diff options
Diffstat (limited to 'gcc')
-rw-r--r-- | gcc/Makefile | 15 | ||||
-rw-r--r-- | gcc/config.h | 2 | ||||
-rwxr-xr-x | gcc/config/arm/README-interworking | 742 | ||||
-rwxr-xr-x | gcc/config/arm/lib1thumb.asm | 736 | ||||
-rwxr-xr-x | gcc/config/arm/t-thumb-elf | 32 | ||||
-rwxr-xr-x | gcc/config/fp-bit.c | 1507 | ||||
-rwxr-xr-x | gcc/libgcc1-test.c | 117 | ||||
-rwxr-xr-x | gcc/libgcc1.c | 596 | ||||
-rwxr-xr-x | gcc/libgcc2.c | 946 | ||||
-rwxr-xr-x | gcc/telf.h (renamed from gcc/config/arm/telf.h) | 2 | ||||
-rwxr-xr-x | gcc/testsuite/fp-test.c (renamed from gcc/fp-test.c) | 0 | ||||
-rwxr-xr-x | gcc/thumb.c (renamed from gcc/config/arm/thumb.c) | 0 | ||||
-rwxr-xr-x | gcc/thumb.h (renamed from gcc/config/arm/thumb.h) | 0 | ||||
-rwxr-xr-x | gcc/thumb.md (renamed from gcc/config/arm/thumb.md) | 0 |
14 files changed, 6 insertions, 4689 deletions
diff --git a/gcc/Makefile b/gcc/Makefile index d03008f..e677c70 100644 --- a/gcc/Makefile +++ b/gcc/Makefile @@ -26,9 +26,7 @@ CFLAGS = -g -std=gnu11 CC = gcc -out_file=$(srcdir)/config/arm/thumb.c -out_object_file=thumb.o -md_file=$(srcdir)/config/arm/thumb.md +md_file=$(srcdir)/thumb.md # End of variables for you to override. @@ -40,12 +38,8 @@ HOST_RTLANAL = rtlanal.o HOST_PRINT = print-rtl.o # Specify the directories to be searched for header files. -# Both . and srcdir are used, in that order, -# so that tm.h and config.h will be found in the compilation -# subdirectory rather than in the source directory. -INCLUDES = -I. -I$(srcdir) -I$(srcdir)/config -I$(srcdir)/../include +INCLUDES = -I. -I$(srcdir) -# Always use -I$(srcdir)/config when compiling. .c.o: $(CC) -c $(CFLAGS) $(INCLUDES) $< @@ -64,7 +58,7 @@ OBJS = toplev.o version.o tree.o print-tree.o stor-layout.o fold-const.o \ insn-peep.o final.o recog.o \ insn-opinit.o insn-recog.o insn-extract.o insn-output.o insn-emit.o \ lcm.o \ - insn-attrtab.o $(out_object_file) getpwd.o convert.o \ + insn-attrtab.o thumb.o getpwd.o convert.o \ dyn-string.o splay-tree.o graph.o sbitmap.o resource.o \ c-parse.o c-lex.o c-decl.o c-typeck.o c-convert.o c-aux-info.o c-common.o \ c-iterate.o obstack.o @@ -274,10 +268,9 @@ recog.o : recog.c $(CONFIG_H) system.h $(RTL_H) \ insn-flags.h insn-codes.h real.h toplev.h dyn-string.o: dyn-string.c dyn-string.h $(CONFIG_H) system.h -$(out_object_file): $(out_file) $(CONFIG_H) $(TREE_H) \ +thumb.o: thumb.c $(CONFIG_H) $(TREE_H) \ $(RTL_H) $(REGS_H) hard-reg-set.h real.h insn-config.h conditions.h \ insn-flags.h output.h insn-attr.h insn-codes.h system.h toplev.h - $(CC) -c $(CFLAGS) $(INCLUDES) $(out_file) # Generate header and source files from the machine description, # and compile them. diff --git a/gcc/config.h b/gcc/config.h index f9f6819..0232972 100644 --- a/gcc/config.h +++ b/gcc/config.h @@ -9,4 +9,4 @@ #define HOST_BITS_PER_SHORT 16 #define HOST_BITS_PER_INT 32 -#include "arm/telf.h" +#include "telf.h" diff --git a/gcc/config/arm/README-interworking b/gcc/config/arm/README-interworking deleted file mode 100755 index 46b76c9..0000000 --- a/gcc/config/arm/README-interworking +++ /dev/null @@ -1,742 +0,0 @@ - Arm / Thumb Interworking - ======================== - -The Cygnus GNU Pro Toolkit for the ARM7T processor supports function -calls between code compiled for the ARM instruction set and code -compiled for the Thumb instruction set and vice versa. This document -describes how that interworking support operates and explains the -command line switches that should be used in order to produce working -programs. - -Note: The Cygnus GNU Pro Toolkit does not support switching between -compiling for the ARM instruction set and the Thumb instruction set -on anything other than a per file basis. There are in fact two -completely separate compilers, one that produces ARM assembler -instructions and one that produces Thumb assembler instructions. The -two compilers share the same assembler, linker and so on. - - -1. Explicit interworking support for C and C++ files -==================================================== - -By default if a file is compiled without any special command line -switches then the code produced will not support interworking. -Provided that a program is made up entirely from object files and -libraries produced in this way and which contain either exclusively -ARM instructions or exclusively Thumb instructions then this will not -matter and a working executable will be created. If an attempt is -made to link together mixed ARM and Thumb object files and libraries, -then warning messages will be produced by the linker and a non-working -executable will be created. - -In order to produce code which does support interworking it should be -compiled with the - - -mthumb-interwork - -command line option. Provided that a program is made up entirely from -object files and libraries built with this command line switch a -working executable will be produced, even if both ARM and Thumb -instructions are used by the various components of the program. (No -warning messages will be produced by the linker either). - -Note that specifying -mthumb-interwork does result in slightly larger, -slower code being produced. This is why interworking support must be -specifically enabled by a switch. - - -2. Explicit interworking support for assembler files -==================================================== - -If assembler files are to be included into an interworking program -then the following rules must be obeyed: - - * Any externally visible functions must return by using the BX - instruction. - - * Normal function calls can just use the BL instruction. The - linker will automatically insert code to switch between ARM - and Thumb modes as necessary. - - * Calls via function pointers should use the BX instruction if - the call is made in ARM mode: - - .code 32 - mov lr, pc - bx rX - - This code sequence will not work in Thumb mode however, since - the mov instruction will not set the bottom bit of the lr - register. Instead a branch-and-link to the _call_via_rX - functions should be used instead: - - .code 16 - bl _call_via_rX - - where rX is replaced by the name of the register containing - the function address. - - * All externally visible functions which should be entered in - Thumb mode must have the .thumb_func pseudo op specified just - before their entry point. eg: - - .code 16 - .global function - .thumb_func - function: - ...start of function.... - - * All assembler files must be assembled with the switch - -mthumb-interwork specified on the command line. (If the file - is assembled by calling gcc it will automatically pass on the - -mthumb-interwork switch to the assembler, provided that it - was specified on the gcc command line in the first place.) - - -3. Support for old, non-interworking aware code. -================================================ - -If it is necessary to link together code produced by an older, -non-interworking aware compiler, or code produced by the new compiler -but without the -mthumb-interwork command line switch specified, then -there are two command line switches that can be used to support this. - -The switch - - -mcaller-super-interworking - -will allow calls via function pointers in Thumb mode to work, -regardless of whether the function pointer points to old, -non-interworking aware code or not. Specifying this switch does -produce slightly slower code however. - -Note: There is no switch to allow calls via function pointers in ARM -mode to be handled specially. Calls via function pointers from -interworking aware ARM code to non-interworking aware ARM code work -without any special considerations by the compiler. Calls via -function pointers from interworking aware ARM code to non-interworking -aware Thumb code however will not work. (Actually under some -circumstances they may work, but there are no guarantees). This is -because only the new compiler is able to produce Thumb code, and this -compiler already has a command line switch to produce interworking -aware code. - - -The switch - - -mcallee-super-interworking - -will allow non-interworking aware ARM or Thumb code to call Thumb -functions, either directly or via function pointers. Specifying this -switch does produce slightly larger, slower code however. - -Note: There is no switch to allow non-interworking aware ARM or Thumb -code to call ARM functions. There is no need for any special handling -of calls from non-interworking aware ARM code to interworking aware -ARM functions, they just work normally. Calls from non-interworking -aware Thumb functions to ARM code however, will not work. There is no -option to support this, since it is always possible to recompile the -Thumb code to be interworking aware. - -As an alternative to the command line switch --mcallee-super-interworking, which affects all externally visible -functions in a file, it is possible to specify an attribute or -declspec for individual functions, indicating that that particular -function should support being called by non-interworking aware code. -The function should be defined like this: - - int __attribute__((interfacearm)) function - { - ... body of function ... - } - -or - - int __declspec(interfacearm) function - { - ... body of function ... - } - - - -4. Interworking support in dlltool -================================== - -It is possible to create DLLs containing mixed ARM and Thumb code. It -is also possible to call Thumb code in a DLL from an ARM program and -vice versa. It is even possible to call ARM DLLs that have been compiled -without interworking support (say by an older version of the compiler), -from Thumb programs and still have things work properly. - - A version of the `dlltool' program which supports the `--interwork' -command line switch is needed, as well as the following special -considerations when building programs and DLLs: - -*Use `-mthumb-interwork'* - When compiling files for a DLL or a program the `-mthumb-interwork' - command line switch should be specified if calling between ARM and - Thumb code can happen. If a program is being compiled and the - mode of the DLLs that it uses is not known, then it should be - assumed that interworking might occur and the switch used. - -*Use `-m thumb'* - If the exported functions from a DLL are all Thumb encoded then the - `-m thumb' command line switch should be given to dlltool when - building the stubs. This will make dlltool create Thumb encoded - stubs, rather than its default of ARM encoded stubs. - - If the DLL consists of both exported Thumb functions and exported - ARM functions then the `-m thumb' switch should not be used. - Instead the Thumb functions in the DLL should be compiled with the - `-mcallee-super-interworking' switch, or with the `interfacearm' - attribute specified on their prototypes. In this way they will be - given ARM encoded prologues, which will work with the ARM encoded - stubs produced by dlltool. - -*Use `-mcaller-super-interworking'* - If it is possible for Thumb functions in a DLL to call - non-interworking aware code via a function pointer, then the Thumb - code must be compiled with the `-mcaller-super-interworking' - command line switch. This will force the function pointer calls - to use the _interwork_call_via_rX stub functions which will - correctly restore Thumb mode upon return from the called function. - -*Link with `libgcc.a'* - When the dll is built it may have to be linked with the GCC - library (`libgcc.a') in order to extract the _call_via_rX functions - or the _interwork_call_via_rX functions. This represents a partial - redundancy since the same functions *may* be present in the - application itself, but since they only take up 372 bytes this - should not be too much of a consideration. - -*Use `--support-old-code'* - When linking a program with an old DLL which does not support - interworking, the `--support-old-code' command line switch to the - linker should be used. This causes the linker to generate special - interworking stubs which can cope with old, non-interworking aware - ARM code, at the cost of generating bulkier code. The linker will - still generate a warning message along the lines of: - "Warning: input file XXX does not support interworking, whereas YYY does." - but this can now be ignored because the --support-old-code switch - has been used. - - - -5. How interworking support works -================================= - -Switching between the ARM and Thumb instruction sets is accomplished -via the BX instruction which takes as an argument a register name. -Control is transfered to the address held in this register (with the -bottom bit masked out), and if the bottom bit is set, then Thumb -instruction processing is enabled, otherwise ARM instruction -processing is enabled. - -When the -mthumb-interwork command line switch is specified, gcc -arranges for all functions to return to their caller by using the BX -instruction. Thus provided that the return address has the bottom bit -correctly initialised to indicate the instruction set of the caller, -correct operation will ensue. - -When a function is called explicitly (rather than via a function -pointer), the compiler generates a BL instruction to do this. The -Thumb version of the BL instruction has the special property of -setting the bottom bit of the LR register after it has stored the -return address into it, so that a future BX instruction will correctly -return the instruction after the BL instruction, in Thumb mode. - -The BL instruction does not change modes itself however, so if an ARM -function is calling a Thumb function, or vice versa, it is necessary -to generate some extra instructions to handle this. This is done in -the linker when it is storing the address of the referenced function -into the BL instruction. If the BL instruction is an ARM style BL -instruction, but the referenced function is a Thumb function, then the -linker automatically generates a calling stub that converts from ARM -mode to Thumb mode, puts the address of this stub into the BL -instruction, and puts the address of the referenced function into the -stub. Similarly if the BL instruction is a Thumb BL instruction, and -the referenced function is an ARM function, the linker generates a -stub which converts from Thumb to ARM mode, puts the address of this -stub into the BL instruction, and the address of the referenced -function into the stub. - -This is why it is necessary to mark Thumb functions with the -.thumb_func pseudo op when creating assembler files. This pseudo op -allows the assembler to distinguish between ARM functions and Thumb -functions. (The Thumb version of GCC automatically generates these -pseudo ops for any Thumb functions that it generates). - -Calls via function pointers work differently. Whenever the address of -a function is taken, the linker examines the type of the function -being referenced. If the function is a Thumb function, then it sets -the bottom bit of the address. Technically this makes the address -incorrect, since it is now one byte into the start of the function, -but this is never a problem because: - - a. with interworking enabled all calls via function pointer - are done using the BX instruction and this ignores the - bottom bit when computing where to go to. - - b. the linker will always set the bottom bit when the address - of the function is taken, so it is never possible to take - the address of the function in two different places and - then compare them and find that they are not equal. - -As already mentioned any call via a function pointer will use the BX -instruction (provided that interworking is enabled). The only problem -with this is computing the return address for the return from the -called function. For ARM code this can easily be done by the code -sequence: - - mov lr, pc - bx rX - -(where rX is the name of the register containing the function -pointer). This code does not work for the Thumb instruction set, -since the MOV instruction will not set the bottom bit of the LR -register, so that when the called function returns, it will return in -ARM mode not Thumb mode. Instead the compiler generates this -sequence: - - bl _call_via_rX - -(again where rX is the name if the register containing the function -pointer). The special call_via_rX functions look like this: - - .thumb_func -_call_via_r0: - bx r0 - nop - -The BL instruction ensures that the correct return address is stored -in the LR register and then the BX instruction jumps to the address -stored in the function pointer, switch modes if necessary. - - -6. How caller-super-interworking support works -============================================== - -When the -mcaller-super-interworking command line switch is specified -it changes the code produced by the Thumb compiler so that all calls -via function pointers (including virtual function calls) now go via a -different stub function. The code to call via a function pointer now -looks like this: - - bl _interwork_call_via_r0 - -Note: The compiler does not insist that r0 be used to hold the -function address. Any register will do, and there are a suite of stub -functions, one for each possible register. The stub functions look -like this: - - .code 16 - .thumb_func -_interwork_call_via_r0 - bx pc - nop - - .code 32 - tst r0, #1 - stmeqdb r13!, {lr} - adreq lr, _arm_return - bx r0 - -The stub first switches to ARM mode, since it is a lot easier to -perform the necessary operations using ARM instructions. It then -tests the bottom bit of the register containing the address of the -function to be called. If this bottom bit is set then the function -being called uses Thumb instructions and the BX instruction to come -will switch back into Thumb mode before calling this function. (Note -that it does not matter how this called function chooses to return to -its caller, since the both the caller and callee are Thumb functions, -and mode switching is necessary). If the function being called is an -ARM mode function however, the stub pushes the return address (with -its bottom bit set) onto the stack, replaces the return address with -the address of the a piece of code called '_arm_return' and then -performs a BX instruction to call the function. - -The '_arm_return' code looks like this: - - .code 32 -_arm_return: - ldmia r13!, {r12} - bx r12 - .code 16 - - -It simply retrieves the return address from the stack, and then -performs a BX operation to return to the caller and switch back into -Thumb mode. - - -7. How callee-super-interworking support works -============================================== - -When -mcallee-super-interworking is specified on the command line the -Thumb compiler behaves as if every externally visible function that it -compiles has had the (interfacearm) attribute specified for it. What -this attribute does is to put a special, ARM mode header onto the -function which forces a switch into Thumb mode: - - without __attribute__((interfacearm)): - - .code 16 - .thumb_func - function: - ... start of function ... - - with __attribute__((interfacearm)): - - .code 32 - function: - orr r12, pc, #1 - bx r12 - - .code 16 - .thumb_func - .real_start_of_function: - - ... start of function ... - -Note that since the function now expects to be entered in ARM mode, it -no longer has the .thumb_func pseudo op specified for its name. -Instead the pseudo op is attached to a new label .real_start_of_<name> -(where <name> is the name of the function) which indicates the start -of the Thumb code. This does have the interesting side effect in that -if this function is now called from a Thumb mode piece of code -outsside of the current file, the linker will generate a calling stub -to switch from Thumb mode into ARM mode, and then this is immediately -overridden by the function's header which switches back into Thumb -mode. - -In addition the (interfacearm) attribute also forces the function to -return by using the BX instruction, even if has not been compiled with -the -mthumb-interwork command line flag, so that the correct mode will -be restored upon exit from the function. - - -8. Some examples -================ - - Given these two test files: - - int arm (void) { return 1 + thumb (); } - - int thumb (void) { return 2 + arm (); } - - The following pieces of assembler are produced by the ARM and Thumb -version of GCC depending upon the command line options used: - - `-O2': - .code 32 .code 16 - .global _arm .global _thumb - .thumb_func - _arm: _thumb: - mov ip, sp - stmfd sp!, {fp, ip, lr, pc} push {lr} - sub fp, ip, #4 - bl _thumb bl _arm - add r0, r0, #1 add r0, r0, #2 - ldmea fp, {fp, sp, pc} pop {pc} - - Note how the functions return without using the BX instruction. If -these files were assembled and linked together they would fail to work -because they do not change mode when returning to their caller. - - `-O2 -mthumb-interwork': - - .code 32 .code 16 - .global _arm .global _thumb - .thumb_func - _arm: _thumb: - mov ip, sp - stmfd sp!, {fp, ip, lr, pc} push {lr} - sub fp, ip, #4 - bl _thumb bl _arm - add r0, r0, #1 add r0, r0, #2 - ldmea fp, {fp, sp, lr} pop {r1} - bx lr bx r1 - - Now the functions use BX to return their caller. They have grown by -4 and 2 bytes respectively, but they can now successfully be linked -together and be expect to work. The linker will replace the -destinations of the two BL instructions with the addresses of calling -stubs which convert to the correct mode before jumping to the called -function. - - `-O2 -mcallee-super-interworking': - - .code 32 .code 32 - .global _arm .global _thumb - _arm: _thumb: - orr r12, pc, #1 - bx r12 - mov ip, sp .code 16 - stmfd sp!, {fp, ip, lr, pc} push {lr} - sub fp, ip, #4 - bl _thumb bl _arm - add r0, r0, #1 add r0, r0, #2 - ldmea fp, {fp, sp, lr} pop {r1} - bx lr bx r1 - - The thumb function now has an ARM encoded prologue, and it no longer -has the `.thumb-func' pseudo op attached to it. The linker will not -generate a calling stub for the call from arm() to thumb(), but it will -still have to generate a stub for the call from thumb() to arm(). Also -note how specifying `--mcallee-super-interworking' automatically -implies `-mthumb-interworking'. - - -9. Some Function Pointer Examples -================================= - - Given this test file: - - int func (void) { return 1; } - - int call (int (* ptr)(void)) { return ptr (); } - - The following varying pieces of assembler are produced by the Thumb -version of GCC depending upon the command line options used: - - `-O2': - .code 16 - .globl _func - .thumb_func - _func: - mov r0, #1 - bx lr - - .globl _call - .thumb_func - _call: - push {lr} - bl __call_via_r0 - pop {pc} - - Note how the two functions have different exit sequences. In -particular call() uses pop {pc} to return, which would not work if the -caller was in ARM mode. func() however, uses the BX instruction, even -though `-mthumb-interwork' has not been specified, as this is the most -efficient way to exit a function when the return address is held in the -link register. - - `-O2 -mthumb-interwork': - - .code 16 - .globl _func - .thumb_func - _func: - mov r0, #1 - bx lr - - .globl _call - .thumb_func - _call: - push {lr} - bl __call_via_r0 - pop {r1} - bx r1 - - This time both functions return by using the BX instruction. This -means that call() is now two bytes longer and several cycles slower -than the previous version. - - `-O2 -mcaller-super-interworking': - .code 16 - .globl _func - .thumb_func - _func: - mov r0, #1 - bx lr - - .globl _call - .thumb_func - _call: - push {lr} - bl __interwork_call_via_r0 - pop {pc} - - Very similar to the first (non-interworking) version, except that a -different stub is used to call via the function pointer. This new stub -will work even if the called function is not interworking aware, and -tries to return to call() in ARM mode. Note that the assembly code for -call() is still not interworking aware itself, and so should not be -called from ARM code. - - `-O2 -mcallee-super-interworking': - - .code 32 - .globl _func - _func: - orr r12, pc, #1 - bx r12 - - .code 16 - .globl .real_start_of_func - .thumb_func - .real_start_of_func: - mov r0, #1 - bx lr - - .code 32 - .globl _call - _call: - orr r12, pc, #1 - bx r12 - - .code 16 - .globl .real_start_of_call - .thumb_func - .real_start_of_call: - push {lr} - bl __call_via_r0 - pop {r1} - bx r1 - - Now both functions have an ARM coded prologue, and both functions -return by using the BX instruction. These functions are interworking -aware therefore and can safely be called from ARM code. The code for -the call() function is now 10 bytes longer than the original, non -interworking aware version, an increase of over 200%. - - If a prototype for call() is added to the source code, and this -prototype includes the `interfacearm' attribute: - - int __attribute__((interfacearm)) call (int (* ptr)(void)); - - then this code is produced (with only -O2 specified on the command -line): - - .code 16 - .globl _func - .thumb_func - _func: - mov r0, #1 - bx lr - - .globl _call - .code 32 - _call: - orr r12, pc, #1 - bx r12 - - .code 16 - .globl .real_start_of_call - .thumb_func - .real_start_of_call: - push {lr} - bl __call_via_r0 - pop {r1} - bx r1 - - So now both call() and func() can be safely called via -non-interworking aware ARM code. If, when such a file is assembled, -the assembler detects the fact that call() is being called by another -function in the same file, it will automatically adjust the target of -the BL instruction to point to .real_start_of_call. In this way there -is no need for the linker to generate a Thumb-to-ARM calling stub so -that call can be entered in ARM mode. - - -10. How to use dlltool to build ARM/Thumb DLLs -============================================== - Given a program (`prog.c') like this: - - extern int func_in_dll (void); - - int main (void) { return func_in_dll(); } - - And a DLL source file (`dll.c') like this: - - int func_in_dll (void) { return 1; } - - Here is how to build the DLL and the program for a purely ARM based -environment: - -*Step One - Build a `.def' file describing the DLL: - - ; example.def - ; This file describes the contents of the DLL - LIBRARY example - HEAPSIZE 0x40000, 0x2000 - EXPORTS - func_in_dll 1 - -*Step Two - Compile the DLL source code: - - arm-pe-gcc -O2 -c dll.c - -*Step Three - Use `dlltool' to create an exports file and a library file: - - dlltool --def example.def --output-exp example.o --output-lib example.a - -*Step Four - Link together the complete DLL: - - arm-pe-ld dll.o example.o -o example.dll - -*Step Five - Compile the program's source code: - - arm-pe-gcc -O2 -c prog.c - -*Step Six - Link together the program and the DLL's library file: - - arm-pe-gcc prog.o example.a -o prog - - If instead this was a Thumb DLL being called from an ARM program, the -steps would look like this. (To save space only those steps that are -different from the previous version are shown): - -*Step Two - Compile the DLL source code (using the Thumb compiler): - - thumb-pe-gcc -O2 -c dll.c -mthumb-interwork - -*Step Three - Build the exports and library files (and support interworking): - - dlltool -d example.def -z example.o -l example.a --interwork -m thumb - -*Step Five - Compile the program's source code (and support interworking): - - arm-pe-gcc -O2 -c prog.c -mthumb-interwork - - If instead, the DLL was an old, ARM DLL which does not support -interworking, and which cannot be rebuilt, then these steps would be -used. - -*Step One - Skip. If you do not have access to the sources of a DLL, there is - no point in building a `.def' file for it. - -*Step Two - Skip. With no DLL sources there is nothing to compile. - -*Step Three - Skip. Without a `.def' file you cannot use dlltool to build an - exports file or a library file. - -*Step Four - Skip. Without a set of DLL object files you cannot build the DLL. - Besides it has already been built for you by somebody else. - -*Step Five - Compile the program's source code, this is the same as before: - - arm-pe-gcc -O2 -c prog.c - -*Step Six - Link together the program and the DLL's library file, passing the - `--support-old-code' option to the linker: - - arm-pe-gcc prog.o example.a -Wl,--support-old-code -o prog - - Ignore the warning message about the input file not supporting - interworking as the --support-old-code switch has taken care if this. diff --git a/gcc/config/arm/lib1thumb.asm b/gcc/config/arm/lib1thumb.asm deleted file mode 100755 index e0ff746..0000000 --- a/gcc/config/arm/lib1thumb.asm +++ /dev/null @@ -1,736 +0,0 @@ -@ libgcc1 routines for ARM cpu. -@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk) - -/* Copyright (C) 1995, 1996, 1998 Free Software Foundation, Inc. - -This file is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any -later version. - -In addition to the permissions in the GNU General Public License, the -Free Software Foundation gives you unlimited permission to link the -compiled version of this file with other programs, and to distribute -those programs without any restriction coming from the use of this -file. (The General Public License restrictions do apply in other -respects; for example, they cover modification of the file, and -distribution when not linked into another program.) - -This file is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - -/* As a special exception, if you link this library with other files, - some of which are compiled with GCC, to produce an executable, - this library does not by itself cause the resulting executable - to be covered by the GNU General Public License. - This exception does not however invalidate any other reasons why - the executable file might be covered by the GNU General Public License. */ - - .code 16 - -#ifdef __elf__ -#define __PLT__ (PLT) -#define TYPE(x) .type SYM(x),function -#define SIZE(x) .size SYM(x), . - SYM(x) -#else -#define __PLT__ -#define TYPE(x) -#define SIZE(x) -#endif - -#define RET mov pc, lr - -#define SYM(x) x - -work .req r4 @ XXXX is this safe ? - -#ifdef L_udivsi3 - -dividend .req r0 -divisor .req r1 -result .req r2 -curbit .req r3 -ip .req r12 -sp .req r13 -lr .req r14 -pc .req r15 - - .text - .globl SYM (__udivsi3) - TYPE (__udivsi3) - .align 0 - .thumb_func -SYM (__udivsi3): - cmp divisor, #0 - beq Ldiv0 - mov curbit, #1 - mov result, #0 - - push { work } - cmp dividend, divisor - bcc Lgot_result - - @ Load the constant 0x10000000 into our work register - mov work, #1 - lsl work, #28 -Loop1: - @ Unless the divisor is very big, shift it up in multiples of - @ four bits, since this is the amount of unwinding in the main - @ division loop. Continue shifting until the divisor is - @ larger than the dividend. - cmp divisor, work - bcs Lbignum - cmp divisor, dividend - bcs Lbignum - lsl divisor, #4 - lsl curbit, #4 - b Loop1 - -Lbignum: - @ Set work to 0x80000000 - lsl work, #3 -Loop2: - @ For very big divisors, we must shift it a bit at a time, or - @ we will be in danger of overflowing. - cmp divisor, work - bcs Loop3 - cmp divisor, dividend - bcs Loop3 - lsl divisor, #1 - lsl curbit, #1 - b Loop2 - -Loop3: - @ Test for possible subtractions, and note which bits - @ are done in the result. On the final pass, this may subtract - @ too much from the dividend, but the result will be ok, since the - @ "bit" will have been shifted out at the bottom. - cmp dividend, divisor - bcc Over1 - sub dividend, dividend, divisor - orr result, result, curbit -Over1: - lsr work, divisor, #1 - cmp dividend, work - bcc Over2 - sub dividend, dividend, work - lsr work, curbit, #1 - orr result, work -Over2: - lsr work, divisor, #2 - cmp dividend, work - bcc Over3 - sub dividend, dividend, work - lsr work, curbit, #2 - orr result, work -Over3: - lsr work, divisor, #3 - cmp dividend, work - bcc Over4 - sub dividend, dividend, work - lsr work, curbit, #3 - orr result, work -Over4: - cmp dividend, #0 @ Early termination? - beq Lgot_result - lsr curbit, #4 @ No, any more bits to do? - beq Lgot_result - lsr divisor, #4 - b Loop3 -Lgot_result: - mov r0, result - pop { work } - RET - -Ldiv0: - push { lr } - bl SYM (__div0) __PLT__ - mov r0, #0 @ about as wrong as it could be - pop { pc } - - SIZE (__udivsi3) - -#endif /* L_udivsi3 */ - -#ifdef L_umodsi3 - -dividend .req r0 -divisor .req r1 -overdone .req r2 -curbit .req r3 -ip .req r12 -sp .req r13 -lr .req r14 -pc .req r15 - - .text - .globl SYM (__umodsi3) - TYPE (__umodsi3) - .align 0 - .thumb_func -SYM (__umodsi3): - cmp divisor, #0 - beq Ldiv0 - mov curbit, #1 - cmp dividend, divisor - bcs Over1 - RET - -Over1: - @ Load the constant 0x10000000 into our work register - push { work } - mov work, #1 - lsl work, #28 -Loop1: - @ Unless the divisor is very big, shift it up in multiples of - @ four bits, since this is the amount of unwinding in the main - @ division loop. Continue shifting until the divisor is - @ larger than the dividend. - cmp divisor, work - bcs Lbignum - cmp divisor, dividend - bcs Lbignum - lsl divisor, #4 - lsl curbit, #4 - b Loop1 - -Lbignum: - @ Set work to 0x80000000 - lsl work, #3 -Loop2: - @ For very big divisors, we must shift it a bit at a time, or - @ we will be in danger of overflowing. - cmp divisor, work - bcs Loop3 - cmp divisor, dividend - bcs Loop3 - lsl divisor, #1 - lsl curbit, #1 - b Loop2 - -Loop3: - @ Test for possible subtractions. On the final pass, this may - @ subtract too much from the dividend, so keep track of which - @ subtractions are done, we can fix them up afterwards... - mov overdone, #0 - cmp dividend, divisor - bcc Over2 - sub dividend, dividend, divisor -Over2: - lsr work, divisor, #1 - cmp dividend, work - bcc Over3 - sub dividend, dividend, work - mov ip, curbit - mov work, #1 - ror curbit, work - orr overdone, curbit - mov curbit, ip -Over3: - lsr work, divisor, #2 - cmp dividend, work - bcc Over4 - sub dividend, dividend, work - mov ip, curbit - mov work, #2 - ror curbit, work - orr overdone, curbit - mov curbit, ip -Over4: - lsr work, divisor, #3 - cmp dividend, work - bcc Over5 - sub dividend, dividend, work - mov ip, curbit - mov work, #3 - ror curbit, work - orr overdone, curbit - mov curbit, ip -Over5: - mov ip, curbit - cmp dividend, #0 @ Early termination? - beq Over6 - lsr curbit, #4 @ No, any more bits to do? - beq Over6 - lsr divisor, #4 - b Loop3 - -Over6: - @ Any subtractions that we should not have done will be recorded in - @ the top three bits of "overdone". Exactly which were not needed - @ are governed by the position of the bit, stored in ip. - @ If we terminated early, because dividend became zero, - @ then none of the below will match, since the bit in ip will not be - @ in the bottom nibble. - - mov work, #0xe - lsl work, #28 - and overdone, work - bne Over7 - pop { work } - RET @ No fixups needed -Over7: - mov curbit, ip - mov work, #3 - ror curbit, work - tst overdone, curbit - beq Over8 - lsr work, divisor, #3 - add dividend, dividend, work -Over8: - mov curbit, ip - mov work, #2 - ror curbit, work - tst overdone, curbit - beq Over9 - lsr work, divisor, #2 - add dividend, dividend, work -Over9: - mov curbit, ip - mov work, #1 - ror curbit, work - tst overdone, curbit - beq Over10 - lsr work, divisor, #1 - add dividend, dividend, work -Over10: - pop { work } - RET - -Ldiv0: - push { lr } - bl SYM (__div0) __PLT__ - mov r0, #0 @ about as wrong as it could be - pop { pc } - - SIZE (__umodsi3) - -#endif /* L_umodsi3 */ - -#ifdef L_divsi3 - -dividend .req r0 -divisor .req r1 -result .req r2 -curbit .req r3 -ip .req r12 -sp .req r13 -lr .req r14 -pc .req r15 - - .text - .globl SYM (__divsi3) - TYPE (__divsi3) - .align 0 - .thumb_func -SYM (__divsi3): - cmp divisor, #0 - beq Ldiv0 - - push { work } - mov work, dividend - eor work, divisor @ Save the sign of the result. - mov ip, work - mov curbit, #1 - mov result, #0 - cmp divisor, #0 - bpl Over1 - neg divisor, divisor @ Loops below use unsigned. -Over1: - cmp dividend, #0 - bpl Over2 - neg dividend, dividend -Over2: - cmp dividend, divisor - bcc Lgot_result - - mov work, #1 - lsl work, #28 -Loop1: - @ Unless the divisor is very big, shift it up in multiples of - @ four bits, since this is the amount of unwinding in the main - @ division loop. Continue shifting until the divisor is - @ larger than the dividend. - cmp divisor, work - Bcs Lbignum - cmp divisor, dividend - Bcs Lbignum - lsl divisor, #4 - lsl curbit, #4 - b Loop1 - -Lbignum: - @ For very big divisors, we must shift it a bit at a time, or - @ we will be in danger of overflowing. - lsl work, #3 -Loop2: - cmp divisor, work - Bcs Loop3 - cmp divisor, dividend - Bcs Loop3 - lsl divisor, #1 - lsl curbit, #1 - b Loop2 - -Loop3: - @ Test for possible subtractions, and note which bits - @ are done in the result. On the final pass, this may subtract - @ too much from the dividend, but the result will be ok, since the - @ "bit" will have been shifted out at the bottom. - cmp dividend, divisor - Bcc Over3 - sub dividend, dividend, divisor - orr result, result, curbit -Over3: - lsr work, divisor, #1 - cmp dividend, work - Bcc Over4 - sub dividend, dividend, work - lsr work, curbit, #1 - orr result, work -Over4: - lsr work, divisor, #2 - cmp dividend, work - Bcc Over5 - sub dividend, dividend, work - lsr work, curbit, #2 - orr result, result, work -Over5: - lsr work, divisor, #3 - cmp dividend, work - Bcc Over6 - sub dividend, dividend, work - lsr work, curbit, #3 - orr result, result, work -Over6: - cmp dividend, #0 @ Early termination? - Beq Lgot_result - lsr curbit, #4 @ No, any more bits to do? - Beq Lgot_result - lsr divisor, #4 - b Loop3 - -Lgot_result: - mov r0, result - mov work, ip - cmp work, #0 - Bpl Over7 - neg r0, r0 -Over7: - pop { work } - RET - -Ldiv0: - push { lr } - bl SYM (__div0) __PLT__ - mov r0, #0 @ about as wrong as it could be - pop { pc } - - SIZE (__divsi3) - -#endif /* L_divsi3 */ - -#ifdef L_modsi3 - -dividend .req r0 -divisor .req r1 -overdone .req r2 -curbit .req r3 -ip .req r12 -sp .req r13 -lr .req r14 -pc .req r15 - - .text - .globl SYM (__modsi3) - TYPE (__modsi3) - .align 0 - .thumb_func -SYM (__modsi3): - mov curbit, #1 - cmp divisor, #0 - beq Ldiv0 - Bpl Over1 - neg divisor, divisor @ Loops below use unsigned. -Over1: - push { work } - @ Need to save the sign of the dividend, unfortunately, we need - @ ip later on. Must do this after saving the original value of - @ the work register, because we will pop this value off first. - push { dividend } - cmp dividend, #0 - Bpl Over2 - neg dividend, dividend -Over2: - cmp dividend, divisor - bcc Lgot_result - mov work, #1 - lsl work, #28 -Loop1: - @ Unless the divisor is very big, shift it up in multiples of - @ four bits, since this is the amount of unwinding in the main - @ division loop. Continue shifting until the divisor is - @ larger than the dividend. - cmp divisor, work - bcs Lbignum - cmp divisor, dividend - bcs Lbignum - lsl divisor, #4 - lsl curbit, #4 - b Loop1 - -Lbignum: - @ Set work to 0x80000000 - lsl work, #3 -Loop2: - @ For very big divisors, we must shift it a bit at a time, or - @ we will be in danger of overflowing. - cmp divisor, work - bcs Loop3 - cmp divisor, dividend - bcs Loop3 - lsl divisor, #1 - lsl curbit, #1 - b Loop2 - -Loop3: - @ Test for possible subtractions. On the final pass, this may - @ subtract too much from the dividend, so keep track of which - @ subtractions are done, we can fix them up afterwards... - mov overdone, #0 - cmp dividend, divisor - bcc Over3 - sub dividend, dividend, divisor -Over3: - lsr work, divisor, #1 - cmp dividend, work - bcc Over4 - sub dividend, dividend, work - mov ip, curbit - mov work, #1 - ror curbit, work - orr overdone, curbit - mov curbit, ip -Over4: - lsr work, divisor, #2 - cmp dividend, work - bcc Over5 - sub dividend, dividend, work - mov ip, curbit - mov work, #2 - ror curbit, work - orr overdone, curbit - mov curbit, ip -Over5: - lsr work, divisor, #3 - cmp dividend, work - bcc Over6 - sub dividend, dividend, work - mov ip, curbit - mov work, #3 - ror curbit, work - orr overdone, curbit - mov curbit, ip -Over6: - mov ip, curbit - cmp dividend, #0 @ Early termination? - beq Over7 - lsr curbit, #4 @ No, any more bits to do? - beq Over7 - lsr divisor, #4 - b Loop3 - -Over7: - @ Any subtractions that we should not have done will be recorded in - @ the top three bits of "overdone". Exactly which were not needed - @ are governed by the position of the bit, stored in ip. - @ If we terminated early, because dividend became zero, - @ then none of the below will match, since the bit in ip will not be - @ in the bottom nibble. - mov work, #0xe - lsl work, #28 - and overdone, work - beq Lgot_result - - mov curbit, ip - mov work, #3 - ror curbit, work - tst overdone, curbit - beq Over8 - lsr work, divisor, #3 - add dividend, dividend, work -Over8: - mov curbit, ip - mov work, #2 - ror curbit, work - tst overdone, curbit - beq Over9 - lsr work, divisor, #2 - add dividend, dividend, work -Over9: - mov curbit, ip - mov work, #1 - ror curbit, work - tst overdone, curbit - beq Lgot_result - lsr work, divisor, #1 - add dividend, dividend, work -Lgot_result: - pop { work } - cmp work, #0 - bpl Over10 - neg dividend, dividend -Over10: - pop { work } - RET - -Ldiv0: - push { lr } - bl SYM (__div0) __PLT__ - mov r0, #0 @ about as wrong as it could be - pop { pc } - - SIZE (__modsi3) - -#endif /* L_modsi3 */ - -#ifdef L_dvmd_tls - - .globl SYM (__div0) - TYPE (__div0) - .align 0 - .thumb_func -SYM (__div0): - RET - - SIZE (__div0) - -#endif /* L_divmodsi_tools */ - - -#ifdef L_call_via_rX - -/* These labels & instructions are used by the Arm/Thumb interworking code. - The address of function to be called is loaded into a register and then - one of these labels is called via a BL instruction. This puts the - return address into the link register with the bottom bit set, and the - code here switches to the correct mode before executing the function. */ - - .text - .align 0 - -.macro call_via register - .globl SYM (_call_via_\register) - TYPE (_call_via_\register) - .thumb_func -SYM (_call_via_\register): - bx \register - nop - - SIZE (_call_via_\register) -.endm - - call_via r0 - call_via r1 - call_via r2 - call_via r3 - call_via r4 - call_via r5 - call_via r6 - call_via r7 - call_via r8 - call_via r9 - call_via sl - call_via fp - call_via ip - call_via sp - call_via lr - -#endif /* L_call_via_rX */ - -#ifdef L_interwork_call_via_rX - -/* These labels & instructions are used by the Arm/Thumb interworking code, - when the target address is in an unknown instruction set. The address - of function to be called is loaded into a register and then one of these - labels is called via a BL instruction. This puts the return address - into the link register with the bottom bit set, and the code here - switches to the correct mode before executing the function. Unfortunately - the target code cannot be relied upon to return via a BX instruction, so - instead we have to store the resturn address on the stack and allow the - called function to return here instead. Upon return we recover the real - return address and use a BX to get back to Thumb mode. */ - - .text - .align 0 - - .code 32 - .globl _arm_return -_arm_return: - ldmia r13!, {r12} - bx r12 - -.macro interwork register - .code 16 - - .globl SYM (_interwork_call_via_\register) - TYPE (_interwork_call_via_\register) - .thumb_func -SYM (_interwork_call_via_\register): - bx pc - nop - - .code 32 - .globl .Lchange_\register -.Lchange_\register: - tst \register, #1 - stmeqdb r13!, {lr} - adreq lr, _arm_return - bx \register - - SIZE (_interwork_call_via_\register) -.endm - - interwork r0 - interwork r1 - interwork r2 - interwork r3 - interwork r4 - interwork r5 - interwork r6 - interwork r7 - interwork r8 - interwork r9 - interwork sl - interwork fp - interwork ip - interwork sp - - /* The lr case has to be handled a little differently...*/ - .code 16 - .globl SYM (_interwork_call_via_lr) - TYPE (_interwork_call_via_lr) - .thumb_func -SYM (_interwork_call_via_lr): - bx pc - nop - - .code 32 - .globl .Lchange_lr -.Lchange_lr: - tst lr, #1 - stmeqdb r13!, {lr} - mov ip, lr - adreq lr, _arm_return - bx ip - - SIZE (_interwork_call_via_lr) - -#endif /* L_interwork_call_via_rX */ diff --git a/gcc/config/arm/t-thumb-elf b/gcc/config/arm/t-thumb-elf deleted file mode 100755 index 3e940f8..0000000 --- a/gcc/config/arm/t-thumb-elf +++ /dev/null @@ -1,32 +0,0 @@ -# CYGNUS LOCAL (entire file) clm/arm-elf -CROSS_LIBGCC1 = libgcc1-asm.a -LIB1ASMSRC = arm/lib1thumb.asm -LIB1ASMFUNCS = _udivsi3 _divsi3 _umodsi3 _modsi3 _dvmd_tls _call_via_rX _interwork_call_via_rX -# adddi3/subdi3 added to machine description - -# These are really part of libgcc1, but this will cause them to be -# built correctly, so... - -LIB2FUNCS_EXTRA = fp-bit.c dp-bit.c - -fp-bit.c: $(srcdir)/config/fp-bit.c - echo '#define FLOAT' > fp-bit.c - echo '#ifndef __ARMEB__' >> fp-bit.c - echo '#define FLOAT_BIT_ORDER_MISMATCH' >> fp-bit.c - echo '#endif' >> fp-bit.c - cat $(srcdir)/config/fp-bit.c >> fp-bit.c - -dp-bit.c: $(srcdir)/config/fp-bit.c - echo '#ifndef __ARMEB__' > dp-bit.c - echo '#define FLOAT_BIT_ORDER_MISMATCH' >> dp-bit.c - echo '#define FLOAT_WORD_ORDER_MISMATCH' >> dp-bit.c - echo '#endif' >> dp-bit.c - cat $(srcdir)/config/fp-bit.c >> dp-bit.c - -# Avoid building a duplicate set of libraries for the default endian-ness. -MULTILIB_OPTIONS = mno-thumb-interwork/mthumb-interwork -MULTILIB_DIRNAMES = normal interwork -MULTILIB_MATCHES = - -LIBGCC = stmp-multilib -INSTALL_LIBGCC = install-multilib diff --git a/gcc/config/fp-bit.c b/gcc/config/fp-bit.c deleted file mode 100755 index 6b8bd70..0000000 --- a/gcc/config/fp-bit.c +++ /dev/null @@ -1,1507 +0,0 @@ -/* This is a software floating point library which can be used instead of - the floating point routines in libgcc1.c for targets without hardware - floating point. - Copyright (C) 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc. - -This file is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any -later version. - -In addition to the permissions in the GNU General Public License, the -Free Software Foundation gives you unlimited permission to link the -compiled version of this file with other programs, and to distribute -those programs without any restriction coming from the use of this -file. (The General Public License restrictions do apply in other -respects; for example, they cover modification of the file, and -distribution when not linked into another program.) - -This file is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - -/* As a special exception, if you link this library with other files, - some of which are compiled with GCC, to produce an executable, - this library does not by itself cause the resulting executable - to be covered by the GNU General Public License. - This exception does not however invalidate any other reasons why - the executable file might be covered by the GNU General Public License. */ - -/* This implements IEEE 754 format arithmetic, but does not provide a - mechanism for setting the rounding mode, or for generating or handling - exceptions. - - The original code by Steve Chamberlain, hacked by Mark Eichin and Jim - Wilson, all of Cygnus Support. */ - -/* The intended way to use this file is to make two copies, add `#define FLOAT' - to one copy, then compile both copies and add them to libgcc.a. */ - -/* Defining FINE_GRAINED_LIBRARIES allows one to select which routines - from this file are compiled via additional -D options. - - This avoids the need to pull in the entire fp emulation library - when only a small number of functions are needed. - - If FINE_GRAINED_LIBRARIES is not defined, then compile every - suitable routine. */ -#ifndef FINE_GRAINED_LIBRARIES -#define L_pack_df -#define L_unpack_df -#define L_pack_sf -#define L_unpack_sf -#define L_addsub_sf -#define L_addsub_df -#define L_mul_sf -#define L_mul_df -#define L_div_sf -#define L_div_df -#define L_fpcmp_parts_sf -#define L_fpcmp_parts_df -#define L_compare_sf -#define L_compare_df -#define L_eq_sf -#define L_eq_df -#define L_ne_sf -#define L_ne_df -#define L_gt_sf -#define L_gt_df -#define L_ge_sf -#define L_ge_df -#define L_lt_sf -#define L_lt_df -#define L_le_sf -#define L_le_df -#define L_si_to_sf -#define L_si_to_df -#define L_sf_to_si -#define L_df_to_si -#define L_f_to_usi -#define L_df_to_usi -#define L_negate_sf -#define L_negate_df -#define L_make_sf -#define L_make_df -#define L_sf_to_df -#define L_df_to_sf -#endif - -/* The following macros can be defined to change the behaviour of this file: - FLOAT: Implement a `float', aka SFmode, fp library. If this is not - defined, then this file implements a `double', aka DFmode, fp library. - FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e. - don't include float->double conversion which requires the double library. - This is useful only for machines which can't support doubles, e.g. some - 8-bit processors. - CMPtype: Specify the type that floating point compares should return. - This defaults to SItype, aka int. - US_SOFTWARE_GOFAST: This makes all entry points use the same names as the - US Software goFast library. If this is not defined, the entry points use - the same names as libgcc1.c. - _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding - two integers to the FLO_union_type. - NO_NANS: Disable nan and infinity handling - SMALL_MACHINE: Useful when operations on QIs and HIs are faster - than on an SI */ - -/* We don't currently support extended floats (long doubles) on machines - without hardware to deal with them. - - These stubs are just to keep the linker from complaining about unresolved - references which can be pulled in from libio & libstdc++, even if the - user isn't using long doubles. However, they may generate an unresolved - external to abort if abort is not used by the function, and the stubs - are referenced from within libc, since libgcc goes before and after the - system library. */ - -#ifdef EXTENDED_FLOAT_STUBS -__truncxfsf2 (){ abort(); } -__extendsfxf2 (){ abort(); } -__addxf3 (){ abort(); } -__divxf3 (){ abort(); } -__eqxf2 (){ abort(); } -__extenddfxf2 (){ abort(); } -__gtxf2 (){ abort(); } -__lexf2 (){ abort(); } -__ltxf2 (){ abort(); } -__mulxf3 (){ abort(); } -__negxf2 (){ abort(); } -__nexf2 (){ abort(); } -__subxf3 (){ abort(); } -__truncxfdf2 (){ abort(); } - -__trunctfsf2 (){ abort(); } -__extendsftf2 (){ abort(); } -__addtf3 (){ abort(); } -__divtf3 (){ abort(); } -__eqtf2 (){ abort(); } -__extenddftf2 (){ abort(); } -__gttf2 (){ abort(); } -__letf2 (){ abort(); } -__lttf2 (){ abort(); } -__multf3 (){ abort(); } -__negtf2 (){ abort(); } -__netf2 (){ abort(); } -__subtf3 (){ abort(); } -__trunctfdf2 (){ abort(); } -__gexf2 (){ abort(); } -__fixxfsi (){ abort(); } -__floatsixf (){ abort(); } -#else /* !EXTENDED_FLOAT_STUBS, rest of file */ - - -typedef float SFtype __attribute__ ((mode (SF))); -typedef float DFtype __attribute__ ((mode (DF))); - -typedef int HItype __attribute__ ((mode (HI))); -typedef int SItype __attribute__ ((mode (SI))); -typedef int DItype __attribute__ ((mode (DI))); - -/* The type of the result of a fp compare */ -#ifndef CMPtype -#define CMPtype SItype -#endif - -typedef unsigned int UHItype __attribute__ ((mode (HI))); -typedef unsigned int USItype __attribute__ ((mode (SI))); -typedef unsigned int UDItype __attribute__ ((mode (DI))); - -#define MAX_SI_INT ((SItype) ((unsigned) (~0)>>1)) -#define MAX_USI_INT ((USItype) ~0) - - -#ifdef FLOAT_ONLY -#define NO_DI_MODE -#endif - -#ifdef FLOAT -# define NGARDS 7L -# define GARDROUND 0x3f -# define GARDMASK 0x7f -# define GARDMSB 0x40 -# define EXPBITS 8 -# define EXPBIAS 127 -# define FRACBITS 23 -# define EXPMAX (0xff) -# define QUIET_NAN 0x100000L -# define FRAC_NBITS 32 -# define FRACHIGH 0x80000000L -# define FRACHIGH2 0xc0000000L -# define pack_d __pack_f -# define unpack_d __unpack_f -# define __fpcmp_parts __fpcmp_parts_f - typedef USItype fractype; - typedef UHItype halffractype; - typedef SFtype FLO_type; - typedef SItype intfrac; - -#else -# define PREFIXFPDP dp -# define PREFIXSFDF df -# define NGARDS 8L -# define GARDROUND 0x7f -# define GARDMASK 0xff -# define GARDMSB 0x80 -# define EXPBITS 11 -# define EXPBIAS 1023 -# define FRACBITS 52 -# define EXPMAX (0x7ff) -# define QUIET_NAN 0x8000000000000LL -# define FRAC_NBITS 64 -# define FRACHIGH 0x8000000000000000LL -# define FRACHIGH2 0xc000000000000000LL -# define pack_d __pack_d -# define unpack_d __unpack_d -# define __fpcmp_parts __fpcmp_parts_d - typedef UDItype fractype; - typedef USItype halffractype; - typedef DFtype FLO_type; - typedef DItype intfrac; -#endif - -#ifdef US_SOFTWARE_GOFAST -# ifdef FLOAT -# define add fpadd -# define sub fpsub -# define multiply fpmul -# define divide fpdiv -# define compare fpcmp -# define si_to_float sitofp -# define float_to_si fptosi -# define float_to_usi fptoui -# define negate __negsf2 -# define sf_to_df fptodp -# define dptofp dptofp -#else -# define add dpadd -# define sub dpsub -# define multiply dpmul -# define divide dpdiv -# define compare dpcmp -# define si_to_float litodp -# define float_to_si dptoli -# define float_to_usi dptoul -# define negate __negdf2 -# define df_to_sf dptofp -#endif -#else -# ifdef FLOAT -# define add __addsf3 -# define sub __subsf3 -# define multiply __mulsf3 -# define divide __divsf3 -# define compare __cmpsf2 -# define _eq_f2 __eqsf2 -# define _ne_f2 __nesf2 -# define _gt_f2 __gtsf2 -# define _ge_f2 __gesf2 -# define _lt_f2 __ltsf2 -# define _le_f2 __lesf2 -# define si_to_float __floatsisf -# define float_to_si __fixsfsi -# define float_to_usi __fixunssfsi -# define negate __negsf2 -# define sf_to_df __extendsfdf2 -#else -# define add __adddf3 -# define sub __subdf3 -# define multiply __muldf3 -# define divide __divdf3 -# define compare __cmpdf2 -# define _eq_f2 __eqdf2 -# define _ne_f2 __nedf2 -# define _gt_f2 __gtdf2 -# define _ge_f2 __gedf2 -# define _lt_f2 __ltdf2 -# define _le_f2 __ledf2 -# define si_to_float __floatsidf -# define float_to_si __fixdfsi -# define float_to_usi __fixunsdfsi -# define negate __negdf2 -# define df_to_sf __truncdfsf2 -# endif -#endif - - -#ifndef INLINE -#define INLINE __inline__ -#endif - -/* Preserve the sticky-bit when shifting fractions to the right. */ -#define LSHIFT(a) { a = (a & 1) | (a >> 1); } - -/* numeric parameters */ -/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa - of a float and of a double. Assumes there are only two float types. - (double::FRAC_BITS+double::NGARDS-(float::FRAC_BITS-float::NGARDS)) - */ -#define F_D_BITOFF (52+8-(23+7)) - - -#define NORMAL_EXPMIN (-(EXPBIAS)+1) -#define IMPLICIT_1 (1LL<<(FRACBITS+NGARDS)) -#define IMPLICIT_2 (1LL<<(FRACBITS+1+NGARDS)) - -/* common types */ - -typedef enum -{ - CLASS_SNAN, - CLASS_QNAN, - CLASS_ZERO, - CLASS_NUMBER, - CLASS_INFINITY -} fp_class_type; - -typedef struct -{ -#ifdef SMALL_MACHINE - char class; - unsigned char sign; - short normal_exp; -#else - fp_class_type class; - unsigned int sign; - int normal_exp; -#endif - - union - { - fractype ll; - halffractype l[2]; - } fraction; -} fp_number_type; - -typedef union -{ - FLO_type value; - fractype value_raw; - -#ifndef FLOAT - halffractype words[2]; -#endif - -#ifdef FLOAT_BIT_ORDER_MISMATCH - struct - { - fractype fraction:FRACBITS __attribute__ ((packed)); - unsigned int exp:EXPBITS __attribute__ ((packed)); - unsigned int sign:1 __attribute__ ((packed)); - } - bits; -#endif - -#ifdef _DEBUG_BITFLOAT - struct - { - unsigned int sign:1 __attribute__ ((packed)); - unsigned int exp:EXPBITS __attribute__ ((packed)); - fractype fraction:FRACBITS __attribute__ ((packed)); - } - bits_big_endian; - - struct - { - fractype fraction:FRACBITS __attribute__ ((packed)); - unsigned int exp:EXPBITS __attribute__ ((packed)); - unsigned int sign:1 __attribute__ ((packed)); - } - bits_little_endian; -#endif -} -FLO_union_type; - - -/* end of header */ - -/* IEEE "special" number predicates */ - -#ifdef NO_NANS - -#define nan() 0 -#define isnan(x) 0 -#define isinf(x) 0 -#else - -INLINE -static fp_number_type * -nan () -{ - static fp_number_type thenan; - - return &thenan; -} - -INLINE -static int -isnan ( fp_number_type * x) -{ - return x->class == CLASS_SNAN || x->class == CLASS_QNAN; -} - -INLINE -static int -isinf ( fp_number_type * x) -{ - return x->class == CLASS_INFINITY; -} - -#endif - -INLINE -static int -iszero ( fp_number_type * x) -{ - return x->class == CLASS_ZERO; -} - -INLINE -static void -flip_sign ( fp_number_type * x) -{ - x->sign = !x->sign; -} - -extern FLO_type pack_d ( fp_number_type * ); - -#if defined(L_pack_df) || defined(L_pack_sf) -FLO_type -pack_d ( fp_number_type * src) -{ - FLO_union_type dst; - fractype fraction = src->fraction.ll; /* wasn't unsigned before? */ - int sign = src->sign; - int exp = 0; - - if (isnan (src)) - { - exp = EXPMAX; - if (src->class == CLASS_QNAN || 1) - { - fraction |= QUIET_NAN; - } - } - else if (isinf (src)) - { - exp = EXPMAX; - fraction = 0; - } - else if (iszero (src)) - { - exp = 0; - fraction = 0; - } - else if (fraction == 0) - { - exp = 0; - } - else - { - if (src->normal_exp < NORMAL_EXPMIN) - { - /* This number's exponent is too low to fit into the bits - available in the number, so we'll store 0 in the exponent and - shift the fraction to the right to make up for it. */ - - int shift = NORMAL_EXPMIN - src->normal_exp; - - exp = 0; - - if (shift > FRAC_NBITS - NGARDS) - { - /* No point shifting, since it's more that 64 out. */ - fraction = 0; - } - else - { - /* Shift by the value */ - fraction >>= shift; - } - fraction >>= NGARDS; - } - else if (src->normal_exp > EXPBIAS) - { - exp = EXPMAX; - fraction = 0; - } - else - { - exp = src->normal_exp + EXPBIAS; - /* IF the gard bits are the all zero, but the first, then we're - half way between two numbers, choose the one which makes the - lsb of the answer 0. */ - if ((fraction & GARDMASK) == GARDMSB) - { - if (fraction & (1 << NGARDS)) - fraction += GARDROUND + 1; - } - else - { - /* Add a one to the guards to round up */ - fraction += GARDROUND; - } - if (fraction >= IMPLICIT_2) - { - fraction >>= 1; - exp += 1; - } - fraction >>= NGARDS; - } - } - - /* We previously used bitfields to store the number, but this doesn't - handle little/big endian systems conveniently, so use shifts and - masks */ -#ifdef FLOAT_BIT_ORDER_MISMATCH - dst.bits.fraction = fraction; - dst.bits.exp = exp; - dst.bits.sign = sign; -#else - dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1); - dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS; - dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS); -#endif - -#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT) - { - halffractype tmp = dst.words[0]; - dst.words[0] = dst.words[1]; - dst.words[1] = tmp; - } -#endif - - return dst.value; -} -#endif - -extern void unpack_d (FLO_union_type *, fp_number_type *); - -#if defined(L_unpack_df) || defined(L_unpack_sf) -void -unpack_d (FLO_union_type * src, fp_number_type * dst) -{ - /* We previously used bitfields to store the number, but this doesn't - handle little/big endian systems conveniently, so use shifts and - masks */ - fractype fraction; - int exp; - int sign; - -#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT) - FLO_union_type swapped; - - swapped.words[0] = src->words[1]; - swapped.words[1] = src->words[0]; - src = &swapped; -#endif - -#ifdef FLOAT_BIT_ORDER_MISMATCH - fraction = src->bits.fraction; - exp = src->bits.exp; - sign = src->bits.sign; -#else - fraction = src->value_raw & ((((fractype)1) << FRACBITS) - (fractype)1); - exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1); - sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1; -#endif - - dst->sign = sign; - if (exp == 0) - { - /* Hmm. Looks like 0 */ - if (fraction == 0) - { - /* tastes like zero */ - dst->class = CLASS_ZERO; - } - else - { - /* Zero exponent with non zero fraction - it's denormalized, - so there isn't a leading implicit one - we'll shift it so - it gets one. */ - dst->normal_exp = exp - EXPBIAS + 1; - fraction <<= NGARDS; - - dst->class = CLASS_NUMBER; -#if 1 - while (fraction < IMPLICIT_1) - { - fraction <<= 1; - dst->normal_exp--; - } -#endif - dst->fraction.ll = fraction; - } - } - else if (exp == EXPMAX) - { - /* Huge exponent*/ - if (fraction == 0) - { - /* Attached to a zero fraction - means infinity */ - dst->class = CLASS_INFINITY; - } - else - { - /* Non zero fraction, means nan */ - if (fraction & QUIET_NAN) - { - dst->class = CLASS_QNAN; - } - else - { - dst->class = CLASS_SNAN; - } - /* Keep the fraction part as the nan number */ - dst->fraction.ll = fraction; - } - } - else - { - /* Nothing strange about this number */ - dst->normal_exp = exp - EXPBIAS; - dst->class = CLASS_NUMBER; - dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1; - } -} -#endif - -#if defined(L_addsub_sf) || defined(L_addsub_df) -static fp_number_type * -_fpadd_parts (fp_number_type * a, - fp_number_type * b, - fp_number_type * tmp) -{ - intfrac tfraction; - - /* Put commonly used fields in local variables. */ - int a_normal_exp; - int b_normal_exp; - fractype a_fraction; - fractype b_fraction; - - if (isnan (a)) - { - return a; - } - if (isnan (b)) - { - return b; - } - if (isinf (a)) - { - /* Adding infinities with opposite signs yields a NaN. */ - if (isinf (b) && a->sign != b->sign) - return nan (); - return a; - } - if (isinf (b)) - { - return b; - } - if (iszero (b)) - { - if (iszero (a)) - { - *tmp = *a; - tmp->sign = a->sign & b->sign; - return tmp; - } - return a; - } - if (iszero (a)) - { - return b; - } - - /* Got two numbers. shift the smaller and increment the exponent till - they're the same */ - { - int diff; - - a_normal_exp = a->normal_exp; - b_normal_exp = b->normal_exp; - a_fraction = a->fraction.ll; - b_fraction = b->fraction.ll; - - diff = a_normal_exp - b_normal_exp; - - if (diff < 0) - diff = -diff; - if (diff < FRAC_NBITS) - { - /* ??? This does shifts one bit at a time. Optimize. */ - while (a_normal_exp > b_normal_exp) - { - b_normal_exp++; - LSHIFT (b_fraction); - } - while (b_normal_exp > a_normal_exp) - { - a_normal_exp++; - LSHIFT (a_fraction); - } - } - else - { - /* Somethings's up.. choose the biggest */ - if (a_normal_exp > b_normal_exp) - { - b_normal_exp = a_normal_exp; - b_fraction = 0; - } - else - { - a_normal_exp = b_normal_exp; - a_fraction = 0; - } - } - } - - if (a->sign != b->sign) - { - if (a->sign) - { - tfraction = -a_fraction + b_fraction; - } - else - { - tfraction = a_fraction - b_fraction; - } - if (tfraction >= 0) - { - tmp->sign = 0; - tmp->normal_exp = a_normal_exp; - tmp->fraction.ll = tfraction; - } - else - { - tmp->sign = 1; - tmp->normal_exp = a_normal_exp; - tmp->fraction.ll = -tfraction; - } - /* and renormalize it */ - - while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll) - { - tmp->fraction.ll <<= 1; - tmp->normal_exp--; - } - } - else - { - tmp->sign = a->sign; - tmp->normal_exp = a_normal_exp; - tmp->fraction.ll = a_fraction + b_fraction; - } - tmp->class = CLASS_NUMBER; - /* Now the fraction is added, we have to shift down to renormalize the - number */ - - if (tmp->fraction.ll >= IMPLICIT_2) - { - LSHIFT (tmp->fraction.ll); - tmp->normal_exp++; - } - return tmp; - -} - -FLO_type -add (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - fp_number_type tmp; - fp_number_type *res; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - res = _fpadd_parts (&a, &b, &tmp); - - return pack_d (res); -} - -FLO_type -sub (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - fp_number_type tmp; - fp_number_type *res; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - b.sign ^= 1; - - res = _fpadd_parts (&a, &b, &tmp); - - return pack_d (res); -} -#endif - -#if defined(L_mul_sf) || defined(L_mul_df) -static INLINE fp_number_type * -_fpmul_parts ( fp_number_type * a, - fp_number_type * b, - fp_number_type * tmp) -{ - fractype low = 0; - fractype high = 0; - - if (isnan (a)) - { - a->sign = a->sign != b->sign; - return a; - } - if (isnan (b)) - { - b->sign = a->sign != b->sign; - return b; - } - if (isinf (a)) - { - if (iszero (b)) - return nan (); - a->sign = a->sign != b->sign; - return a; - } - if (isinf (b)) - { - if (iszero (a)) - { - return nan (); - } - b->sign = a->sign != b->sign; - return b; - } - if (iszero (a)) - { - a->sign = a->sign != b->sign; - return a; - } - if (iszero (b)) - { - b->sign = a->sign != b->sign; - return b; - } - - /* Calculate the mantissa by multiplying both 64bit numbers to get a - 128 bit number */ - { -#if defined(NO_DI_MODE) - { - fractype x = a->fraction.ll; - fractype ylow = b->fraction.ll; - fractype yhigh = 0; - int bit; - - /* ??? This does multiplies one bit at a time. Optimize. */ - for (bit = 0; bit < FRAC_NBITS; bit++) - { - int carry; - - if (x & 1) - { - carry = (low += ylow) < ylow; - high += yhigh + carry; - } - yhigh <<= 1; - if (ylow & FRACHIGH) - { - yhigh |= 1; - } - ylow <<= 1; - x >>= 1; - } - } -#elif defined(FLOAT) - { - /* Multiplying two 32 bit numbers to get a 64 bit number on - a machine with DI, so we're safe */ - - DItype answer = (DItype)(a->fraction.ll) * (DItype)(b->fraction.ll); - - high = answer >> 32; - low = answer; - } -#else - /* Doing a 64*64 to 128 */ - { - UDItype nl = a->fraction.ll & 0xffffffff; - UDItype nh = a->fraction.ll >> 32; - UDItype ml = b->fraction.ll & 0xffffffff; - UDItype mh = b->fraction.ll >>32; - UDItype pp_ll = ml * nl; - UDItype pp_hl = mh * nl; - UDItype pp_lh = ml * nh; - UDItype pp_hh = mh * nh; - UDItype res2 = 0; - UDItype res0 = 0; - UDItype ps_hh__ = pp_hl + pp_lh; - if (ps_hh__ < pp_hl) - res2 += 0x100000000LL; - pp_hl = (ps_hh__ << 32) & 0xffffffff00000000LL; - res0 = pp_ll + pp_hl; - if (res0 < pp_ll) - res2++; - res2 += ((ps_hh__ >> 32) & 0xffffffffL) + pp_hh; - high = res2; - low = res0; - } -#endif - } - - tmp->normal_exp = a->normal_exp + b->normal_exp; - tmp->sign = a->sign != b->sign; -#ifdef FLOAT - tmp->normal_exp += 2; /* ??????????????? */ -#else - tmp->normal_exp += 4; /* ??????????????? */ -#endif - while (high >= IMPLICIT_2) - { - tmp->normal_exp++; - if (high & 1) - { - low >>= 1; - low |= FRACHIGH; - } - high >>= 1; - } - while (high < IMPLICIT_1) - { - tmp->normal_exp--; - - high <<= 1; - if (low & FRACHIGH) - high |= 1; - low <<= 1; - } - /* rounding is tricky. if we only round if it won't make us round later. */ -#if 0 - if (low & FRACHIGH2) - { - if (((high & GARDMASK) != GARDMSB) - && (((high + 1) & GARDMASK) == GARDMSB)) - { - /* don't round, it gets done again later. */ - } - else - { - high++; - } - } -#endif - if ((high & GARDMASK) == GARDMSB) - { - if (high & (1 << NGARDS)) - { - /* half way, so round to even */ - high += GARDROUND + 1; - } - else if (low) - { - /* but we really weren't half way */ - high += GARDROUND + 1; - } - } - tmp->fraction.ll = high; - tmp->class = CLASS_NUMBER; - return tmp; -} - -FLO_type -multiply (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - fp_number_type tmp; - fp_number_type *res; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - res = _fpmul_parts (&a, &b, &tmp); - - return pack_d (res); -} -#endif - -#if defined(L_div_sf) || defined(L_div_df) -static INLINE fp_number_type * -_fpdiv_parts (fp_number_type * a, - fp_number_type * b) -{ - fractype bit; - fractype numerator; - fractype denominator; - fractype quotient; - - if (isnan (a)) - { - return a; - } - if (isnan (b)) - { - return b; - } - - a->sign = a->sign ^ b->sign; - - if (isinf (a) || iszero (a)) - { - if (a->class == b->class) - return nan (); - return a; - } - - if (isinf (b)) - { - a->fraction.ll = 0; - a->normal_exp = 0; - return a; - } - if (iszero (b)) - { - a->class = CLASS_INFINITY; - return a; - } - - /* Calculate the mantissa by multiplying both 64bit numbers to get a - 128 bit number */ - { - /* quotient = - ( numerator / denominator) * 2^(numerator exponent - denominator exponent) - */ - - a->normal_exp = a->normal_exp - b->normal_exp; - numerator = a->fraction.ll; - denominator = b->fraction.ll; - - if (numerator < denominator) - { - /* Fraction will be less than 1.0 */ - numerator *= 2; - a->normal_exp--; - } - bit = IMPLICIT_1; - quotient = 0; - /* ??? Does divide one bit at a time. Optimize. */ - while (bit) - { - if (numerator >= denominator) - { - quotient |= bit; - numerator -= denominator; - } - bit >>= 1; - numerator *= 2; - } - - if ((quotient & GARDMASK) == GARDMSB) - { - if (quotient & (1 << NGARDS)) - { - /* half way, so round to even */ - quotient += GARDROUND + 1; - } - else if (numerator) - { - /* but we really weren't half way, more bits exist */ - quotient += GARDROUND + 1; - } - } - - a->fraction.ll = quotient; - return (a); - } -} - -FLO_type -divide (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - fp_number_type *res; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - res = _fpdiv_parts (&a, &b); - - return pack_d (res); -} -#endif - -int __fpcmp_parts (fp_number_type * a, fp_number_type *b); - -#if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) -/* according to the demo, fpcmp returns a comparison with 0... thus - a<b -> -1 - a==b -> 0 - a>b -> +1 - */ - -int -__fpcmp_parts (fp_number_type * a, fp_number_type * b) -{ -#if 0 - /* either nan -> unordered. Must be checked outside of this routine. */ - if (isnan (a) && isnan (b)) - { - return 1; /* still unordered! */ - } -#endif - - if (isnan (a) || isnan (b)) - { - return 1; /* how to indicate unordered compare? */ - } - if (isinf (a) && isinf (b)) - { - /* +inf > -inf, but +inf != +inf */ - /* b \a| +inf(0)| -inf(1) - ______\+--------+-------- - +inf(0)| a==b(0)| a<b(-1) - -------+--------+-------- - -inf(1)| a>b(1) | a==b(0) - -------+--------+-------- - So since unordered must be non zero, just line up the columns... - */ - return b->sign - a->sign; - } - /* but not both... */ - if (isinf (a)) - { - return a->sign ? -1 : 1; - } - if (isinf (b)) - { - return b->sign ? 1 : -1; - } - if (iszero (a) && iszero (b)) - { - return 0; - } - if (iszero (a)) - { - return b->sign ? 1 : -1; - } - if (iszero (b)) - { - return a->sign ? -1 : 1; - } - /* now both are "normal". */ - if (a->sign != b->sign) - { - /* opposite signs */ - return a->sign ? -1 : 1; - } - /* same sign; exponents? */ - if (a->normal_exp > b->normal_exp) - { - return a->sign ? -1 : 1; - } - if (a->normal_exp < b->normal_exp) - { - return a->sign ? 1 : -1; - } - /* same exponents; check size. */ - if (a->fraction.ll > b->fraction.ll) - { - return a->sign ? -1 : 1; - } - if (a->fraction.ll < b->fraction.ll) - { - return a->sign ? 1 : -1; - } - /* after all that, they're equal. */ - return 0; -} -#endif - -#if defined(L_compare_sf) || defined(L_compare_df) -CMPtype -compare (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - return __fpcmp_parts (&a, &b); -} -#endif - -#ifndef US_SOFTWARE_GOFAST - -/* These should be optimized for their specific tasks someday. */ - -#if defined(L_eq_sf) || defined(L_eq_df) -CMPtype -_eq_f2 (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - if (isnan (&a) || isnan (&b)) - return 1; /* false, truth == 0 */ - - return __fpcmp_parts (&a, &b) ; -} -#endif - -#if defined(L_ne_sf) || defined(L_ne_df) -CMPtype -_ne_f2 (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - if (isnan (&a) || isnan (&b)) - return 1; /* true, truth != 0 */ - - return __fpcmp_parts (&a, &b) ; -} -#endif - -#if defined(L_gt_sf) || defined(L_gt_df) -CMPtype -_gt_f2 (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - if (isnan (&a) || isnan (&b)) - return -1; /* false, truth > 0 */ - - return __fpcmp_parts (&a, &b); -} -#endif - -#if defined(L_ge_sf) || defined(L_ge_df) -CMPtype -_ge_f2 (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - if (isnan (&a) || isnan (&b)) - return -1; /* false, truth >= 0 */ - return __fpcmp_parts (&a, &b) ; -} -#endif - -#if defined(L_lt_sf) || defined(L_lt_df) -CMPtype -_lt_f2 (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - if (isnan (&a) || isnan (&b)) - return 1; /* false, truth < 0 */ - - return __fpcmp_parts (&a, &b); -} -#endif - -#if defined(L_le_sf) || defined(L_le_df) -CMPtype -_le_f2 (FLO_type arg_a, FLO_type arg_b) -{ - fp_number_type a; - fp_number_type b; - - unpack_d ((FLO_union_type *) & arg_a, &a); - unpack_d ((FLO_union_type *) & arg_b, &b); - - if (isnan (&a) || isnan (&b)) - return 1; /* false, truth <= 0 */ - - return __fpcmp_parts (&a, &b) ; -} -#endif - -#endif /* ! US_SOFTWARE_GOFAST */ - -#if defined(L_si_to_sf) || defined(L_si_to_df) -FLO_type -si_to_float (SItype arg_a) -{ - fp_number_type in; - - in.class = CLASS_NUMBER; - in.sign = arg_a < 0; - if (!arg_a) - { - in.class = CLASS_ZERO; - } - else - { - in.normal_exp = FRACBITS + NGARDS; - if (in.sign) - { - /* Special case for minint, since there is no +ve integer - representation for it */ - if (arg_a == (SItype) 0x80000000) - { - return -2147483648.0; - } - in.fraction.ll = (-arg_a); - } - else - in.fraction.ll = arg_a; - - while (in.fraction.ll < (1LL << (FRACBITS + NGARDS))) - { - in.fraction.ll <<= 1; - in.normal_exp -= 1; - } - } - return pack_d (&in); -} -#endif - -#if defined(L_sf_to_si) || defined(L_df_to_si) -SItype -float_to_si (FLO_type arg_a) -{ - fp_number_type a; - SItype tmp; - - unpack_d ((FLO_union_type *) & arg_a, &a); - if (iszero (&a)) - return 0; - if (isnan (&a)) - return 0; - /* get reasonable MAX_SI_INT... */ - if (isinf (&a)) - return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT; - /* it is a number, but a small one */ - if (a.normal_exp < 0) - return 0; - if (a.normal_exp > 30) - return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT; - tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp); - return a.sign ? (-tmp) : (tmp); -} -#endif - -#if defined(L_sf_to_usi) || defined(L_df_to_usi) -#ifdef US_SOFTWARE_GOFAST -/* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines, - we also define them for GOFAST because the ones in libgcc2.c have the - wrong names and I'd rather define these here and keep GOFAST CYG-LOC's - out of libgcc2.c. We can't define these here if not GOFAST because then - there'd be duplicate copies. */ - -USItype -float_to_usi (FLO_type arg_a) -{ - fp_number_type a; - - unpack_d ((FLO_union_type *) & arg_a, &a); - if (iszero (&a)) - return 0; - if (isnan (&a)) - return 0; - /* it is a negative number */ - if (a.sign) - return 0; - /* get reasonable MAX_USI_INT... */ - if (isinf (&a)) - return MAX_USI_INT; - /* it is a number, but a small one */ - if (a.normal_exp < 0) - return 0; - if (a.normal_exp > 31) - return MAX_USI_INT; - else if (a.normal_exp > (FRACBITS + NGARDS)) - return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS)); - else - return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp); -} -#endif -#endif - -#if defined(L_negate_sf) || defined(L_negate_df) -FLO_type -negate (FLO_type arg_a) -{ - fp_number_type a; - - unpack_d ((FLO_union_type *) & arg_a, &a); - flip_sign (&a); - return pack_d (&a); -} -#endif - -#ifdef FLOAT - -#if defined(L_make_sf) -SFtype -__make_fp(fp_class_type class, - unsigned int sign, - int exp, - USItype frac) -{ - fp_number_type in; - - in.class = class; - in.sign = sign; - in.normal_exp = exp; - in.fraction.ll = frac; - return pack_d (&in); -} -#endif - -#ifndef FLOAT_ONLY - -/* This enables one to build an fp library that supports float but not double. - Otherwise, we would get an undefined reference to __make_dp. - This is needed for some 8-bit ports that can't handle well values that - are 8-bytes in size, so we just don't support double for them at all. */ - -extern DFtype __make_dp (fp_class_type, unsigned int, int, UDItype frac); - -#if defined(L_sf_to_df) -DFtype -sf_to_df (SFtype arg_a) -{ - fp_number_type in; - - unpack_d ((FLO_union_type *) & arg_a, &in); - return __make_dp (in.class, in.sign, in.normal_exp, - ((UDItype) in.fraction.ll) << F_D_BITOFF); -} -#endif - -#endif -#endif - -#ifndef FLOAT - -extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype); - -#if defined(L_make_df) -DFtype -__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac) -{ - fp_number_type in; - - in.class = class; - in.sign = sign; - in.normal_exp = exp; - in.fraction.ll = frac; - return pack_d (&in); -} -#endif - -#if defined(L_df_to_sf) -SFtype -df_to_sf (DFtype arg_a) -{ - fp_number_type in; - USItype sffrac; - - unpack_d ((FLO_union_type *) & arg_a, &in); - - sffrac = in.fraction.ll >> F_D_BITOFF; - - /* We set the lowest guard bit in SFFRAC if we discarded any non - zero bits. */ - if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0) - sffrac |= 1; - - return __make_fp (in.class, in.sign, in.normal_exp, sffrac); -} -#endif - -#endif -#endif /* !EXTENDED_FLOAT_STUBS */ diff --git a/gcc/libgcc1-test.c b/gcc/libgcc1-test.c deleted file mode 100755 index 0f59cbe..0000000 --- a/gcc/libgcc1-test.c +++ /dev/null @@ -1,117 +0,0 @@ -/* This small function uses all the arithmetic operators that - libgcc1.c can handle. If you can link it, then - you have provided replacements for all the libgcc1.c functions that - your target machine needs. */ - -int foo (); -double dfoo (); - -/* We don't want __main here because that can drag in atexit (among other - things) which won't necessarily exist yet. */ - -main_without__main () -{ - int a = foo (), b = foo (); - unsigned int au = foo (), bu = foo (); - float af = dfoo (), bf = dfoo (); - double ad = dfoo (), bd = dfoo (); - - discard (a * b); - discard (a / b); - discard (a % b); - - discard (au / bu); - discard (au % bu); - - discard (a >> b); - discard (a << b); - - discard (au >> bu); - discard (au << bu); - - ddiscard (ad + bd); - ddiscard (ad - bd); - ddiscard (ad * bd); - ddiscard (ad / bd); - ddiscard (-ad); - - ddiscard (af + bf); - ddiscard (af - bf); - ddiscard (af * bf); - ddiscard (af / bf); - ddiscard (-af); - - discard ((int) ad); - discard ((int) af); - - ddiscard ((double) a); - ddiscard ((float) a); - ddiscard ((float) ad); - - discard (ad == bd); - discard (ad < bd); - discard (ad > bd); - discard (ad != bd); - discard (ad <= bd); - discard (ad >= bd); - - discard (af == bf); - discard (af < bf); - discard (af > bf); - discard (af != bf); - discard (af <= bf); - discard (af >= bf); - - return 0; -} - -discard (x) - int x; -{} - -ddiscard (x) - double x; -{} - -foo () -{ - static int table[] = {20, 69, 4, 12}; - static int idx; - - return table[idx++]; -} - -double -dfoo () -{ - static double table[] = {20.4, 69.96, 4.4, 202.202}; - static int idx; - - return table[idx++]; -} - -/* Provide functions that some versions of the linker use to default - the start address if -e symbol is not used, to avoid the warning - message saying the start address is defaulted. */ -extern void start() __asm__("start"); -extern void _start() __asm__("_start"); -extern void __start() __asm__("__start"); - -/* Provide functions that might be needed by soft-float emulation routines. */ -void memcpy() {} - -void start() {} -void _start() {} -void __start() {} -void mainCRTStartup() {} - -/* CYGNUS LOCAL - duplicate definition of memcpy() removed. */ - -/* CYGNUS LOCAL v850 */ -#if defined __v850e__ || defined __v850ea__ -/* We need to use the symbol __ctbp in order to force the linker to define it. */ -extern int _ctbp; - -void _func() { _ctbp = 1; } -#endif -/* END CYGNUS LOCAL */ diff --git a/gcc/libgcc1.c b/gcc/libgcc1.c deleted file mode 100755 index bece500..0000000 --- a/gcc/libgcc1.c +++ /dev/null @@ -1,596 +0,0 @@ -/* Subroutines needed by GCC output code on some machines. */ -/* Compile this file with the Unix C compiler! */ -/* Copyright (C) 1987, 1988, 1992, 1994, 1995 Free Software Foundation, Inc. - -This file is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any -later version. - -In addition to the permissions in the GNU General Public License, the -Free Software Foundation gives you unlimited permission to link the -compiled version of this file with other programs, and to distribute -those programs without any restriction coming from the use of this -file. (The General Public License restrictions do apply in other -respects; for example, they cover modification of the file, and -distribution when not linked into another program.) - -This file is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - -/* As a special exception, if you link this library with other files, - some of which are compiled with GCC, to produce an executable, - this library does not by itself cause the resulting executable - to be covered by the GNU General Public License. - This exception does not however invalidate any other reasons why - the executable file might be covered by the GNU General Public License. */ - -#include "config.h" - -/* Don't use `fancy_abort' here even if config.h says to use it. */ -#ifdef abort -#undef abort -#endif - -/* On some machines, cc is really GCC. For these machines, we can't - expect these functions to be properly compiled unless GCC open codes - the operation (which is precisely when the function won't be used). - So allow tm.h to specify ways of accomplishing the operations - by defining the macros perform_*. - - On a machine where cc is some other compiler, there is usually no - reason to define perform_*. The other compiler normally has other ways - of implementing all of these operations. - - In some cases a certain machine may come with GCC installed as cc - or may have some other compiler. Then it may make sense for tm.h - to define perform_* only if __GNUC__ is defined. */ - -#ifndef perform_mulsi3 -#define perform_mulsi3(a, b) return a * b -#endif - -#ifndef perform_divsi3 -#define perform_divsi3(a, b) return a / b -#endif - -#ifndef perform_udivsi3 -#define perform_udivsi3(a, b) return a / b -#endif - -#ifndef perform_modsi3 -#define perform_modsi3(a, b) return a % b -#endif - -#ifndef perform_umodsi3 -#define perform_umodsi3(a, b) return a % b -#endif - -#ifndef perform_lshrsi3 -#define perform_lshrsi3(a, b) return a >> b -#endif - -#ifndef perform_ashrsi3 -#define perform_ashrsi3(a, b) return a >> b -#endif - -#ifndef perform_ashlsi3 -#define perform_ashlsi3(a, b) return a << b -#endif - -#ifndef perform_adddf3 -#define perform_adddf3(a, b) return a + b -#endif - -#ifndef perform_subdf3 -#define perform_subdf3(a, b) return a - b -#endif - -#ifndef perform_muldf3 -#define perform_muldf3(a, b) return a * b -#endif - -#ifndef perform_divdf3 -#define perform_divdf3(a, b) return a / b -#endif - -#ifndef perform_addsf3 -#define perform_addsf3(a, b) return INTIFY (a + b) -#endif - -#ifndef perform_subsf3 -#define perform_subsf3(a, b) return INTIFY (a - b) -#endif - -#ifndef perform_mulsf3 -#define perform_mulsf3(a, b) return INTIFY (a * b) -#endif - -#ifndef perform_divsf3 -#define perform_divsf3(a, b) return INTIFY (a / b) -#endif - -#ifndef perform_negdf2 -#define perform_negdf2(a) return -a -#endif - -#ifndef perform_negsf2 -#define perform_negsf2(a) return INTIFY (-a) -#endif - -#ifndef perform_fixdfsi -#define perform_fixdfsi(a) return (nongcc_SI_type) a; -#endif - -#ifndef perform_fixsfsi -#define perform_fixsfsi(a) return (nongcc_SI_type) a -#endif - -#ifndef perform_floatsidf -#define perform_floatsidf(a) return (double) a -#endif - -#ifndef perform_floatsisf -#define perform_floatsisf(a) return INTIFY ((float) a) -#endif - -#ifndef perform_extendsfdf2 -#define perform_extendsfdf2(a) return a -#endif - -#ifndef perform_truncdfsf2 -#define perform_truncdfsf2(a) return INTIFY (a) -#endif - -/* Note that eqdf2 returns a value for "true" that is == 0, - nedf2 returns a value for "true" that is != 0, - gtdf2 returns a value for "true" that is > 0, - and so on. */ - -#ifndef perform_eqdf2 -#define perform_eqdf2(a, b) return !(a == b) -#endif - -#ifndef perform_nedf2 -#define perform_nedf2(a, b) return a != b -#endif - -#ifndef perform_gtdf2 -#define perform_gtdf2(a, b) return a > b -#endif - -#ifndef perform_gedf2 -#define perform_gedf2(a, b) return (a >= b) - 1 -#endif - -#ifndef perform_ltdf2 -#define perform_ltdf2(a, b) return -(a < b) -#endif - -#ifndef perform_ledf2 -#define perform_ledf2(a, b) return 1 - (a <= b) -#endif - -#ifndef perform_eqsf2 -#define perform_eqsf2(a, b) return !(a == b) -#endif - -#ifndef perform_nesf2 -#define perform_nesf2(a, b) return a != b -#endif - -#ifndef perform_gtsf2 -#define perform_gtsf2(a, b) return a > b -#endif - -#ifndef perform_gesf2 -#define perform_gesf2(a, b) return (a >= b) - 1 -#endif - -#ifndef perform_ltsf2 -#define perform_ltsf2(a, b) return -(a < b) -#endif - -#ifndef perform_lesf2 -#define perform_lesf2(a, b) return 1 - (a <= b); -#endif - -/* Define the C data type to use for an SImode value. */ - -#ifndef nongcc_SI_type -#define nongcc_SI_type long int -#endif - -/* Define the C data type to use for a value of word size */ -#ifndef nongcc_word_type -#define nongcc_word_type nongcc_SI_type -#endif - -/* Define the type to be used for returning an SF mode value - and the method for turning a float into that type. - These definitions work for machines where an SF value is - returned in the same register as an int. */ - -#ifndef FLOAT_VALUE_TYPE -#define FLOAT_VALUE_TYPE int -#endif - -#ifndef INTIFY -#define INTIFY(FLOATVAL) (intify.f = (FLOATVAL), intify.i) -#endif - -#ifndef FLOATIFY -#define FLOATIFY(INTVAL) ((INTVAL).f) -#endif - -#ifndef FLOAT_ARG_TYPE -#define FLOAT_ARG_TYPE union flt_or_int -#endif - -union flt_or_value { FLOAT_VALUE_TYPE i; float f; }; - -union flt_or_int { int i; float f; }; - - -#ifdef L_mulsi3 -nongcc_SI_type -__mulsi3 (a, b) - nongcc_SI_type a, b; -{ - perform_mulsi3 (a, b); -} -#endif - -#ifdef L_udivsi3 -nongcc_SI_type -__udivsi3 (a, b) - unsigned nongcc_SI_type a, b; -{ - perform_udivsi3 (a, b); -} -#endif - -#ifdef L_divsi3 -nongcc_SI_type -__divsi3 (a, b) - nongcc_SI_type a, b; -{ - perform_divsi3 (a, b); -} -#endif - -#ifdef L_umodsi3 -nongcc_SI_type -__umodsi3 (a, b) - unsigned nongcc_SI_type a, b; -{ - perform_umodsi3 (a, b); -} -#endif - -#ifdef L_modsi3 -nongcc_SI_type -__modsi3 (a, b) - nongcc_SI_type a, b; -{ - perform_modsi3 (a, b); -} -#endif - -#ifdef L_lshrsi3 -nongcc_SI_type -__lshrsi3 (a, b) - unsigned nongcc_SI_type a, b; -{ - perform_lshrsi3 (a, b); -} -#endif - -#ifdef L_ashrsi3 -nongcc_SI_type -__ashrsi3 (a, b) - nongcc_SI_type a, b; -{ - perform_ashrsi3 (a, b); -} -#endif - -#ifdef L_ashlsi3 -nongcc_SI_type -__ashlsi3 (a, b) - nongcc_SI_type a, b; -{ - perform_ashlsi3 (a, b); -} -#endif - -#ifdef L_divdf3 -double -__divdf3 (a, b) - double a, b; -{ - perform_divdf3 (a, b); -} -#endif - -#ifdef L_muldf3 -double -__muldf3 (a, b) - double a, b; -{ - perform_muldf3 (a, b); -} -#endif - -#ifdef L_negdf2 -double -__negdf2 (a) - double a; -{ - perform_negdf2 (a); -} -#endif - -#ifdef L_adddf3 -double -__adddf3 (a, b) - double a, b; -{ - perform_adddf3 (a, b); -} -#endif - -#ifdef L_subdf3 -double -__subdf3 (a, b) - double a, b; -{ - perform_subdf3 (a, b); -} -#endif - -/* Note that eqdf2 returns a value for "true" that is == 0, - nedf2 returns a value for "true" that is != 0, - gtdf2 returns a value for "true" that is > 0, - and so on. */ - -#ifdef L_eqdf2 -nongcc_word_type -__eqdf2 (a, b) - double a, b; -{ - /* Value == 0 iff a == b. */ - perform_eqdf2 (a, b); -} -#endif - -#ifdef L_nedf2 -nongcc_word_type -__nedf2 (a, b) - double a, b; -{ - /* Value != 0 iff a != b. */ - perform_nedf2 (a, b); -} -#endif - -#ifdef L_gtdf2 -nongcc_word_type -__gtdf2 (a, b) - double a, b; -{ - /* Value > 0 iff a > b. */ - perform_gtdf2 (a, b); -} -#endif - -#ifdef L_gedf2 -nongcc_word_type -__gedf2 (a, b) - double a, b; -{ - /* Value >= 0 iff a >= b. */ - perform_gedf2 (a, b); -} -#endif - -#ifdef L_ltdf2 -nongcc_word_type -__ltdf2 (a, b) - double a, b; -{ - /* Value < 0 iff a < b. */ - perform_ltdf2 (a, b); -} -#endif - -#ifdef L_ledf2 -nongcc_word_type -__ledf2 (a, b) - double a, b; -{ - /* Value <= 0 iff a <= b. */ - perform_ledf2 (a, b); -} -#endif - -#ifdef L_fixdfsi -nongcc_SI_type -__fixdfsi (a) - double a; -{ - perform_fixdfsi (a); -} -#endif - -#ifdef L_fixsfsi -nongcc_SI_type -__fixsfsi (a) - FLOAT_ARG_TYPE a; -{ - union flt_or_value intify; - perform_fixsfsi (FLOATIFY (a)); -} -#endif - -#ifdef L_floatsidf -double -__floatsidf (a) - nongcc_SI_type a; -{ - perform_floatsidf (a); -} -#endif - -#ifdef L_floatsisf -FLOAT_VALUE_TYPE -__floatsisf (a) - nongcc_SI_type a; -{ - union flt_or_value intify; - perform_floatsisf (a); -} -#endif - -#ifdef L_addsf3 -FLOAT_VALUE_TYPE -__addsf3 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_value intify; - perform_addsf3 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_negsf2 -FLOAT_VALUE_TYPE -__negsf2 (a) - FLOAT_ARG_TYPE a; -{ - union flt_or_value intify; - perform_negsf2 (FLOATIFY (a)); -} -#endif - -#ifdef L_subsf3 -FLOAT_VALUE_TYPE -__subsf3 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_value intify; - perform_subsf3 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_eqsf2 -nongcc_word_type -__eqsf2 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_int intify; - /* Value == 0 iff a == b. */ - perform_eqsf2 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_nesf2 -nongcc_word_type -__nesf2 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_int intify; - /* Value != 0 iff a != b. */ - perform_nesf2 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_gtsf2 -nongcc_word_type -__gtsf2 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_int intify; - /* Value > 0 iff a > b. */ - perform_gtsf2 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_gesf2 -nongcc_word_type -__gesf2 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_int intify; - /* Value >= 0 iff a >= b. */ - perform_gesf2 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_ltsf2 -nongcc_word_type -__ltsf2 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_int intify; - /* Value < 0 iff a < b. */ - perform_ltsf2 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_lesf2 -nongcc_word_type -__lesf2 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_int intify; - /* Value <= 0 iff a <= b. */ - perform_lesf2 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_mulsf3 -FLOAT_VALUE_TYPE -__mulsf3 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_value intify; - perform_mulsf3 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_divsf3 -FLOAT_VALUE_TYPE -__divsf3 (a, b) - FLOAT_ARG_TYPE a, b; -{ - union flt_or_value intify; - perform_divsf3 (FLOATIFY (a), FLOATIFY (b)); -} -#endif - -#ifdef L_truncdfsf2 -FLOAT_VALUE_TYPE -__truncdfsf2 (a) - double a; -{ - union flt_or_value intify; - perform_truncdfsf2 (a); -} -#endif - -#ifdef L_extendsfdf2 -double -__extendsfdf2 (a) - FLOAT_ARG_TYPE a; -{ - union flt_or_value intify; - perform_extendsfdf2 (FLOATIFY (a)); -} -#endif diff --git a/gcc/libgcc2.c b/gcc/libgcc2.c deleted file mode 100755 index cf7231f..0000000 --- a/gcc/libgcc2.c +++ /dev/null @@ -1,946 +0,0 @@ -/* More subroutines needed by GCC output code on some machines. */ -/* Compile this one with gcc. */ -/* Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc. - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - -/* As a special exception, if you link this library with other files, - some of which are compiled with GCC, to produce an executable, - this library does not by itself cause the resulting executable - to be covered by the GNU General Public License. - This exception does not however invalidate any other reasons why - the executable file might be covered by the GNU General Public License. */ - -#include <stddef.h> - -/* Don't use `fancy_abort' here even if config.h says to use it. */ -#ifdef abort -#undef abort -#endif - -/* In the first part of this file, we are interfacing to calls generated - by the compiler itself. These calls pass values into these routines - which have very specific modes (rather than very specific types), and - these compiler-generated calls also expect any return values to have - very specific modes (rather than very specific types). Thus, we need - to avoid using regular C language type names in this part of the file - because the sizes for those types can be configured to be anything. - Instead we use the following special type names. */ - -typedef unsigned int UQItype __attribute__ ((mode (QI))); -typedef int SItype __attribute__ ((mode (SI))); -typedef unsigned int USItype __attribute__ ((mode (SI))); -typedef int DItype __attribute__ ((mode (DI))); -typedef unsigned int UDItype __attribute__ ((mode (DI))); - -typedef float SFtype __attribute__ ((mode (SF))); -typedef float DFtype __attribute__ ((mode (DF))); - -typedef int word_type __attribute__ ((mode (__word__))); - -/* Make sure that we don't accidentally use any normal C language built-in - type names in the first part of this file. Instead we want to use *only* - the type names defined above. The following macro definitions insure - that if we *do* accidentally use some normal C language built-in type name, - we will get a syntax error. */ - -#define char bogus_type -#define short bogus_type -#define int bogus_type -#define long bogus_type -#define unsigned bogus_type -#define float bogus_type -#define double bogus_type - -#define SI_TYPE_SIZE (sizeof (SItype) * 8) - -struct DIstruct {SItype low, high;}; - -/* We need this union to unpack/pack DImode values, since we don't have - any arithmetic yet. Incoming DImode parameters are stored into the - `ll' field, and the unpacked result is read from the struct `s'. */ - -typedef union -{ - struct DIstruct s; - DItype ll; -} DIunion; - -#if (defined (L_udivmoddi4) || defined (L_muldi3) || defined (L_udiv_w_sdiv)\ - || defined (L_divdi3) || defined (L_udivdi3) \ - || defined (L_moddi3) || defined (L_umoddi3)) - -#include "longlong.h" - -#endif /* udiv or mul */ - -extern DItype __fixunssfdi (SFtype a); -extern DItype __fixunsdfdi (DFtype a); - -#if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3) -#if defined (L_divdi3) || defined (L_moddi3) -static inline -#endif -DItype -__negdi2 (DItype u) -{ - DIunion w; - DIunion uu; - - uu.ll = u; - - w.s.low = -uu.s.low; - w.s.high = -uu.s.high - ((USItype) w.s.low > 0); - - return w.ll; -} -#endif - -/* Unless shift functions are defined whith full ANSI prototypes, - parameter b will be promoted to int if word_type is smaller than an int. */ -#ifdef L_lshrdi3 -DItype -__lshrdi3 (DItype u, word_type b) -{ - DIunion w; - word_type bm; - DIunion uu; - - if (b == 0) - return u; - - uu.ll = u; - - bm = (sizeof (SItype) * 8) - b; - if (bm <= 0) - { - w.s.high = 0; - w.s.low = (USItype)uu.s.high >> -bm; - } - else - { - USItype carries = (USItype)uu.s.high << bm; - w.s.high = (USItype)uu.s.high >> b; - w.s.low = ((USItype)uu.s.low >> b) | carries; - } - - return w.ll; -} -#endif - -#ifdef L_ashldi3 -DItype -__ashldi3 (DItype u, word_type b) -{ - DIunion w; - word_type bm; - DIunion uu; - - if (b == 0) - return u; - - uu.ll = u; - - bm = (sizeof (SItype) * 8) - b; - if (bm <= 0) - { - w.s.low = 0; - w.s.high = (USItype)uu.s.low << -bm; - } - else - { - USItype carries = (USItype)uu.s.low >> bm; - w.s.low = (USItype)uu.s.low << b; - w.s.high = ((USItype)uu.s.high << b) | carries; - } - - return w.ll; -} -#endif - -#ifdef L_ashrdi3 -DItype -__ashrdi3 (DItype u, word_type b) -{ - DIunion w; - word_type bm; - DIunion uu; - - if (b == 0) - return u; - - uu.ll = u; - - bm = (sizeof (SItype) * 8) - b; - if (bm <= 0) - { - /* w.s.high = 1..1 or 0..0 */ - w.s.high = uu.s.high >> (sizeof (SItype) * 8 - 1); - w.s.low = uu.s.high >> -bm; - } - else - { - USItype carries = (USItype)uu.s.high << bm; - w.s.high = uu.s.high >> b; - w.s.low = ((USItype)uu.s.low >> b) | carries; - } - - return w.ll; -} -#endif - -#ifdef L_ffsdi2 -DItype -__ffsdi2 (DItype u) -{ - DIunion uu, w; - uu.ll = u; - w.s.high = 0; - w.s.low = ffs (uu.s.low); - if (w.s.low != 0) - return w.ll; - w.s.low = ffs (uu.s.high); - if (w.s.low != 0) - { - w.s.low += 8 * sizeof (SItype); - return w.ll; - } - return w.ll; -} -#endif - -#ifdef L_muldi3 -DItype -__muldi3 (DItype u, DItype v) -{ - DIunion w; - DIunion uu, vv; - - uu.ll = u, - vv.ll = v; - - w.ll = __umulsidi3 (uu.s.low, vv.s.low); - w.s.high += ((USItype) uu.s.low * (USItype) vv.s.high - + (USItype) uu.s.high * (USItype) vv.s.low); - - return w.ll; -} -#endif - -#ifdef L_udiv_w_sdiv -#if defined (sdiv_qrnnd) -USItype -__udiv_w_sdiv (USItype *rp, USItype a1, USItype a0, USItype d) -{ - USItype q, r; - USItype c0, c1, b1; - - if ((SItype) d >= 0) - { - if (a1 < d - a1 - (a0 >> (SI_TYPE_SIZE - 1))) - { - /* dividend, divisor, and quotient are nonnegative */ - sdiv_qrnnd (q, r, a1, a0, d); - } - else - { - /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ - sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (SI_TYPE_SIZE - 1)); - /* Divide (c1*2^32 + c0) by d */ - sdiv_qrnnd (q, r, c1, c0, d); - /* Add 2^31 to quotient */ - q += (USItype) 1 << (SI_TYPE_SIZE - 1); - } - } - else - { - b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ - c1 = a1 >> 1; /* A/2 */ - c0 = (a1 << (SI_TYPE_SIZE - 1)) + (a0 >> 1); - - if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ - { - sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ - - r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ - if ((d & 1) != 0) - { - if (r >= q) - r = r - q; - else if (q - r <= d) - { - r = r - q + d; - q--; - } - else - { - r = r - q + 2*d; - q -= 2; - } - } - } - else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ - { - c1 = (b1 - 1) - c1; - c0 = ~c0; /* logical NOT */ - - sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ - - q = ~q; /* (A/2)/b1 */ - r = (b1 - 1) - r; - - r = 2*r + (a0 & 1); /* A/(2*b1) */ - - if ((d & 1) != 0) - { - if (r >= q) - r = r - q; - else if (q - r <= d) - { - r = r - q + d; - q--; - } - else - { - r = r - q + 2*d; - q -= 2; - } - } - } - else /* Implies c1 = b1 */ - { /* Hence a1 = d - 1 = 2*b1 - 1 */ - if (a0 >= -d) - { - q = -1; - r = a0 + d; - } - else - { - q = -2; - r = a0 + 2*d; - } - } - } - - *rp = r; - return q; -} -#else -/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ -USItype -__udiv_w_sdiv (USItype *rp __attribute__ ((__unused__)), - USItype a1 __attribute__ ((__unused__)), - USItype a0 __attribute__ ((__unused__)), - USItype d __attribute__ ((__unused__))) -{ - return 0; -} -#endif -#endif - -#if (defined (L_udivdi3) || defined (L_divdi3) || \ - defined (L_umoddi3) || defined (L_moddi3)) -#define L_udivmoddi4 -#endif - -#ifdef L_udivmoddi4 -static const UQItype __clz_tab[] = -{ - 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, - 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, - 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, - 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, - 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, -}; - -#if (defined (L_udivdi3) || defined (L_divdi3) || \ - defined (L_umoddi3) || defined (L_moddi3)) -static inline -#endif -UDItype -__udivmoddi4 (UDItype n, UDItype d, UDItype *rp) -{ - DIunion ww; - DIunion nn, dd; - DIunion rr; - USItype d0, d1, n0, n1, n2; - USItype q0, q1; - USItype b, bm; - - nn.ll = n; - dd.ll = d; - - d0 = dd.s.low; - d1 = dd.s.high; - n0 = nn.s.low; - n1 = nn.s.high; - -#if !UDIV_NEEDS_NORMALIZATION - if (d1 == 0) - { - if (d0 > n1) - { - /* 0q = nn / 0D */ - - udiv_qrnnd (q0, n0, n1, n0, d0); - q1 = 0; - - /* Remainder in n0. */ - } - else - { - /* qq = NN / 0d */ - - if (d0 == 0) - d0 = 1 / d0; /* Divide intentionally by zero. */ - - udiv_qrnnd (q1, n1, 0, n1, d0); - udiv_qrnnd (q0, n0, n1, n0, d0); - - /* Remainder in n0. */ - } - - if (rp != 0) - { - rr.s.low = n0; - rr.s.high = 0; - *rp = rr.ll; - } - } - -#else /* UDIV_NEEDS_NORMALIZATION */ - - if (d1 == 0) - { - if (d0 > n1) - { - /* 0q = nn / 0D */ - - count_leading_zeros (bm, d0); - - if (bm != 0) - { - /* Normalize, i.e. make the most significant bit of the - denominator set. */ - - d0 = d0 << bm; - n1 = (n1 << bm) | (n0 >> (SI_TYPE_SIZE - bm)); - n0 = n0 << bm; - } - - udiv_qrnnd (q0, n0, n1, n0, d0); - q1 = 0; - - /* Remainder in n0 >> bm. */ - } - else - { - /* qq = NN / 0d */ - - if (d0 == 0) - d0 = 1 / d0; /* Divide intentionally by zero. */ - - count_leading_zeros (bm, d0); - - if (bm == 0) - { - /* From (n1 >= d0) /\ (the most significant bit of d0 is set), - conclude (the most significant bit of n1 is set) /\ (the - leading quotient digit q1 = 1). - - This special case is necessary, not an optimization. - (Shifts counts of SI_TYPE_SIZE are undefined.) */ - - n1 -= d0; - q1 = 1; - } - else - { - /* Normalize. */ - - b = SI_TYPE_SIZE - bm; - - d0 = d0 << bm; - n2 = n1 >> b; - n1 = (n1 << bm) | (n0 >> b); - n0 = n0 << bm; - - udiv_qrnnd (q1, n1, n2, n1, d0); - } - - /* n1 != d0... */ - - udiv_qrnnd (q0, n0, n1, n0, d0); - - /* Remainder in n0 >> bm. */ - } - - if (rp != 0) - { - rr.s.low = n0 >> bm; - rr.s.high = 0; - *rp = rr.ll; - } - } -#endif /* UDIV_NEEDS_NORMALIZATION */ - - else - { - if (d1 > n1) - { - /* 00 = nn / DD */ - - q0 = 0; - q1 = 0; - - /* Remainder in n1n0. */ - if (rp != 0) - { - rr.s.low = n0; - rr.s.high = n1; - *rp = rr.ll; - } - } - else - { - /* 0q = NN / dd */ - - count_leading_zeros (bm, d1); - if (bm == 0) - { - /* From (n1 >= d1) /\ (the most significant bit of d1 is set), - conclude (the most significant bit of n1 is set) /\ (the - quotient digit q0 = 0 or 1). - - This special case is necessary, not an optimization. */ - - /* The condition on the next line takes advantage of that - n1 >= d1 (true due to program flow). */ - if (n1 > d1 || n0 >= d0) - { - q0 = 1; - sub_ddmmss (n1, n0, n1, n0, d1, d0); - } - else - q0 = 0; - - q1 = 0; - - if (rp != 0) - { - rr.s.low = n0; - rr.s.high = n1; - *rp = rr.ll; - } - } - else - { - USItype m1, m0; - /* Normalize. */ - - b = SI_TYPE_SIZE - bm; - - d1 = (d1 << bm) | (d0 >> b); - d0 = d0 << bm; - n2 = n1 >> b; - n1 = (n1 << bm) | (n0 >> b); - n0 = n0 << bm; - - udiv_qrnnd (q0, n1, n2, n1, d1); - umul_ppmm (m1, m0, q0, d0); - - if (m1 > n1 || (m1 == n1 && m0 > n0)) - { - q0--; - sub_ddmmss (m1, m0, m1, m0, d1, d0); - } - - q1 = 0; - - /* Remainder in (n1n0 - m1m0) >> bm. */ - if (rp != 0) - { - sub_ddmmss (n1, n0, n1, n0, m1, m0); - rr.s.low = (n1 << b) | (n0 >> bm); - rr.s.high = n1 >> bm; - *rp = rr.ll; - } - } - } - } - - ww.s.low = q0; - ww.s.high = q1; - return ww.ll; -} -#endif - -#ifdef L_divdi3 -UDItype __udivmoddi4 (); - -DItype -__divdi3 (DItype u, DItype v) -{ - word_type c = 0; - DIunion uu, vv; - DItype w; - - uu.ll = u; - vv.ll = v; - - if (uu.s.high < 0) - c = ~c, - uu.ll = __negdi2 (uu.ll); - if (vv.s.high < 0) - c = ~c, - vv.ll = __negdi2 (vv.ll); - - w = __udivmoddi4 (uu.ll, vv.ll, (UDItype *) 0); - if (c) - w = __negdi2 (w); - - return w; -} -#endif - -#ifdef L_moddi3 -UDItype __udivmoddi4 (); -DItype -__moddi3 (DItype u, DItype v) -{ - word_type c = 0; - DIunion uu, vv; - DItype w; - - uu.ll = u; - vv.ll = v; - - if (uu.s.high < 0) - c = ~c, - uu.ll = __negdi2 (uu.ll); - if (vv.s.high < 0) - vv.ll = __negdi2 (vv.ll); - - (void) __udivmoddi4 (uu.ll, vv.ll, &w); - if (c) - w = __negdi2 (w); - - return w; -} -#endif - -#ifdef L_umoddi3 -UDItype __udivmoddi4 (); -UDItype -__umoddi3 (UDItype u, UDItype v) -{ - UDItype w; - - (void) __udivmoddi4 (u, v, &w); - - return w; -} -#endif - -#ifdef L_udivdi3 -UDItype __udivmoddi4 (); -UDItype -__udivdi3 (UDItype n, UDItype d) -{ - return __udivmoddi4 (n, d, (UDItype *) 0); -} -#endif - -#ifdef L_cmpdi2 -word_type -__cmpdi2 (DItype a, DItype b) -{ - DIunion au, bu; - - au.ll = a, bu.ll = b; - - if (au.s.high < bu.s.high) - return 0; - else if (au.s.high > bu.s.high) - return 2; - if ((USItype) au.s.low < (USItype) bu.s.low) - return 0; - else if ((USItype) au.s.low > (USItype) bu.s.low) - return 2; - return 1; -} -#endif - -#ifdef L_ucmpdi2 -word_type -__ucmpdi2 (DItype a, DItype b) -{ - DIunion au, bu; - - au.ll = a, bu.ll = b; - - if ((USItype) au.s.high < (USItype) bu.s.high) - return 0; - else if ((USItype) au.s.high > (USItype) bu.s.high) - return 2; - if ((USItype) au.s.low < (USItype) bu.s.low) - return 0; - else if ((USItype) au.s.low > (USItype) bu.s.low) - return 2; - return 1; -} -#endif - -#ifdef L_fixunsdfdi -#define WORD_SIZE (sizeof (SItype) * 8) -#define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) - -DItype -__fixunsdfdi (DFtype a) -{ - DFtype b; - UDItype v; - - if (a < 0) - return 0; - - /* Compute high word of result, as a flonum. */ - b = (a / HIGH_WORD_COEFF); - /* Convert that to fixed (but not to DItype!), - and shift it into the high word. */ - v = (USItype) b; - v <<= WORD_SIZE; - /* Remove high part from the DFtype, leaving the low part as flonum. */ - a -= (DFtype)v; - /* Convert that to fixed (but not to DItype!) and add it in. - Sometimes A comes out negative. This is significant, since - A has more bits than a long int does. */ - if (a < 0) - v -= (USItype) (- a); - else - v += (USItype) a; - return v; -} -#endif - -#ifdef L_fixdfdi -DItype -__fixdfdi (DFtype a) -{ - if (a < 0) - return - __fixunsdfdi (-a); - return __fixunsdfdi (a); -} -#endif - -#ifdef L_fixunssfdi -#define WORD_SIZE (sizeof (SItype) * 8) -#define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) - -DItype -__fixunssfdi (SFtype original_a) -{ - /* Convert the SFtype to a DFtype, because that is surely not going - to lose any bits. Some day someone else can write a faster version - that avoids converting to DFtype, and verify it really works right. */ - DFtype a = original_a; - DFtype b; - UDItype v; - - if (a < 0) - return 0; - - /* Compute high word of result, as a flonum. */ - b = (a / HIGH_WORD_COEFF); - /* Convert that to fixed (but not to DItype!), - and shift it into the high word. */ - v = (USItype) b; - v <<= WORD_SIZE; - /* Remove high part from the DFtype, leaving the low part as flonum. */ - a -= (DFtype)v; - /* Convert that to fixed (but not to DItype!) and add it in. - Sometimes A comes out negative. This is significant, since - A has more bits than a long int does. */ - if (a < 0) - v -= (USItype) (- a); - else - v += (USItype) a; - return v; -} -#endif - -#ifdef L_fixsfdi -DItype -__fixsfdi (SFtype a) -{ - if (a < 0) - return - __fixunssfdi (-a); - return __fixunssfdi (a); -} -#endif - -#ifdef L_floatdidf -#define WORD_SIZE (sizeof (SItype) * 8) -#define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) -#define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) - -DFtype -__floatdidf (DItype u) -{ - DFtype d; - - d = (SItype) (u >> WORD_SIZE); - d *= HIGH_HALFWORD_COEFF; - d *= HIGH_HALFWORD_COEFF; - d += (USItype) (u & (HIGH_WORD_COEFF - 1)); - - return d; -} -#endif - -#ifdef L_floatdisf -#define WORD_SIZE (sizeof (SItype) * 8) -#define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) -#define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) -#define DI_SIZE (sizeof (DItype) * 8) - -/* Define codes for all the float formats that we know of. Note - that this is copied from real.h. */ - -#define UNKNOWN_FLOAT_FORMAT 0 -#define IEEE_FLOAT_FORMAT 1 -#define VAX_FLOAT_FORMAT 2 -#define IBM_FLOAT_FORMAT 3 - -/* Default to IEEE float if not specified. Nearly all machines use it. */ -#ifndef HOST_FLOAT_FORMAT -#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT -#endif - -#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT -#define DF_SIZE 53 -#define SF_SIZE 24 -#endif - -#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT -#define DF_SIZE 56 -#define SF_SIZE 24 -#endif - -#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT -#define DF_SIZE 56 -#define SF_SIZE 24 -#endif - -SFtype -__floatdisf (DItype u) -{ - /* Do the calculation in DFmode - so that we don't lose any of the precision of the high word - while multiplying it. */ - DFtype f; - - /* Protect against double-rounding error. - Represent any low-order bits, that might be truncated in DFmode, - by a bit that won't be lost. The bit can go in anywhere below the - rounding position of the SFmode. A fixed mask and bit position - handles all usual configurations. It doesn't handle the case - of 128-bit DImode, however. */ - if (DF_SIZE < DI_SIZE - && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE)) - { -#define REP_BIT ((USItype) 1 << (DI_SIZE - DF_SIZE)) - if (! (- ((DItype) 1 << DF_SIZE) < u - && u < ((DItype) 1 << DF_SIZE))) - { - if ((USItype) u & (REP_BIT - 1)) - u |= REP_BIT; - } - } - f = (SItype) (u >> WORD_SIZE); - f *= HIGH_HALFWORD_COEFF; - f *= HIGH_HALFWORD_COEFF; - f += (USItype) (u & (HIGH_WORD_COEFF - 1)); - - return (SFtype) f; -} -#endif - -#ifdef L_fixunsdfsi -/* Reenable the normal types, in case limits.h needs them. */ -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double -#undef MIN -#undef MAX -#include <limits.h> - -USItype -__fixunsdfsi (DFtype a) -{ - if (a >= - (DFtype) LONG_MIN) - return (SItype) (a + LONG_MIN) - LONG_MIN; - return (SItype) a; -} -#endif - -#ifdef L_fixunssfsi -/* Reenable the normal types, in case limits.h needs them. */ -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double -#undef MIN -#undef MAX -#include <limits.h> - -USItype -__fixunssfsi (SFtype a) -{ - if (a >= - (SFtype) LONG_MIN) - return (SItype) (a + LONG_MIN) - LONG_MIN; - return (SItype) a; -} -#endif - -/* From here on down, the routines use normal data types. */ - -#define SItype bogus_type -#define USItype bogus_type -#define DItype bogus_type -#define UDItype bogus_type -#define SFtype bogus_type -#define DFtype bogus_type - -#undef char -#undef short -#undef int -#undef long -#undef unsigned -#undef float -#undef double diff --git a/gcc/config/arm/telf.h b/gcc/telf.h index 9bd6bcf..d4c15b0 100755 --- a/gcc/config/arm/telf.h +++ b/gcc/telf.h @@ -22,7 +22,7 @@ Boston, MA 02111-1307, USA. */ #define OBJECT_FORMAT_ELF -#include "arm/thumb.h" +#include "thumb.h" #include "tree.h" /* Run-time Target Specification. */ diff --git a/gcc/fp-test.c b/gcc/testsuite/fp-test.c index 667059c..667059c 100755 --- a/gcc/fp-test.c +++ b/gcc/testsuite/fp-test.c diff --git a/gcc/config/arm/thumb.c b/gcc/thumb.c index 0310a51..0310a51 100755 --- a/gcc/config/arm/thumb.c +++ b/gcc/thumb.c diff --git a/gcc/config/arm/thumb.h b/gcc/thumb.h index e5918a1..e5918a1 100755 --- a/gcc/config/arm/thumb.h +++ b/gcc/thumb.h diff --git a/gcc/config/arm/thumb.md b/gcc/thumb.md index fe37c9c..fe37c9c 100755 --- a/gcc/config/arm/thumb.md +++ b/gcc/thumb.md |