diff options
Diffstat (limited to 'extras/gfx.py')
-rw-r--r-- | extras/gfx.py | 750 |
1 files changed, 750 insertions, 0 deletions
diff --git a/extras/gfx.py b/extras/gfx.py new file mode 100644 index 0000000..f27c17d --- /dev/null +++ b/extras/gfx.py @@ -0,0 +1,750 @@ +# -*- coding: utf-8 -*- + +import os +import sys +import png +from math import sqrt, floor, ceil +import argparse + +def split(list_, interval): + """ + Split a list by length. + """ + for i in xrange(0, len(list_), interval): + j = min(i + interval, len(list_)) + yield list_[i:j] + +def get_tiles(image): + """ + Split a 2bpp image into 8x8 tiles. + """ + return list(split(image, 0x10)) + +def connect(tiles): + """ + Combine 8x8 tiles into a 2bpp image. + """ + return [byte for tile in tiles for byte in tile] + +def transpose(tiles, width=None): + """ + Transpose a tile arrangement along line y=-x. + + 00 01 02 03 04 05 00 06 0c 12 18 1e + 06 07 08 09 0a 0b 01 07 0d 13 19 1f + 0c 0d 0e 0f 10 11 <-> 02 08 0e 14 1a 20 + 12 13 14 15 16 17 03 09 0f 15 1b 21 + 18 19 1a 1b 1c 1d 04 0a 10 16 1c 22 + 1e 1f 20 21 22 23 05 0b 11 17 1d 23 + + 00 01 02 03 00 04 08 + 04 05 06 07 <-> 01 05 09 + 08 09 0a 0b 02 06 0a + 03 07 0b + """ + if width == None: + width = int(sqrt(len(tiles))) # assume square image + tiles = sorted(enumerate(tiles), key= lambda (i, tile): i % width) + return [tile for i, tile in tiles] + +def transpose_tiles(image, width=None): + return connect(transpose(get_tiles(image), width)) + +def interleave(tiles, width): + """ + 00 01 02 03 04 05 00 02 04 06 08 0a + 06 07 08 09 0a 0b 01 03 05 07 09 0b + 0c 0d 0e 0f 10 11 --> 0c 0e 10 12 14 16 + 12 13 14 15 16 17 0d 0f 11 13 15 17 + 18 19 1a 1b 1c 1d 18 1a 1c 1e 20 22 + 1e 1f 20 21 22 23 19 1b 1d 1f 21 23 + """ + interleaved = [] + left, right = split(tiles[::2], width), split(tiles[1::2], width) + for l, r in zip(left, right): + interleaved += l + r + return interleaved + +def deinterleave(tiles, width): + """ + 00 02 04 06 08 0a 00 01 02 03 04 05 + 01 03 05 07 09 0b 06 07 08 09 0a 0b + 0c 0e 10 12 14 16 --> 0c 0d 0e 0f 10 11 + 0d 0f 11 13 15 17 12 13 14 15 16 17 + 18 1a 1c 1e 20 22 18 19 1a 1b 1c 1d + 19 1b 1d 1f 21 23 1e 1f 20 21 22 23 + """ + deinterleaved = [] + rows = list(split(tiles, width)) + for left, right in zip(rows[::2], rows[1::2]): + for l, r in zip(left, right): + deinterleaved += [l, r] + return deinterleaved + +def interleave_tiles(image, width): + return connect(interleave(get_tiles(image), width)) + +def deinterleave_tiles(image, width): + return connect(deinterleave(get_tiles(image), width)) + + +def condense_tiles_to_map(image, pic=0): + tiles = get_tiles(image) + + # Leave the first frame intact for pics. + new_tiles = tiles[:pic] + tilemap = range(pic) + + for i, tile in enumerate(tiles[pic:]): + if tile not in new_tiles: + new_tiles += [tile] + + # Match the first frame where possible. + this_i = i % pic if pic else i + if tile == new_tiles[this_i]: + tilemap += [this_i] + else: + tilemap += [new_tiles.index(tile)] + + new_image = connect(new_tiles) + return new_image, tilemap + + +def to_file(filename, data): + """ + Apparently open(filename, 'wb').write(bytearray(data)) won't work. + """ + file = open(filename, 'wb') + for byte in data: + file.write('%c' % byte) + file.close() + +def bin_to_rgb(word): + red = word & 0b11111 + word >>= 5 + green = word & 0b11111 + word >>= 5 + blue = word & 0b11111 + return (red, green, blue) + +def convert_binary_pal_to_text_by_filename(filename): + pal = bytearray(open(filename).read()) + return convert_binary_pal_to_text(pal) + +def convert_binary_pal_to_text(pal): + output = '' + words = [hi * 0x100 + lo for lo, hi in zip(pal[::2], pal[1::2])] + for word in words: + red, green, blue = ['%.2d' % c for c in bin_to_rgb(word)] + output += '\tRGB ' + ', '.join((red, green, blue)) + output += '\n' + return output + +def read_rgb_macros(lines): + colors = [] + for line in lines: + macro = line.split(" ")[0].strip() + if macro == 'RGB': + params = ' '.join(line.split(" ")[1:]).split(',') + red, green, blue = [int(v) for v in params] + colors += [[red, green, blue]] + return colors + +def flatten(planar): + """ + Flatten planar 2bpp image data into a quaternary pixel map. + """ + strips = [] + for bottom, top in split(planar, 2): + bottom = bottom + top = top + strip = [] + for i in xrange(7,-1,-1): + color = ( + (bottom >> i & 1) + + (top *2 >> i & 2) + ) + strip += [color] + strips += strip + return strips + + +def to_lines(image, width): + """ + Convert a tiled quaternary pixel map to lines of quaternary pixels. + """ + tile_width = 8 + tile_height = 8 + num_columns = width / tile_width + height = len(image) / width + + lines = [] + for cur_line in xrange(height): + tile_row = cur_line / tile_height + line = [] + for column in xrange(num_columns): + anchor = ( + num_columns * tile_row * tile_width * tile_height + + column * tile_width * tile_height + + cur_line % tile_height * tile_width + ) + line += image[anchor : anchor + tile_width] + lines += [line] + return lines + +def pal_to_png(filename): + """ + Interpret a .pal file as a png palette. + """ + with open(filename) as rgbs: + colors = read_rgb_macros(rgbs.readlines()) + a = 255 + palette = [] + for color in colors: + # even distribution over 000-255 + r, g, b = [int(hue * 8.25) for hue in color] + palette += [(r, g, b, a)] + white = (255,255,255,255) + black = (000,000,000,255) + if white not in palette and len(palette) < 4: + palette = [white] + palette + if black not in palette and len(palette) < 4: + palette = palette + [black] + return palette + + +def png_to_rgb(palette): + """ + Convert a png palette to rgb macros. + """ + output = '' + for color in palette: + r, g, b = [color[c] / 8 for c in 'rgb'] + output += '\tRGB ' + ', '.join(['%.2d' % hue for hue in (r, g, b)]) + output += '\n' + return output + + +def read_filename_arguments(filename): + """ + Infer graphics conversion arguments given a filename. + + Arguments are separated with '.'. + """ + parsed_arguments = {} + + int_arguments = { + 'w': 'width', + 'h': 'height', + 't': 'tile_padding', + } + arguments = os.path.splitext(filename)[0].lstrip('.').split('.')[1:] + for argument in arguments: + + # Check for integer arguments first (i.e. "w128"). + arg = argument[0] + param = argument[1:] + if param.isdigit(): + arg = int_arguments.get(arg, False) + if arg: + parsed_arguments[arg] = int(param) + + elif argument == 'arrange': + parsed_arguments['norepeat'] = True + parsed_arguments['tilemap'] = True + + # Pic dimensions (i.e. "6x6"). + elif 'x' in argument and any(map(str.isdigit, argument)): + w, h = argument.split('x') + if w.isdigit() and h.isdigit(): + parsed_arguments['pic_dimensions'] = (int(w), int(h)) + + else: + parsed_arguments[argument] = True + + return parsed_arguments + + +def export_2bpp_to_png(filein, fileout=None, pal_file=None, height=0, width=0, tile_padding=0, pic_dimensions=None, **kwargs): + + if fileout == None: + fileout = os.path.splitext(filein)[0] + '.png' + + image = open(filein, 'rb').read() + + arguments = { + 'width': width, + 'height': height, + 'pal_file': pal_file, + 'tile_padding': tile_padding, + 'pic_dimensions': pic_dimensions, + } + arguments.update(read_filename_arguments(filein)) + + if pal_file == None: + if os.path.exists(os.path.splitext(fileout)[0]+'.pal'): + arguments['pal_file'] = os.path.splitext(fileout)[0]+'.pal' + + result = convert_2bpp_to_png(image, **arguments) + width, height, palette, greyscale, bitdepth, px_map = result + + w = png.Writer( + width, + height, + palette=palette, + compression=9, + greyscale=greyscale, + bitdepth=bitdepth + ) + with open(fileout, 'wb') as f: + w.write(f, px_map) + + +def convert_2bpp_to_png(image, **kwargs): + """ + Convert a planar 2bpp graphic to png. + """ + + image = bytearray(image) + + pad_color = bytearray([0]) + + width = kwargs.get('width', 0) + height = kwargs.get('height', 0) + tile_padding = kwargs.get('tile_padding', 0) + pic_dimensions = kwargs.get('pic_dimensions', None) + pal_file = kwargs.get('pal_file', None) + interleave = kwargs.get('interleave', False) + + # Width must be specified to interleave. + if interleave and width: + image = interleave_tiles(image, width / 8) + + # Pad the image by a given number of tiles if asked. + image += pad_color * 0x10 * tile_padding + + # Some images are transposed in blocks. + if pic_dimensions: + w, h = pic_dimensions + if not width: width = w * 8 + + pic_length = w * h * 0x10 + + trailing = len(image) % pic_length + + pic = [] + for i in xrange(0, len(image) - trailing, pic_length): + pic += transpose_tiles(image[i:i+pic_length], h) + image = bytearray(pic) + image[len(image) - trailing:] + + # Pad out trailing lines. + image += pad_color * 0x10 * ((w - (len(image) / 0x10) % h) % w) + + def px_length(img): + return len(img) * 4 + def tile_length(img): + return len(img) * 4 / (8*8) + + if width and height: + tile_width = width / 8 + more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width)) + image += pad_color * 0x10 * more_tile_padding + + elif width and not height: + tile_width = width / 8 + more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width)) + image += pad_color * 0x10 * more_tile_padding + height = px_length(image) / width + + elif height and not width: + tile_height = height / 8 + more_tile_padding = (tile_height - (tile_length(image) % tile_height or tile_height)) + image += pad_color * 0x10 * more_tile_padding + width = px_length(image) / height + + # at least one dimension should be given + if width * height != px_length(image): + # look for possible combos of width/height that would form a rectangle + matches = [] + # Height need not be divisible by 8, but width must. + # See pokered gfx/minimize_pic.1bpp. + for w in range(8, px_length(image) / 2 + 1, 8): + h = px_length(image) / w + if w * h == px_length(image): + matches += [(w, h)] + # go for the most square image + if len(matches): + width, height = sorted(matches, key= lambda (w, h): (h % 8 != 0, w + h))[0] # favor height + else: + raise Exception, 'Image can\'t be divided into tiles (%d px)!' % (px_length(image)) + + # convert tiles to lines + lines = to_lines(flatten(image), width) + + if pal_file == None: + palette = None + greyscale = True + bitdepth = 2 + px_map = [[3 - pixel for pixel in line] for line in lines] + + else: # gbc color + palette = pal_to_png(pal_file) + greyscale = False + bitdepth = 8 + px_map = [[pixel for pixel in line] for line in lines] + + return width, height, palette, greyscale, bitdepth, px_map + +def export_png_to_2bpp(filein, fileout=None, palout=None, **kwargs): + + arguments = { + 'tile_padding': 0, + 'pic_dimensions': None, + 'animate': False, + 'stupid_bitmask_hack': [], + } + arguments.update(kwargs) + arguments.update(read_filename_arguments(filein)) + + image, arguments = png_to_2bpp(filein, **arguments) + + if fileout == None: + fileout = os.path.splitext(filein)[0] + '.2bpp' + to_file(fileout, image) + + tmap = arguments.get('tmap') + + if tmap != None and arguments['animate'] and arguments['pic_dimensions']: + # Generate pic animation data. + frame_text, bitmask_text = get_pic_animation(tmap, *arguments['pic_dimensions']) + + frames_path = os.path.join(os.path.split(fileout)[0], 'frames.asm') + with open(frames_path, 'w') as out: + out.write(frame_text) + + bitmask_path = os.path.join(os.path.split(fileout)[0], 'bitmask.asm') + + # The following Pokemon have a bitmask dummied out. + for exception in arguments['stupid_bitmask_hack']: + if exception in bitmask_path: + bitmasks = bitmask_text.split(';') + bitmasks[-1] = bitmasks[-1].replace('1', '0') + bitmask_text = ';'.join(bitmasks) + + with open(bitmask_path, 'w') as out: + out.write(bitmask_text) + + elif tmap != None and arguments.get('tilemap', False): + tilemap_path = os.path.splitext(fileout)[0] + '.tilemap' + to_file(tilemap_path, tmap) + + palette = arguments.get('palette') + if palout == None: + palout = os.path.splitext(fileout)[0] + '.pal' + export_palette(palette, palout) + + +def get_image_padding(width, height, wstep=8, hstep=8): + + padding = { + 'left': 0, + 'right': 0, + 'top': 0, + 'bottom': 0, + } + + if width % wstep and width >= wstep: + pad = float(width % wstep) / 2 + padding['left'] = int(ceil(pad)) + padding['right'] = int(floor(pad)) + + if height % hstep and height >= hstep: + pad = float(height % hstep) / 2 + padding['top'] = int(ceil(pad)) + padding['bottom'] = int(floor(pad)) + + return padding + + +def png_to_2bpp(filein, **kwargs): + """ + Convert a png image to planar 2bpp. + """ + + arguments = { + 'tile_padding': 0, + 'pic_dimensions': False, + 'interleave': False, + 'norepeat': False, + 'tilemap': False, + } + arguments.update(kwargs) + + if type(filein) is str: + filein = open(filein) + + assert type(filein) is file + + width, height, rgba, info = png.Reader(filein).asRGBA8() + + # png.Reader returns flat pixel data. Nested is easier to work with + len_px = len('rgba') + image = [] + palette = [] + for line in rgba: + newline = [] + for px in xrange(0, len(line), len_px): + color = dict(zip('rgba', line[px:px+len_px])) + if color not in palette: + if len(palette) < 4: + palette += [color] + else: + # TODO Find the nearest match + print 'WARNING: %s: Color %s truncated to' % (filein, color), + color = sorted(palette, key=lambda x: sum(x.values()))[0] + print color + newline += [color] + image += [newline] + + assert len(palette) <= 4, '%s: palette should be 4 colors, is really %d (%s)' % (filein, len(palette), palette) + + # Pad out smaller palettes with greyscale colors + greyscale = { + 'black': { 'r': 0x00, 'g': 0x00, 'b': 0x00, 'a': 0xff }, + 'grey': { 'r': 0x55, 'g': 0x55, 'b': 0x55, 'a': 0xff }, + 'gray': { 'r': 0xaa, 'g': 0xaa, 'b': 0xaa, 'a': 0xff }, + 'white': { 'r': 0xff, 'g': 0xff, 'b': 0xff, 'a': 0xff }, + } + preference = 'white', 'black', 'grey', 'gray' + for hue in map(greyscale.get, preference): + if len(palette) >= 4: + break + if hue not in palette: + palette += [hue] + + palette.sort(key=lambda x: sum(x.values())) + + # Game Boy palette order + palette.reverse() + + # Map pixels to quaternary color ids + padding = get_image_padding(width, height) + width += padding['left'] + padding['right'] + height += padding['top'] + padding['bottom'] + pad = bytearray([0]) + + qmap = [] + qmap += pad * width * padding['top'] + for line in image: + qmap += pad * padding['left'] + for color in line: + qmap += [palette.index(color)] + qmap += pad * padding['right'] + qmap += pad * width * padding['bottom'] + + # Graphics are stored in tiles instead of lines + tile_width = 8 + tile_height = 8 + num_columns = max(width, tile_width) / tile_width + num_rows = max(height, tile_height) / tile_height + image = [] + + for row in xrange(num_rows): + for column in xrange(num_columns): + + # Split it up into strips to convert to planar data + for strip in xrange(min(tile_height, height)): + anchor = ( + row * num_columns * tile_width * tile_height + + column * tile_width + + strip * width + ) + line = qmap[anchor : anchor + tile_width] + bottom, top = 0, 0 + for bit, quad in enumerate(line): + bottom += (quad & 1) << (7 - bit) + top += (quad /2 & 1) << (7 - bit) + image += [bottom, top] + + dim = arguments['pic_dimensions'] + if dim: + if type(dim) in (tuple, list): + w, h = dim + else: + # infer dimensions based on width. + w = width / tile_width + h = height / tile_height + if h % w == 0: + h = w + + tiles = get_tiles(image) + pic_length = w * h + tile_width = width / 8 + trailing = len(tiles) % pic_length + new_image = [] + for block in xrange(len(tiles) / pic_length): + offset = (h * tile_width) * ((block * w) / tile_width) + ((block * w) % tile_width) + pic = [] + for row in xrange(h): + index = offset + (row * tile_width) + pic += tiles[index:index + w] + new_image += transpose(pic, w) + new_image += tiles[len(tiles) - trailing:] + image = connect(new_image) + + # Remove any tile padding used to make the png rectangular. + image = image[:len(image) - arguments['tile_padding'] * 0x10] + + tmap = None + + if arguments['interleave']: + image = deinterleave_tiles(image, num_columns) + + if arguments['pic_dimensions']: + image, tmap = condense_tiles_to_map(image, w * h) + elif arguments['norepeat']: + image, tmap = condense_tiles_to_map(image) + if not arguments['tilemap']: + tmap = None + + arguments.update({ 'palette': palette, 'tmap': tmap, }) + + return image, arguments + + +def export_palette(palette, filename): + """ + Export a palette from png to rgb macros in a .pal file. + """ + + if os.path.exists(filename): + + # Pic palettes are 2 colors (black/white are added later). + with open(filename) as rgbs: + colors = read_rgb_macros(rgbs.readlines()) + + if len(colors) == 2: + palette = palette[1:3] + + text = png_to_rgb(palette) + with open(filename, 'w') as out: + out.write(text) + +def convert_2bpp_to_1bpp(data): + """ + Convert planar 2bpp image data to 1bpp. Assume images are two colors. + """ + return data[::2] + +def convert_1bpp_to_2bpp(data): + """ + Convert 1bpp image data to planar 2bpp (black/white). + """ + output = [] + for i in data: + output += [i, i] + return output + + +def export_2bpp_to_1bpp(filename): + name, extension = os.path.splitext(filename) + image = open(filename, 'rb').read() + image = convert_2bpp_to_1bpp(image) + to_file(name + '.1bpp', image) + +def export_1bpp_to_2bpp(filename): + name, extension = os.path.splitext(filename) + image = open(filename, 'rb').read() + image = convert_1bpp_to_2bpp(image) + to_file(name + '.2bpp', image) + + +def export_1bpp_to_png(filename, fileout=None): + + if fileout == None: + fileout = os.path.splitext(filename)[0] + '.png' + + arguments = read_filename_arguments(filename) + + image = open(filename, 'rb').read() + image = convert_1bpp_to_2bpp(image) + + result = convert_2bpp_to_png(image, **arguments) + width, height, palette, greyscale, bitdepth, px_map = result + + w = png.Writer(width, height, palette=palette, compression=9, greyscale=greyscale, bitdepth=bitdepth) + with open(fileout, 'wb') as f: + w.write(f, px_map) + + +def export_png_to_1bpp(filename, fileout=None): + + if fileout == None: + fileout = os.path.splitext(filename)[0] + '.1bpp' + + arguments = read_filename_arguments(filename) + image = png_to_1bpp(filename, **arguments) + + to_file(fileout, image) + +def png_to_1bpp(filename, **kwargs): + image, kwargs = png_to_2bpp(filename, **kwargs) + return convert_2bpp_to_1bpp(image) + +def convert_to_2bpp(filenames=[]): + for filename in filenames: + filename, name, extension = try_decompress(filename) + if extension == '.1bpp': + export_1bpp_to_2bpp(filename) + elif extension == '.2bpp': + pass + elif extension == '.png': + export_png_to_2bpp(filename) + else: + raise Exception, "Don't know how to convert {} to 2bpp!".format(filename) + +def convert_to_1bpp(filenames=[]): + for filename in filenames: + filename, name, extension = try_decompress(filename) + if extension == '.1bpp': + pass + elif extension == '.2bpp': + export_2bpp_to_1bpp(filename) + elif extension == '.png': + export_png_to_1bpp(filename) + else: + raise Exception, "Don't know how to convert {} to 1bpp!".format(filename) + +def convert_to_png(filenames=[]): + for filename in filenames: + filename, name, extension = try_decompress(filename) + if extension == '.1bpp': + export_1bpp_to_png(filename) + elif extension == '.2bpp': + export_2bpp_to_png(filename) + elif extension == '.png': + pass + else: + raise Exception, "Don't know how to convert {} to png!".format(filename) + +def main(): + ap = argparse.ArgumentParser() + ap.add_argument('mode') + ap.add_argument('filenames', nargs='*') + args = ap.parse_args() + + method = { + '2bpp': convert_to_2bpp, + '1bpp': convert_to_1bpp, + 'png': convert_to_png, + }.get(args.mode, None) + + if method == None: + raise Exception, "Unknown conversion method!" + + method(args.filenames) + + +if __name__ == "__main__": + main() + |