE_PRE_INCREMENT && amount > 0) + pre_ok = 1; + if (HAVE_POST_INCREMENT && amount > 0) + post_ok = 1; + + if (HAVE_PRE_DECREMENT && amount < 0) + pre_ok = 1; + if (HAVE_POST_DECREMENT && amount < 0) + post_ok = 1; + + if (! (pre_ok || post_ok)) + return 0; + + /* It is not safe to add a side effect to a jump insn + because if the incremented register is spilled and must be reloaded + there would be no way to store the incremented value back in memory. */ + + if (GET_CODE (insn) == JUMP_INSN) + return 0; + + use = 0; + if (pre_ok) + use = find_use_as_address (PATTERN (insn), reg, 0); + if (post_ok && (use == 0 || use == (rtx) 1)) + { + use = find_use_as_address (PATTERN (insn), reg, -amount); + do_post = 1; + } + + if (use == 0 || use == (rtx) 1) + return 0; + + if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount)) + return 0; + + /* See if this combination of instruction and addressing mode exists. */ + if (! validate_change (insn, &XEXP (use, 0), + gen_rtx_fmt_e (amount > 0 + ? (do_post ? POST_INC : PRE_INC) + : (do_post ? POST_DEC : PRE_DEC), + Pmode, reg), 0)) + return 0; + + /* Record that this insn now has an implicit side effect on X. */ + REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn)); + return 1; +} + +#endif /* AUTO_INC_DEC */ + +/* Find the place in the rtx X where REG is used as a memory address. + Return the MEM rtx that so uses it. + If PLUSCONST is nonzero, search instead for a memory address equivalent to + (plus REG (const_int PLUSCONST)). + + If such an address does not appear, return 0. + If REG appears more than once, or is used other than in such an address, + return (rtx)1. */ + +rtx +find_use_as_address (x, reg, plusconst) + register rtx x; + rtx reg; + HOST_WIDE_INT plusconst; +{ + enum rtx_code code = GET_CODE (x); + char *fmt = GET_RTX_FORMAT (code); + register int i; + register rtx value = 0; + register rtx tem; + + if (code == MEM && XEXP (x, 0) == reg && plusconst == 0) + return x; + + if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS + && XEXP (XEXP (x, 0), 0) == reg + && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT + && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst) + return x; + + if (code == SIGN_EXTRACT || code == ZERO_EXTRACT) + { + /* If REG occurs inside a MEM used in a bit-field reference, + that is unacceptable. */ + if (find_use_as_address (XEXP (x, 0), reg, 0) != 0) + return (rtx) (HOST_WIDE_INT) 1; + } + + if (x == reg) + return (rtx) (HOST_WIDE_INT) 1; + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + tem = find_use_as_address (XEXP (x, i), reg, plusconst); + if (value == 0) + value = tem; + else if (tem != 0) + return (rtx) (HOST_WIDE_INT) 1; + } + if (fmt[i] == 'E') + { + register int j; + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + { + tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst); + if (value == 0) + value = tem; + else if (tem != 0) + return (rtx) (HOST_WIDE_INT) 1; + } + } + } + + return value; +} + +/* Write information about registers and basic blocks into FILE. + This is part of making a debugging dump. */ + +void +dump_flow_info (file) + FILE *file; +{ + register int i; + static char *reg_class_names[] = REG_CLASS_NAMES; + + fprintf (file, "%d registers.\n", max_regno); + + for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) + if (REG_N_REFS (i)) + { + enum reg_class class, altclass; + fprintf (file, "\nRegister %d used %d times across %d insns", + i, REG_N_REFS (i), REG_LIVE_LENGTH (i)); + if (REG_BASIC_BLOCK (i) >= 0) + fprintf (file, " in block %d", REG_BASIC_BLOCK (i)); + if (REG_N_SETS (i)) + fprintf (file, "; set %d time%s", REG_N_SETS (i), + (REG_N_SETS (i) == 1) ? "" : "s"); + if (REG_USERVAR_P (regno_reg_rtx[i])) + fprintf (file, "; user var"); + if (REG_N_DEATHS (i) != 1) + fprintf (file, "; dies in %d places", REG_N_DEATHS (i)); + if (REG_N_CALLS_CROSSED (i) == 1) + fprintf (file, "; crosses 1 call"); + else if (REG_N_CALLS_CROSSED (i)) + fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i)); + if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD) + fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i)); + class = reg_preferred_class (i); + altclass = reg_alternate_class (i); + if (class != GENERAL_REGS || altclass != ALL_REGS) + { + if (altclass == ALL_REGS || class == ALL_REGS) + fprintf (file, "; pref %s", reg_class_names[(int) class]); + else if (altclass == NO_REGS) + fprintf (file, "; %s or none", reg_class_names[(int) class]); + else + fprintf (file, "; pref %s, else %s", + reg_class_names[(int) class], + reg_class_names[(int) altclass]); + } + if (REGNO_POINTER_FLAG (i)) + fprintf (file, "; pointer"); + fprintf (file, ".\n"); + } + fprintf (file, "\n%d basic blocks.\n", n_basic_blocks); + dump_bb_data (file, basic_block_pred, basic_block_succ, 1); +} + + +/* Like print_rtl, but also print out live information for the start of each + basic block. */ + +void +print_rtl_with_bb (outf, rtx_first) + FILE *outf; + rtx rtx_first; +{ + register rtx tmp_rtx; + + if (rtx_first == 0) + fprintf (outf, "(nil)\n"); + + else + { + int i, bb; + enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB }; + int max_uid = get_max_uid (); + int *start = (int *) alloca (max_uid * sizeof (int)); + int *end = (int *) alloca (max_uid * sizeof (int)); + enum bb_state *in_bb_p = (enum bb_state *) + alloca (max_uid * sizeof (enum bb_state)); + + for (i = 0; i < max_uid; i++) + { + start[i] = end[i] = -1; + in_bb_p[i] = NOT_IN_BB; + } + + for (i = n_basic_blocks-1; i >= 0; i--) + { + rtx x; + start[INSN_UID (BLOCK_HEAD (i))] = i; + end[INSN_UID (BLOCK_END (i))] = i; + for (x = BLOCK_HEAD (i); x != NULL_RTX; x = NEXT_INSN (x)) + { + in_bb_p[ INSN_UID(x)] + = (in_bb_p[ INSN_UID(x)] == NOT_IN_BB) + ? IN_ONE_BB : IN_MULTIPLE_BB; + if (x == BLOCK_END (i)) + break; + } + } + + for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx)) + { + int did_output; + + if ((bb = start[INSN_UID (tmp_rtx)]) >= 0) + { + fprintf (outf, ";; Start of basic block %d, registers live:", + bb); + + EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[bb], 0, i, + { + fprintf (outf, " %d", i); + if (i < FIRST_PSEUDO_REGISTER) + fprintf (outf, " [%s]", + reg_names[i]); + }); + putc ('\n', outf); + } + + if (in_bb_p[ INSN_UID(tmp_rtx)] == NOT_IN_BB + && GET_CODE (tmp_rtx) != NOTE + && GET_CODE (tmp_rtx) != BARRIER) + fprintf (outf, ";; Insn is not within a basic block\n"); + else if (in_bb_p[ INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB) + fprintf (outf, ";; Insn is in multiple basic blocks\n"); + + did_output = print_rtl_single (outf, tmp_rtx); + + if ((bb = end[INSN_UID (tmp_rtx)]) >= 0) + fprintf (outf, ";; End of basic block %d\n", bb); + + if (did_output) + putc ('\n', outf); + } + } +} + + +/* Integer list support. */ + +/* Allocate a node from list *HEAD_PTR. */ + +static int_list_ptr +alloc_int_list_node (head_ptr) + int_list_block **head_ptr; +{ + struct int_list_block *first_blk = *head_ptr; + + if (first_blk == NULL || first_blk->nodes_left <= 0) + { + first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block)); + first_blk->nodes_left = INT_LIST_NODES_IN_BLK; + first_blk->next = *head_ptr; + *head_ptr = first_blk; + } + + first_blk->nodes_left--; + return &first_blk->nodes[first_blk->nodes_left]; +} + +/* Pointer to head of predecessor/successor block list. */ +static int_list_block *pred_int_list_blocks; + +/* Add a new node to integer list LIST with value VAL. + LIST is a pointer to a list object to allow for different implementations. + If *LIST is initially NULL, the list is empty. + The caller must not care whether the element is added to the front or + to the end of the list (to allow for different implementations). */ + +static int_list_ptr +add_int_list_node (blk_list, list, val) + int_list_block **blk_list; + int_list **list; + int val; +{ + int_list_ptr p = alloc_int_list_node (blk_list); + + p->val = val; + p->next = *list; + *list = p; + return p; +} + +/* Free the blocks of lists at BLK_LIST. */ + +void +free_int_list (blk_list) + int_list_block **blk_list; +{ + int_list_block *p, *next; + + for (p = *blk_list; p != NULL; p = next) + { + next = p->next; + free (p); + } + + /* Mark list as empty for the next function we compile. */ + *blk_list = NULL; +} + +/* Predecessor/successor computation. */ + +/* Mark PRED_BB a precessor of SUCC_BB, + and conversely SUCC_BB a successor of PRED_BB. */ + +static void +add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs) + int pred_bb; + int succ_bb; + int_list_ptr *s_preds; + int_list_ptr *s_succs; + int *num_preds; + int *num_succs; +{ + if (succ_bb != EXIT_BLOCK) + { + add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb); + num_preds[succ_bb]++; + } + if (pred_bb != ENTRY_BLOCK) + { + add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb); + num_succs[pred_bb]++; + } +} + +/* Compute the predecessors and successors for each block. */ +/* CYGNUS LOCAL edge splitting/law */ +int +compute_preds_succs (s_preds, s_succs, num_preds, num_succs, split_edges) + int_list_ptr *s_preds; + int_list_ptr *s_succs; + int *num_preds; + int *num_succs; + int split_edges; +{ + int bb; + int changed = 0; + + bzero ((char *) s_preds, n_basic_blocks * sizeof (int_list_ptr)); + bzero ((char *) s_succs, n_basic_blocks * sizeof (int_list_ptr)); + bzero ((char *) num_preds, n_basic_blocks * sizeof (int)); + bzero ((char *) num_succs, n_basic_blocks * sizeof (int)); + + /* It's somewhat stupid to simply copy the information. The passes + which use this function ought to be changed to refer directly to + basic_block_succ and its relatives. */ + for (bb = 0; bb < n_basic_blocks; bb++) + { + rtx jump = BLOCK_END (bb); + enum rtx_code code = GET_CODE (jump); + int_list_ptr p; + + for (p = basic_block_succ[bb]; p; p = p->next) + add_pred_succ (bb, INT_LIST_VAL (p), s_preds, s_succs, num_preds, + num_succs); + + /* If this is a RETURN insn or a conditional jump in the last + basic block, or a non-jump insn in the last basic block, then + this block reaches the exit block. */ + if ((code == JUMP_INSN && GET_CODE (PATTERN (jump)) == RETURN) + || (((code == JUMP_INSN + && condjump_p (jump) && !simplejump_p (jump)) + || code != JUMP_INSN) + && bb == n_basic_blocks - 1)) + add_pred_succ (bb, EXIT_BLOCK, s_preds, s_succs, num_preds, num_succs); + } + + add_pred_succ (ENTRY_BLOCK, 0, s_preds, s_succs, num_preds, num_succs); + +#if 0 + /* CYGNUS LOCAL edge-splitting/law */ + /* Now see what edges we should split. */ + if (split_edges) + { + /* Array indexed by block number to determine if an in-edge to the + block has been split. Used to prevent more than one in-edge + to any given block from being split. */ + char *split_edge_to_block = (char *) alloca (n_basic_blocks); + + bzero (split_edge_to_block, n_basic_blocks); + + for (bb = 0; bb < n_basic_blocks; bb++) + { + /* Find a block that has more than one successor. */ + if (num_succs[bb] > 1) + { + int_list_ptr p; + + /* Now look at each successor block to see which have more than + one predecessor block. */ + for (p = s_succs[bb]; p != NULL; p = p->next) + { + int pred_bb = INT_LIST_VAL (p); + + /* If our block falls into this successor (ie no jump), then + we can split this edge since the existance of this block + will not introduce any new jumps. */ + if (split_edge_to_block[pred_bb] == 0 + && basic_block_drops_in[pred_bb] + && num_preds[pred_bb] > 1 && bb + 1 == pred_bb) + { + rtx insn, jump, label, olabel; + + jump = BLOCK_END (bb); + + /* Try to find the conditional jump at the end of the + current block. If it's not a conditional jump, then + do not try and split the edge. */ + if (GET_CODE (jump) != JUMP_INSN || !condjump_p (jump)) + continue; + + label = gen_label_rtx (); + + /* This code knows that find_basic_blocks always creates + a new basic block when it encounters a label. The + label will be deleted by a later pass if it is never + used as a jump target. */ + label = emit_label_after (label, BLOCK_END (bb)); + LABEL_NUSES (label) = 0; + split_edge_to_block[pred_bb] = 1; + changed = 1; + } + + /* If our block jumps to this successor, and the successor + can only be reached via jumps, then we can split this + edge too since the jump from this block to the successor + can be redirected to a dummy block before the successor + (which then makes the successor a fall through). */ + else if (split_edge_to_block[pred_bb] == 0 + && num_preds[pred_bb] > 1 + && !basic_block_drops_in[pred_bb]) + { + rtx insn, jump, label, olabel; + + jump = BLOCK_END (bb); + + /* Try to find the conditional jump at the end of the + current block. If it's not a conditional jump, then + do not try and split the edge. */ + if (GET_CODE (jump) != JUMP_INSN || !condjump_p (jump)) + continue; + + /* Make sure we've found the right edge to split. */ + if (JUMP_LABEL (jump) != BLOCK_HEAD (pred_bb)) + continue; + + /* Redirect the jump from this block to its sucessor to + use a new label. */ + label = gen_label_rtx (); + insn = emit_label_after (label, + PREV_INSN (BLOCK_HEAD (pred_bb))); + LABEL_NUSES (insn) = 0; + + /* Make sure redirect_jump does not delete this label. */ + olabel = JUMP_LABEL (jump); + LABEL_NUSES (olabel)++; + + redirect_jump (jump, label); + JUMP_LABEL (jump) = label; + + /* Fix the reference count. */ + LABEL_NUSES (olabel)--; + + split_edge_to_block[pred_bb] = 1; + changed = 1; + } + + /* One might consider splitting other edges, but doing so + introduces new jumps in the code, and thus the cost of + the jump has to be weighed against the additional + redundancies we're likely to find. */ + } + } + } + + } +#endif + + return changed; +} +/* END CYGNUS LOCAL */ + +void +dump_bb_data (file, preds, succs, live_info) + FILE *file; + int_list_ptr *preds; + int_list_ptr *succs; + int live_info; +{ + int bb; + int_list_ptr p; + + fprintf (file, "BB data\n\n"); + for (bb = 0; bb < n_basic_blocks; bb++) + { + fprintf (file, "BB %d, start %d, end %d\n", bb, + INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb))); + fprintf (file, " preds:"); + for (p = preds[bb]; p != NULL; p = p->next) + { + int pred_bb = INT_LIST_VAL (p); + if (pred_bb == ENTRY_BLOCK) + fprintf (file, " entry"); + else + fprintf (file, " %d", pred_bb); + } + fprintf (file, "\n"); + fprintf (file, " succs:"); + for (p = succs[bb]; p != NULL; p = p->next) + { + int succ_bb = INT_LIST_VAL (p); + if (succ_bb == EXIT_BLOCK) + fprintf (file, " exit"); + else + fprintf (file, " %d", succ_bb); + } + if (live_info) + { + int regno; + fprintf (file, "\nRegisters live at start:"); + for (regno = 0; regno < max_regno; regno++) + if (REGNO_REG_SET_P (basic_block_live_at_start[bb], regno)) + fprintf (file, " %d", regno); + fprintf (file, "\n"); + } + fprintf (file, "\n"); + } + fprintf (file, "\n"); +} + +/* Free basic block data storage. */ + +void +free_bb_mem () +{ + free_int_list (&pred_int_list_blocks); +} + +/* Compute dominator relationships. */ +void +compute_dominators (dominators, post_dominators, s_preds, s_succs) + sbitmap *dominators; + sbitmap *post_dominators; + int_list_ptr *s_preds; + int_list_ptr *s_succs; +{ + int bb, changed, passes; + sbitmap *temp_bitmap; + + temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks); + sbitmap_vector_ones (dominators, n_basic_blocks); + sbitmap_vector_ones (post_dominators, n_basic_blocks); + sbitmap_vector_zero (temp_bitmap, n_basic_blocks); + + sbitmap_zero (dominators[0]); + SET_BIT (dominators[0], 0); + + sbitmap_zero (post_dominators[n_basic_blocks-1]); + SET_BIT (post_dominators[n_basic_blocks-1], 0); + + passes = 0; + changed = 1; + while (changed) + { + changed = 0; + for (bb = 1; bb < n_basic_blocks; bb++) + { + sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators, + bb, s_preds); + SET_BIT (temp_bitmap[bb], bb); + changed |= sbitmap_a_and_b (dominators[bb], + dominators[bb], + temp_bitmap[bb]); + sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators, + bb, s_succs); + SET_BIT (temp_bitmap[bb], bb); + changed |= sbitmap_a_and_b (post_dominators[bb], + post_dominators[bb], + temp_bitmap[bb]); + } + passes++; + } + + free (temp_bitmap); +} + +/* CYGNUS LOCAL law */ +/* This is a fairly simple block merge optimization pass. + + We search for block pairs where the first block is succeeded by only + the second block and the second block is preceeded only by the first + block. + + If the blocks are not adjacent, then it must be the case that the + first block jumps to the second. With a little work the two blocks + can be merged into a single larger block. + + The primary benefit of performing this optimization is better local + optimization within the merged block. + + This optimization will also save a jump if the second block ended with + an unconditional branch. + + + Many improvements could be made to this pass to turn it into a real + block scheduler. Probably the most important components would + be a branch predictor and code to convert from a block list to + an insn chain by modfiying/adding/removing jumps as needed. + + Given a reducible flow graph (or sub-graph if the whole graph is not + reducible) we would perform a DFS traversal of the nodes using the + predictor to select a path at each conditional jump. + + First perform the DFS traversal starting at the header for inner + natural loops. As each loop is traversed, reduce it to a single + node and work outward. Process all natural loops in this manner. + + Once all loops are reduced perform the DFS traversal on the remaining + flow graph. + + The net result would be a block ordering which should minimize branch + penalties for the predicted path through a function. As a side effect + blocks which are not part of a loop would be removed from the loop. */ + +void +merge_blocks (f) + rtx f; +{ + int_list_ptr *s_preds, *s_succs; + int *num_preds, *num_succs; + int n_blocks_merged, bb, i; + sbitmap headers, trailers; + + /* Don't try to perform this after the last CSE pass. It's not worth + the effort to try and maintain all the data structures that have + to be preserved after that point. Most of the benefits come from + the first couple passes anyway. */ + if (reload_completed) + return; + + /* ??? This does not work when EH is enabled. The g++.eh/spec2.C test + fails on a solaris2 host if this optimization is performed. + 1) The tests for moving a block decide it is safe if it contains no EH + region. This isn't sufficient, and may be unnecessary. We can't merge + two blocks if the pred and succ are in different EH regions. Otherwise, + a throw may end up in the wrong catch clause. + 2) Calls that throw end a block, and if the call returns a value, the + call may end up in a different block than the insn which stores the + return value into a pseudo. This may not be safe for machines using + SMALL_REGISTER_CLASSES. + 3) throw/catch edges should be distinguished from branch/fallthrough + edges, and different heuristics should be applied to them. */ + + if (flag_exceptions) + return; + + /* First break the program into basic blocks. */ + find_basic_blocks (f, max_reg_num (), NULL); + + /* If we have only a single block, then there's nothing to do. */ + if (n_basic_blocks <= 1) + { + /* Free storage allocated by find_basic_blocks. */ + free_basic_block_vars (0); + return; + } + + /* We need predecessor/successor lists as well as pred/succ counts for + each basic block. */ + s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr)); + s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr)); + num_preds = (int *) alloca (n_basic_blocks * sizeof (int)); + num_succs = (int *) alloca (n_basic_blocks * sizeof (int)); + compute_preds_succs (s_preds, s_succs, num_preds, num_succs, 0); + + /* We only need to note which blocks are headers and which blocks are + trailers. The pred/succ lists encode the actual chain from one block + to the next. */ + headers = sbitmap_alloc (n_basic_blocks); + trailers = sbitmap_alloc (n_basic_blocks); + sbitmap_zero (headers); + sbitmap_zero (trailers); + + n_blocks_merged = 0; + + /* Walk over each block looking for mergeable blocks. */ + for (bb = 0; bb < n_basic_blocks; bb++) + { + int succ_bb; + rtx temp; + + /* If this block has more than one successor, then there's nothing + more to do. */ + if (num_succs[bb] != 1) + continue; + + succ_bb = INT_LIST_VAL (s_succs[bb]); + + /* If the successor block is the exit block, then there's nothing + more to do, similarly if the successor block is the last block. */ + if (succ_bb == EXIT_BLOCK || succ_bb == n_basic_blocks - 1) + continue; + + /* If the successor has more than one precedessor, then there's + nothing more to do. */ + if (num_preds[succ_bb] > 1) + continue; + + /* If the successor block is the next block, then there's nothing + to do. */ + if (bb + 1 == succ_bb) + continue; + + /* If the successor block has an EH region begin/end note, then + we can not perform this optimization. */ + temp = BLOCK_HEAD (succ_bb); + while (temp) + { + if (GET_CODE (temp) == NOTE + && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG + || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)) + break; + + if (temp == BLOCK_END (succ_bb)) + break; + temp = NEXT_INSN (temp); + } + + /* If we stopped on an EH note, then there's nothing we can do. */ + if (temp + && GET_CODE (temp) == NOTE + && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG + || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)) + continue; + + /* We must keep a tablejump/switch insn immediately in front of its + associated jump table. They should actually be a single block + which would avoid this hair. But I'm not going to try and tackle + that problem right now. + + For now we just special case handling of this situation and + avoid doing anything with such blocks. + + Luckily the tablejump and jump table itself must be adjacent. This + property makes it relatively easy to detect this case. */ + temp = BLOCK_END (succ_bb); + /* A tablejump will "jump" to the next instruction, which is the jump + table itself. */ + if (temp + && GET_CODE (temp) == JUMP_INSN + && JUMP_LABEL (temp) + && JUMP_LABEL (temp) == next_nonnote_insn (temp)) + { + rtx next = next_nonnote_insn (JUMP_LABEL (temp)); + + /* Now see if the next insn is a jump table, if it is, then we do + not want to merge this block. */ + if (next + && GET_CODE (next) == JUMP_INSN + && (GET_CODE (PATTERN (next)) == ADDR_VEC + || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)) + continue; + } + + /* If BB is not already in a chain, then it becomes a chain + header. */ + if (!TEST_BIT (trailers, bb)) + SET_BIT (headers, bb); + + /* SUCC_BB could have been marked as a header already. It is no longer + a header, so clear the bit. */ + RESET_BIT (headers, succ_bb); + + /* SUCC_BB is in a chain now. */ + SET_BIT (trailers, succ_bb); + + n_blocks_merged++; + } + + /* Now rearrange insn chain to reflect the desired block ordering. + + When the merged block does not end with an unconditional branch, + we must insert an unconditional branch to the fallthrough path + of successor block to preserve program correctness. + + We only perform a very limited number of transformations on the + block ordering, so this code is relatively simple right now. */ + if (n_blocks_merged != 0) + { + + for (i = 0; i < n_basic_blocks; i++) + { + int_list_ptr ps; + int current_block, trailer_block; + + /* There's nothing to do if this is not a chain header. */ + if (! TEST_BIT (headers, i)) + continue; + + /* Splice the insn chain so that the trailer block(s) + immediately follow the header block. */ + ps = s_succs[i]; + current_block = i; + while (ps && TEST_BIT (trailers, INT_LIST_VAL (ps))) + { + rtx start, end, next, oldlabel, insertpoint; + + trailer_block = INT_LIST_VAL (ps); + + /* Find the start/end points for the insns to move. */ + start = BLOCK_HEAD (trailer_block); + + end = BLOCK_END (trailer_block); + + /* If the next nonnote insn after the end of the trailer + block is a BARRIER, then we copy it too. */ + next = next_nonnote_insn (end); + if (next && GET_CODE (next) == BARRIER) + end = next; + + /* We insert insns from the trailer block after the BARRIER + which follows thisn block. */ + insertpoint = BLOCK_END (current_block); + next = next_nonnote_insn (insertpoint); + if (next && GET_CODE (next) == BARRIER) + insertpoint = next; + + /* Move block and loop notes out of the chain so that we do not + disturb their order. */ + /* ??? A slightly better solution would be to squeeze out all + non-nested notes, and adjust the block trees appropriately. + Even better would be to have a tighter connection between + block trees and rtl so that this is not necessary. */ + start = squeeze_notes (start, end); + + /* Scramble the insn chain. */ + reorder_insns (start, end, insertpoint); + + /* If the last copied insn was not a BARRIER, then we must insert + a jump from the end of TRAILER_BLOCK to the start of + TRAILER_BLOCK + 1 to preserve the meaning of the code. */ + if (GET_CODE (end) != BARRIER) + { + rtx jump, insn, label; + + start = BLOCK_HEAD (trailer_block + 1); + /* Make sure the start of the block which used to follow the + trailer block starts with a CODE_LABEL. */ + if (GET_CODE (start) != CODE_LABEL) + { + label = gen_label_rtx (); + LABEL_NUSES (label) = 1; + BLOCK_HEAD (trailer_block + 1) + = emit_label_after (label, PREV_INSN (start)); + } + else + { + label = start; + LABEL_NUSES (label)++; + } + + + jump = emit_jump_insn_after (gen_jump (label), + BLOCK_END (trailer_block)); + BLOCK_END (trailer_block) = jump; + JUMP_LABEL (jump) = label; + emit_barrier_after (jump); + } + + /* Now remove the redundant JUMP at the end of the previous + basic block. */ + delete_jump (BLOCK_END (current_block)); + + /* Continue the loop in case we merged more than two blocks into + a single chain. */ + current_block = trailer_block; + ps = s_succs[current_block]; + } + } + } + + /* There is one important case the above code does not handle. If the + last block is only reachable by one predecessor, then the predecessor + should be tacked onto the head of the last block. If the predecessor + block was a trailer, then we should walk up to the head of its block + list. Not yet implemented. */ + if (num_preds[n_basic_blocks - 1] == 1 + && num_succs[INT_LIST_VAL (s_preds[n_basic_blocks - 1])] == 1) + { + rtx start, end, insertpoint; + int pred = INT_LIST_VAL (s_preds[n_basic_blocks - 1]); + + /* If the predecessor is a trailer block, or it alrady is the immediate + predecessor of the last block, then there is nothing to do. */ + if (!TEST_BIT (trailers, pred) && pred != n_basic_blocks - 2) + { + rtx temp; + /* Find the start/end points for the insns to move. We leave the + jump to the last block in its original position. */ + start = BLOCK_HEAD (pred); + end = BLOCK_END (pred); + + /* If the predecessor block has an EH region begin/end note, then + we can not perform this optimization. */ + temp = start; + while (temp) + { + if (GET_CODE (temp) == NOTE + && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG + || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)) + break; + if (temp == BLOCK_END (pred)) + break; + temp = NEXT_INSN (temp); + } + + /* If we stopped on an EH note, then there's nothing we can do. */ + if (start != end + && ! (temp + && GET_CODE (temp) == NOTE + && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG + || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END))) + { + /* For simplicity we'll leave any CODE_LABEL and JUMP in their + original location. If they are dead, then they'll be deleted + by the jump optimizer. If not branches which reach the + label will be threaded to the epilogue, which makes the label + and jump dead anyway. */ + if (GET_CODE (start) == CODE_LABEL) + start = NEXT_INSN (start); + + /* The first check is necessary in case the block contains + only the CODE_LABEL skipped above and only one other + instruction. */ + if (start != end && next_nonnote_insn (start) != end) + { + end = PREV_INSN (end); + /* We insert insns from the predecessor block after the + CODE_LABEL which starts the final block. */ + insertpoint = BLOCK_HEAD (n_basic_blocks - 1); + + start = squeeze_notes (start, end); + + /* Scramble the insn chain. */ + reorder_insns (start, end, insertpoint); + } + } + } + } + + + /* Now that we have maximal blocks, it would be a good time to run natural + loop analysis and rip out blocks that are physically inside loops, but + not part of the loop itself. */ + + /* Free storage allocated by find_basic_blocks. */ + free_basic_block_vars (0); + free_bb_mem (); +} +/* END CYGNUS LOCAL */ +/* Count for a single SET rtx, X. */ + +static void +count_reg_sets_1 (x) + rtx x; +{ + register int regno; + register rtx reg = SET_DEST (x); + + /* Find the register that's set/clobbered. */ + while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT + || GET_CODE (reg) == SIGN_EXTRACT + || GET_CODE (reg) == STRICT_LOW_PART) + reg = XEXP (reg, 0); + + if (GET_CODE (reg) == PARALLEL + && GET_MODE (reg) == BLKmode) + { + register int i; + for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) + count_reg_sets_1 (XVECEXP (reg, 0, i)); + return; + } + + if (GET_CODE (reg) == REG) + { + regno = REGNO (reg); + if (regno >= FIRST_PSEUDO_REGISTER) + { + /* Count (weighted) references, stores, etc. This counts a + register twice if it is modified, but that is correct. */ + REG_N_SETS (regno)++; + + REG_N_REFS (regno) += loop_depth; + } + } +} + +/* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment + REG_N_REFS by the current loop depth for each SET or CLOBBER found. */ + +static void +count_reg_sets (x) + rtx x; +{ + register RTX_CODE code = GET_CODE (x); + + if (code == SET || code == CLOBBER) + count_reg_sets_1 (x); + else if (code == PARALLEL) + { + register int i; + for (i = XVECLEN (x, 0) - 1; i >= 0; i--) + { + code = GET_CODE (XVECEXP (x, 0, i)); + if (code == SET || code == CLOBBER) + count_reg_sets_1 (XVECEXP (x, 0, i)); + } + } +} + +/* Increment REG_N_REFS by the current loop depth each register reference + found in X. */ + +static void +count_reg_references (x) + rtx x; +{ + register RTX_CODE code; + + retry: + code = GET_CODE (x); + switch (code) + { + case LABEL_REF: + case SYMBOL_REF: + case CONST_INT: + case CONST: + case CONST_DOUBLE: + case PC: + case ADDR_VEC: + case ADDR_DIFF_VEC: + case ASM_INPUT: + return; + +#ifdef HAVE_cc0 + case CC0: + return; +#endif + + case CLOBBER: + /* If we are clobbering a MEM, mark any registers inside the address + as being used. */ + if (GET_CODE (XEXP (x, 0)) == MEM) + count_reg_references (XEXP (XEXP (x, 0), 0)); + return; + + case SUBREG: + /* While we're here, optimize this case. */ + x = SUBREG_REG (x); + + /* In case the SUBREG is not of a register, don't optimize */ + if (GET_CODE (x) != REG) + { + count_reg_references (x); + return; + } + + /* ... fall through ... */ + + case REG: + if (REGNO (x) >= FIRST_PSEUDO_REGISTER) + REG_N_REFS (REGNO (x)) += loop_depth; + return; + + case SET: + { + register rtx testreg = SET_DEST (x); + int mark_dest = 0; + + /* If storing into MEM, don't show it as being used. But do + show the address as being used. */ + if (GET_CODE (testreg) == MEM) + { + count_reg_references (XEXP (testreg, 0)); + count_reg_references (SET_SRC (x)); + return; + } + + /* Storing in STRICT_LOW_PART is like storing in a reg + in that this SET might be dead, so ignore it in TESTREG. + but in some other ways it is like using the reg. + + Storing in a SUBREG or a bit field is like storing the entire + register in that if the register's value is not used + then this SET is not needed. */ + while (GET_CODE (testreg) == STRICT_LOW_PART + || GET_CODE (testreg) == ZERO_EXTRACT + || GET_CODE (testreg) == SIGN_EXTRACT + || GET_CODE (testreg) == SUBREG) + { + /* Modifying a single register in an alternate mode + does not use any of the old value. But these other + ways of storing in a register do use the old value. */ + if (GET_CODE (testreg) == SUBREG + && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg))) + ; + else + mark_dest = 1; + + testreg = XEXP (testreg, 0); + } + + /* If this is a store into a register, + recursively scan the value being stored. */ + + if ((GET_CODE (testreg) == PARALLEL + && GET_MODE (testreg) == BLKmode) + || GET_CODE (testreg) == REG) + { + count_reg_references (SET_SRC (x)); + if (mark_dest) + count_reg_references (SET_DEST (x)); + return; + } + } + break; + + default: + break; + } + + /* Recursively scan the operands of this expression. */ + + { + register char *fmt = GET_RTX_FORMAT (code); + register int i; + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + /* Tail recursive case: save a function call level. */ + if (i == 0) + { + x = XEXP (x, 0); + goto retry; + } + count_reg_references (XEXP (x, i)); + } + else if (fmt[i] == 'E') + { + register int j; + for (j = 0; j < XVECLEN (x, i); j++) + count_reg_references (XVECEXP (x, i, j)); + } + } + } +} + +/* Recompute register set/reference counts immediately prior to register + allocation. + + This avoids problems with set/reference counts changing to/from values + which have special meanings to the register allocators. + + Additionally, the reference counts are the primary component used by the + register allocators to prioritize pseudos for allocation to hard regs. + More accurate reference counts generally lead to better register allocation. + + F is the first insn to be scanned. + LOOP_STEP denotes how much loop_depth should be incremented per + loop nesting level in order to increase the ref count more for references + in a loop. + + It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and + possibly other information which is used by the register allocators. */ + +void +recompute_reg_usage (f, loop_step) + rtx f; + int loop_step; +{ + rtx insn; + int i, max_reg; + + /* Clear out the old data. */ + max_reg = max_reg_num (); + for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++) + { + REG_N_SETS (i) = 0; + REG_N_REFS (i) = 0; + } + + /* Scan each insn in the chain and count how many times each register is + set/used. */ + loop_depth = 1; + for (insn = f; insn; insn = NEXT_INSN (insn)) + { + /* Keep track of loop depth. */ + if (GET_CODE (insn) == NOTE) + { + /* Look for loop boundaries. */ + if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) + loop_depth -= loop_step; + else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) + loop_depth += loop_step; + + /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. + Abort now rather than setting register status incorrectly. */ + if (loop_depth == 0) + abort (); + } + else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') + { + rtx links; + + /* This call will increment REG_N_SETS for each SET or CLOBBER + of a register in INSN. It will also increment REG_N_REFS + by the loop depth for each set of a register in INSN. */ + count_reg_sets (PATTERN (insn)); + + /* count_reg_sets does not detect autoincrement address modes, so + detect them here by looking at the notes attached to INSN. */ + for (links = REG_NOTES (insn); links; links = XEXP (links, 1)) + { + if (REG_NOTE_KIND (links) == REG_INC) + /* Count (weighted) references, stores, etc. This counts a + register twice if it is modified, but that is correct. */ + REG_N_SETS (REGNO (XEXP (links, 0)))++; + } + + /* This call will increment REG_N_REFS by the current loop depth for + each reference to a register in INSN. */ + count_reg_references (PATTERN (insn)); + + /* count_reg_references will not include counts for arguments to + function calls, so detect them here by examining the + CALL_INSN_FUNCTION_USAGE data. */ + if (GET_CODE (insn) == CALL_INSN) + { + rtx note; + + for (note = CALL_INSN_FUNCTION_USAGE (insn); + note; + note = XEXP (note, 1)) + if (GET_CODE (XEXP (note, 0)) == USE) + count_reg_references (SET_DEST (XEXP (note, 0))); + } + } + } +} |