1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
INCLUDE "constants.asm"
SECTION "home/print_num.asm", ROM0
PrintNumber::
; function to print a number
; de = address of number in little-endian format
; hl = destination address
; b = flags and length
; bit 7: if set, do not print leading zeroes
; if unset, print leading zeroes
; bit 6: if set, left-align the string (do not pad empty digits with spaces)
; if unset, right-align the string
; bits 0-5: length of number in bytes
; 01 - 1 byte
; 02 - 2 bytes
; <> - 3 bytes
; c = number of digits from 2 to 7
; For 1-digit numbers, add the value to char "0"
; instead of calling PrintNumber.
; This function works as follow
; There are three temporary registers
; - hPrintNumDividend,
; - hPrintNumDivisor,
; - hPrintNumTemp
; All are three bytes long and organized in big-endian order.
; To produce digits, PrintNumber is going to
; 1. Store Input in hPrintNumDividend
; 1a. Init hPrintNumLeadingDigit to zero (no prior leading digit)
; 2. Repeatedly call .PrintDigit for required digits 7 thru 3:
; 2a. Store divisor in hPrintNumDivisor
; 2b. Divide dividend by divisor to get digit
; 2c. hPrintNumTemp is used, because dividend < divisor might
; not be immediately visible in byte-wise division
; 2d. Update hPrintNumLeadingDigit in case digit > 0
; 3. Perform the same operations for two digits as byte-wide operations
; as opposed to three-byte-wide operations
; 4. Check if at least one non-zero digit was printed, else print zero.
; 5. Done.
push bc
xor a
ldh [hPrintNumLeadingDigit], a
ldh [hPrintNumDividend], a
ldh [hPrintNumDividend + 1], a
ld a, b
and $0f
cp $01
jr z, .byte
cp $02
jr z, .word
ld a, [de]
ldh [hPrintNumDividend], a
inc de
ld a, [de]
ldh [hPrintNumDividend + 1], a
inc de
ld a, [de]
ldh [hPrintNumDividend + 2], a
jr .start
.word
ld a, [de]
ldh [hPrintNumDividend + 1], a
inc de
ld a, [de]
ldh [hPrintNumDividend + 2], a
jr .start
.byte
ld a, [de]
ldh [hPrintNumDividend + 2], a
.start
push de
ld d, b
ld a, c
ld b, a
xor a
ld c, a
ld a, b
cp $02
jr z, .two_digits
cp $03
jr z, .three_digits
cp $04
jr z, .four_digits
cp $05
jr z, .five_digits
cp $06
jr z, .six_digits
.seven_digits
ld a, 1000000 / $10000 % $100
ldh [hPrintNumDivisor], a
ld a, 1000000 / $100 % $100
ldh [hPrintNumDivisor + 1], a
ld a, 1000000 % $100
ldh [hPrintNumDivisor + 2], a
call .PrintDigit
call .AdvancePointer
.six_digits
ld a, 100000 / $10000 % $100
ldh [hPrintNumDivisor], a
ld a, 100000 / $100 % $100
ldh [hPrintNumDivisor + 1], a
ld a, 100000 % $100
ldh [hPrintNumDivisor + 2], a
call .PrintDigit
call .AdvancePointer
.five_digits
xor a
ldh [hPrintNumDivisor], a
ld a, 10000 / $100
ldh [hPrintNumDivisor + 1], a
ld a, 10000 % $100
ldh [hPrintNumDivisor + 2], a
call .PrintDigit
call .AdvancePointer
.four_digits
xor a
ldh [hPrintNumDivisor], a
ld a, 1000 / $100
ldh [hPrintNumDivisor + 1], a
ld a, 1000 % $100
ldh [hPrintNumDivisor + 2], a
call .PrintDigit
call .AdvancePointer
.three_digits
xor a
ldh [hPrintNumDivisor], a
xor a
ldh [hPrintNumDivisor + 1], a
ld a, 100
ldh [hPrintNumDivisor + 2], a
call .PrintDigit
call .AdvancePointer
.two_digits
ld c, $00
ldh a, [hPrintNumDividend + 2]
.mod_10
cp $0a
jr c, .modded_10
sub $0a
inc c
jr .mod_10
.modded_10
ld b, a
ldh a, [hPrintNumLeadingDigit]
or c
ldh [hPrintNumLeadingDigit], a
jr nz, .LeadingNonZero
call .PrintLeadingZero
jr .PrintLeastSignificantDigit
.LeadingNonZero
ld a, "0"
add c
ld [hl], a
.PrintLeastSignificantDigit
call .AdvancePointer
ld a, "0"
add b
ld [hli], a
pop de
pop bc
ret
.PrintDigit:
ld c, $00
.loop
ldh a, [hPrintNumDivisor]
ld b, a
ldh a, [hPrintNumDividend]
ldh [hPrintNumTemp], a ; store high byte in case dividend < divisor
cp b ; in subsequent bytes
jr c, .DividendLessThanDivisor ; dividend < divisor --> the digit is zero
sub b
ldh [hPrintNumDividend], a
ldh a, [hPrintNumDivisor + 1]
ld b, a
ldh a, [hPrintNumDividend + 1]
ldh [hPrintNumTemp + 1], a ; store mid byte in case dividend < divisor
cp b ; in subsequent byte
jr nc, .SubtractMidNoBorrow
ldh a, [hPrintNumDividend] ; try to borrow from upper byte
or $00
jr z, .DividendLessThanDivisorRestoreHigh ; can't borrow, because dividend < divisor
dec a
ldh [hPrintNumDividend], a
ldh a, [hPrintNumDividend + 1]
.SubtractMidNoBorrow
sub b
ldh [hPrintNumDividend + 1], a
ldh a, [hPrintNumDivisor + 2]
ld b, a
ldh a, [hPrintNumDividend + 2]
ldh [hPrintNumTemp + 2], a ; store low byte in case dividend < divisor, which
cp b ; goes unused, because the algorithm doesn't
jr nc, .SubtractLoNoBorrow ; clobber hPrintNumDividend + 2 in that case
ldh a, [hPrintNumDividend + 1]
and a
jr nz, .SubtractLoBorrow
ldh a, [hPrintNumDividend] ; if mid byte == zero, we need to borrow from high
and a
jr z, .DividendLessThanDivisorRestoreMid
.SubtractLoBorrowFromHigh
dec a
ldh [hPrintNumDividend], a
xor a
.SubtractLoBorrow
dec a
ldh [hPrintNumDividend + 1], a
ldh a, [hPrintNumDividend + 2]
.SubtractLoNoBorrow
sub b
ldh [hPrintNumDividend + 2], a
inc c
jr .loop
.DividendLessThanDivisorRestoreMid
ldh a, [hPrintNumTemp + 1]
ldh [hPrintNumDividend + 1], a
.DividendLessThanDivisorRestoreHigh
ldh a, [hPrintNumTemp]
ldh [hPrintNumDividend], a
.DividendLessThanDivisor
ldh a, [hPrintNumLeadingDigit]
or c
jr z, .PrintLeadingZero
ld a, "0"
add c
ld [hl], a
ldh [hPrintNumLeadingDigit], a
ret
.PrintLeadingZero:
; prints a leading zero unless they are turned off in the flags
bit 7, d
ret z
ld [hl], "0"
ret
.AdvancePointer:
; increments the pointer unless leading zeroes are not being printed,
; the number is left-aligned, and no nonzero digits have been printed yet
bit 7, d ; print leading zeroes?
jr nz, .inc
bit 6, d ; left alignment or right alignment?
jr z, .inc
ldh a, [hPrintNumLeadingDigit]
and a
ret z ; don't advance if leading digit is zero
.inc
inc hl
ret
|