1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
|
#include "global.h"
#include "trig.h"
// values of sin(x*(π/128)) as Q8.8 fixed-point numbers from x = 0 to x = 319
const s16 gSineTable[] =
{
0x0000, // sin(0*(π/128)) = 0
0x0006, // sin(1*(π/128)) = 0.0234375
0x000C, // sin(2*(π/128)) = 0.046875
0x0012, // sin(3*(π/128)) = 0.0703125
0x0019, // sin(4*(π/128)) = 0.09765625
0x001F, // sin(5*(π/128)) = 0.12109375
0x0025, // sin(6*(π/128)) = 0.14453125
0x002B, // sin(7*(π/128)) = 0.16796875
0x0031, // sin(8*(π/128)) = 0.19140625
0x0038, // sin(9*(π/128)) = 0.21875
0x003E, // sin(10*(π/128)) = 0.2421875
0x0044, // sin(11*(π/128)) = 0.265625
0x004A, // sin(12*(π/128)) = 0.2890625
0x0050, // sin(13*(π/128)) = 0.3125
0x0056, // sin(14*(π/128)) = 0.3359375
0x005C, // sin(15*(π/128)) = 0.359375
0x0061, // sin(16*(π/128)) = 0.37890625
0x0067, // sin(17*(π/128)) = 0.40234375
0x006D, // sin(18*(π/128)) = 0.42578125
0x0073, // sin(19*(π/128)) = 0.44921875
0x0078, // sin(20*(π/128)) = 0.46875
0x007E, // sin(21*(π/128)) = 0.4921875
0x0083, // sin(22*(π/128)) = 0.51171875
0x0088, // sin(23*(π/128)) = 0.53125
0x008E, // sin(24*(π/128)) = 0.5546875
0x0093, // sin(25*(π/128)) = 0.57421875
0x0098, // sin(26*(π/128)) = 0.59375
0x009D, // sin(27*(π/128)) = 0.61328125
0x00A2, // sin(28*(π/128)) = 0.6328125
0x00A7, // sin(29*(π/128)) = 0.65234375
0x00AB, // sin(30*(π/128)) = 0.66796875
0x00B0, // sin(31*(π/128)) = 0.6875
0x00B5, // sin(32*(π/128)) = 0.70703125
0x00B9, // sin(33*(π/128)) = 0.72265625
0x00BD, // sin(34*(π/128)) = 0.73828125
0x00C1, // sin(35*(π/128)) = 0.75390625
0x00C5, // sin(36*(π/128)) = 0.76953125
0x00C9, // sin(37*(π/128)) = 0.78515625
0x00CD, // sin(38*(π/128)) = 0.80078125
0x00D1, // sin(39*(π/128)) = 0.81640625
0x00D4, // sin(40*(π/128)) = 0.828125
0x00D8, // sin(41*(π/128)) = 0.84375
0x00DB, // sin(42*(π/128)) = 0.85546875
0x00DE, // sin(43*(π/128)) = 0.8671875
0x00E1, // sin(44*(π/128)) = 0.87890625
0x00E4, // sin(45*(π/128)) = 0.890625
0x00E7, // sin(46*(π/128)) = 0.90234375
0x00EA, // sin(47*(π/128)) = 0.9140625
0x00EC, // sin(48*(π/128)) = 0.921875
0x00EE, // sin(49*(π/128)) = 0.9296875
0x00F1, // sin(50*(π/128)) = 0.94140625
0x00F3, // sin(51*(π/128)) = 0.94921875
0x00F4, // sin(52*(π/128)) = 0.953125
0x00F6, // sin(53*(π/128)) = 0.9609375
0x00F8, // sin(54*(π/128)) = 0.96875
0x00F9, // sin(55*(π/128)) = 0.97265625
0x00FB, // sin(56*(π/128)) = 0.98046875
0x00FC, // sin(57*(π/128)) = 0.984375
0x00FD, // sin(58*(π/128)) = 0.98828125
0x00FE, // sin(59*(π/128)) = 0.9921875
0x00FE, // sin(60*(π/128)) = 0.9921875
0x00FF, // sin(61*(π/128)) = 0.99609375
0x00FF, // sin(62*(π/128)) = 0.99609375
0x00FF, // sin(63*(π/128)) = 0.99609375
0x0100, // sin(64*(π/128)) = 1
0x00FF, // sin(65*(π/128)) = 0.99609375
0x00FF, // sin(66*(π/128)) = 0.99609375
0x00FF, // sin(67*(π/128)) = 0.99609375
0x00FE, // sin(68*(π/128)) = 0.9921875
0x00FE, // sin(69*(π/128)) = 0.9921875
0x00FD, // sin(70*(π/128)) = 0.98828125
0x00FC, // sin(71*(π/128)) = 0.984375
0x00FB, // sin(72*(π/128)) = 0.98046875
0x00F9, // sin(73*(π/128)) = 0.97265625
0x00F8, // sin(74*(π/128)) = 0.96875
0x00F6, // sin(75*(π/128)) = 0.9609375
0x00F4, // sin(76*(π/128)) = 0.953125
0x00F3, // sin(77*(π/128)) = 0.94921875
0x00F1, // sin(78*(π/128)) = 0.94140625
0x00EE, // sin(79*(π/128)) = 0.9296875
0x00EC, // sin(80*(π/128)) = 0.921875
0x00EA, // sin(81*(π/128)) = 0.9140625
0x00E7, // sin(82*(π/128)) = 0.90234375
0x00E4, // sin(83*(π/128)) = 0.890625
0x00E1, // sin(84*(π/128)) = 0.87890625
0x00DE, // sin(85*(π/128)) = 0.8671875
0x00DB, // sin(86*(π/128)) = 0.85546875
0x00D8, // sin(87*(π/128)) = 0.84375
0x00D4, // sin(88*(π/128)) = 0.828125
0x00D1, // sin(89*(π/128)) = 0.81640625
0x00CD, // sin(90*(π/128)) = 0.80078125
0x00C9, // sin(91*(π/128)) = 0.78515625
0x00C5, // sin(92*(π/128)) = 0.76953125
0x00C1, // sin(93*(π/128)) = 0.75390625
0x00BD, // sin(94*(π/128)) = 0.73828125
0x00B9, // sin(95*(π/128)) = 0.72265625
0x00B5, // sin(96*(π/128)) = 0.70703125
0x00B0, // sin(97*(π/128)) = 0.6875
0x00AB, // sin(98*(π/128)) = 0.66796875
0x00A7, // sin(99*(π/128)) = 0.65234375
0x00A2, // sin(100*(π/128)) = 0.6328125
0x009D, // sin(101*(π/128)) = 0.61328125
0x0098, // sin(102*(π/128)) = 0.59375
0x0093, // sin(103*(π/128)) = 0.57421875
0x008E, // sin(104*(π/128)) = 0.5546875
0x0088, // sin(105*(π/128)) = 0.53125
0x0083, // sin(106*(π/128)) = 0.51171875
0x007E, // sin(107*(π/128)) = 0.4921875
0x0078, // sin(108*(π/128)) = 0.46875
0x0073, // sin(109*(π/128)) = 0.44921875
0x006D, // sin(110*(π/128)) = 0.42578125
0x0067, // sin(111*(π/128)) = 0.40234375
0x0061, // sin(112*(π/128)) = 0.37890625
0x005C, // sin(113*(π/128)) = 0.359375
0x0056, // sin(114*(π/128)) = 0.3359375
0x0050, // sin(115*(π/128)) = 0.3125
0x004A, // sin(116*(π/128)) = 0.2890625
0x0044, // sin(117*(π/128)) = 0.265625
0x003E, // sin(118*(π/128)) = 0.2421875
0x0038, // sin(119*(π/128)) = 0.21875
0x0031, // sin(120*(π/128)) = 0.19140625
0x002B, // sin(121*(π/128)) = 0.16796875
0x0025, // sin(122*(π/128)) = 0.14453125
0x001F, // sin(123*(π/128)) = 0.12109375
0x0019, // sin(124*(π/128)) = 0.09765625
0x0012, // sin(125*(π/128)) = 0.0703125
0x000C, // sin(126*(π/128)) = 0.046875
0x0006, // sin(127*(π/128)) = 0.0234375
0x0000, // sin(128*(π/128)) = 0
0xFFFA, // sin(129*(π/128)) = -0.0234375
0xFFF4, // sin(130*(π/128)) = -0.046875
0xFFEE, // sin(131*(π/128)) = -0.0703125
0xFFE7, // sin(132*(π/128)) = -0.09765625
0xFFE1, // sin(133*(π/128)) = -0.12109375
0xFFDB, // sin(134*(π/128)) = -0.14453125
0xFFD5, // sin(135*(π/128)) = -0.16796875
0xFFCF, // sin(136*(π/128)) = -0.19140625
0xFFC8, // sin(137*(π/128)) = -0.21875
0xFFC2, // sin(138*(π/128)) = -0.2421875
0xFFBC, // sin(139*(π/128)) = -0.265625
0xFFB6, // sin(140*(π/128)) = -0.2890625
0xFFB0, // sin(141*(π/128)) = -0.3125
0xFFAA, // sin(142*(π/128)) = -0.3359375
0xFFA4, // sin(143*(π/128)) = -0.359375
0xFF9F, // sin(144*(π/128)) = -0.37890625
0xFF99, // sin(145*(π/128)) = -0.40234375
0xFF93, // sin(146*(π/128)) = -0.42578125
0xFF8D, // sin(147*(π/128)) = -0.44921875
0xFF88, // sin(148*(π/128)) = -0.46875
0xFF82, // sin(149*(π/128)) = -0.4921875
0xFF7D, // sin(150*(π/128)) = -0.51171875
0xFF78, // sin(151*(π/128)) = -0.53125
0xFF72, // sin(152*(π/128)) = -0.5546875
0xFF6D, // sin(153*(π/128)) = -0.57421875
0xFF68, // sin(154*(π/128)) = -0.59375
0xFF63, // sin(155*(π/128)) = -0.61328125
0xFF5E, // sin(156*(π/128)) = -0.6328125
0xFF59, // sin(157*(π/128)) = -0.65234375
0xFF55, // sin(158*(π/128)) = -0.66796875
0xFF50, // sin(159*(π/128)) = -0.6875
0xFF4B, // sin(160*(π/128)) = -0.70703125
0xFF47, // sin(161*(π/128)) = -0.72265625
0xFF43, // sin(162*(π/128)) = -0.73828125
0xFF3F, // sin(163*(π/128)) = -0.75390625
0xFF3B, // sin(164*(π/128)) = -0.76953125
0xFF37, // sin(165*(π/128)) = -0.78515625
0xFF33, // sin(166*(π/128)) = -0.80078125
0xFF2F, // sin(167*(π/128)) = -0.81640625
0xFF2C, // sin(168*(π/128)) = -0.828125
0xFF28, // sin(169*(π/128)) = -0.84375
0xFF25, // sin(170*(π/128)) = -0.85546875
0xFF22, // sin(171*(π/128)) = -0.8671875
0xFF1F, // sin(172*(π/128)) = -0.87890625
0xFF1C, // sin(173*(π/128)) = -0.890625
0xFF19, // sin(174*(π/128)) = -0.90234375
0xFF16, // sin(175*(π/128)) = -0.9140625
0xFF14, // sin(176*(π/128)) = -0.921875
0xFF12, // sin(177*(π/128)) = -0.9296875
0xFF0F, // sin(178*(π/128)) = -0.94140625
0xFF0D, // sin(179*(π/128)) = -0.94921875
0xFF0C, // sin(180*(π/128)) = -0.953125
0xFF0A, // sin(181*(π/128)) = -0.9609375
0xFF08, // sin(182*(π/128)) = -0.96875
0xFF07, // sin(183*(π/128)) = -0.97265625
0xFF05, // sin(184*(π/128)) = -0.98046875
0xFF04, // sin(185*(π/128)) = -0.984375
0xFF03, // sin(186*(π/128)) = -0.98828125
0xFF02, // sin(187*(π/128)) = -0.9921875
0xFF02, // sin(188*(π/128)) = -0.9921875
0xFF01, // sin(189*(π/128)) = -0.99609375
0xFF01, // sin(190*(π/128)) = -0.99609375
0xFF01, // sin(191*(π/128)) = -0.99609375
0xFF00, // sin(192*(π/128)) = -1
0xFF01, // sin(193*(π/128)) = -0.99609375
0xFF01, // sin(194*(π/128)) = -0.99609375
0xFF01, // sin(195*(π/128)) = -0.99609375
0xFF02, // sin(196*(π/128)) = -0.9921875
0xFF02, // sin(197*(π/128)) = -0.9921875
0xFF03, // sin(198*(π/128)) = -0.98828125
0xFF04, // sin(199*(π/128)) = -0.984375
0xFF05, // sin(200*(π/128)) = -0.98046875
0xFF07, // sin(201*(π/128)) = -0.97265625
0xFF08, // sin(202*(π/128)) = -0.96875
0xFF0A, // sin(203*(π/128)) = -0.9609375
0xFF0C, // sin(204*(π/128)) = -0.953125
0xFF0D, // sin(205*(π/128)) = -0.94921875
0xFF0F, // sin(206*(π/128)) = -0.94140625
0xFF12, // sin(207*(π/128)) = -0.9296875
0xFF14, // sin(208*(π/128)) = -0.921875
0xFF16, // sin(209*(π/128)) = -0.9140625
0xFF19, // sin(210*(π/128)) = -0.90234375
0xFF1C, // sin(211*(π/128)) = -0.890625
0xFF1F, // sin(212*(π/128)) = -0.87890625
0xFF22, // sin(213*(π/128)) = -0.8671875
0xFF25, // sin(214*(π/128)) = -0.85546875
0xFF28, // sin(215*(π/128)) = -0.84375
0xFF2C, // sin(216*(π/128)) = -0.828125
0xFF2F, // sin(217*(π/128)) = -0.81640625
0xFF33, // sin(218*(π/128)) = -0.80078125
0xFF37, // sin(219*(π/128)) = -0.78515625
0xFF3B, // sin(220*(π/128)) = -0.76953125
0xFF3F, // sin(221*(π/128)) = -0.75390625
0xFF43, // sin(222*(π/128)) = -0.73828125
0xFF47, // sin(223*(π/128)) = -0.72265625
0xFF4B, // sin(224*(π/128)) = -0.70703125
0xFF50, // sin(225*(π/128)) = -0.6875
0xFF55, // sin(226*(π/128)) = -0.66796875
0xFF59, // sin(227*(π/128)) = -0.65234375
0xFF5E, // sin(228*(π/128)) = -0.6328125
0xFF63, // sin(229*(π/128)) = -0.61328125
0xFF68, // sin(230*(π/128)) = -0.59375
0xFF6D, // sin(231*(π/128)) = -0.57421875
0xFF72, // sin(232*(π/128)) = -0.5546875
0xFF78, // sin(233*(π/128)) = -0.53125
0xFF7D, // sin(234*(π/128)) = -0.51171875
0xFF82, // sin(235*(π/128)) = -0.4921875
0xFF88, // sin(236*(π/128)) = -0.46875
0xFF8D, // sin(237*(π/128)) = -0.44921875
0xFF93, // sin(238*(π/128)) = -0.42578125
0xFF99, // sin(239*(π/128)) = -0.40234375
0xFF9F, // sin(240*(π/128)) = -0.37890625
0xFFA4, // sin(241*(π/128)) = -0.359375
0xFFAA, // sin(242*(π/128)) = -0.3359375
0xFFB0, // sin(243*(π/128)) = -0.3125
0xFFB6, // sin(244*(π/128)) = -0.2890625
0xFFBC, // sin(245*(π/128)) = -0.265625
0xFFC2, // sin(246*(π/128)) = -0.2421875
0xFFC8, // sin(247*(π/128)) = -0.21875
0xFFCF, // sin(248*(π/128)) = -0.19140625
0xFFD5, // sin(249*(π/128)) = -0.16796875
0xFFDB, // sin(250*(π/128)) = -0.14453125
0xFFE1, // sin(251*(π/128)) = -0.12109375
0xFFE7, // sin(252*(π/128)) = -0.09765625
0xFFEE, // sin(253*(π/128)) = -0.0703125
0xFFF4, // sin(254*(π/128)) = -0.046875
0xFFFA, // sin(255*(π/128)) = -0.0234375
0x0000, // sin(256*(π/128)) = 0
0x0006, // sin(257*(π/128)) = 0.0234375
0x000C, // sin(258*(π/128)) = 0.046875
0x0012, // sin(259*(π/128)) = 0.0703125
0x0019, // sin(260*(π/128)) = 0.09765625
0x001F, // sin(261*(π/128)) = 0.12109375
0x0025, // sin(262*(π/128)) = 0.14453125
0x002B, // sin(263*(π/128)) = 0.16796875
0x0031, // sin(264*(π/128)) = 0.19140625
0x0038, // sin(265*(π/128)) = 0.21875
0x003E, // sin(266*(π/128)) = 0.2421875
0x0044, // sin(267*(π/128)) = 0.265625
0x004A, // sin(268*(π/128)) = 0.2890625
0x0050, // sin(269*(π/128)) = 0.3125
0x0056, // sin(270*(π/128)) = 0.3359375
0x005C, // sin(271*(π/128)) = 0.359375
0x0061, // sin(272*(π/128)) = 0.37890625
0x0067, // sin(273*(π/128)) = 0.40234375
0x006D, // sin(274*(π/128)) = 0.42578125
0x0073, // sin(275*(π/128)) = 0.44921875
0x0078, // sin(276*(π/128)) = 0.46875
0x007E, // sin(277*(π/128)) = 0.4921875
0x0083, // sin(278*(π/128)) = 0.51171875
0x0088, // sin(279*(π/128)) = 0.53125
0x008E, // sin(280*(π/128)) = 0.5546875
0x0093, // sin(281*(π/128)) = 0.57421875
0x0098, // sin(282*(π/128)) = 0.59375
0x009D, // sin(283*(π/128)) = 0.61328125
0x00A2, // sin(284*(π/128)) = 0.6328125
0x00A7, // sin(285*(π/128)) = 0.65234375
0x00AB, // sin(286*(π/128)) = 0.66796875
0x00B0, // sin(287*(π/128)) = 0.6875
0x00B5, // sin(288*(π/128)) = 0.70703125
0x00B9, // sin(289*(π/128)) = 0.72265625
0x00BD, // sin(290*(π/128)) = 0.73828125
0x00C1, // sin(291*(π/128)) = 0.75390625
0x00C5, // sin(292*(π/128)) = 0.76953125
0x00C9, // sin(293*(π/128)) = 0.78515625
0x00CD, // sin(294*(π/128)) = 0.80078125
0x00D1, // sin(295*(π/128)) = 0.81640625
0x00D4, // sin(296*(π/128)) = 0.828125
0x00D8, // sin(297*(π/128)) = 0.84375
0x00DB, // sin(298*(π/128)) = 0.85546875
0x00DE, // sin(299*(π/128)) = 0.8671875
0x00E1, // sin(300*(π/128)) = 0.87890625
0x00E4, // sin(301*(π/128)) = 0.890625
0x00E7, // sin(302*(π/128)) = 0.90234375
0x00EA, // sin(303*(π/128)) = 0.9140625
0x00EC, // sin(304*(π/128)) = 0.921875
0x00EE, // sin(305*(π/128)) = 0.9296875
0x00F1, // sin(306*(π/128)) = 0.94140625
0x00F3, // sin(307*(π/128)) = 0.94921875
0x00F4, // sin(308*(π/128)) = 0.953125
0x00F6, // sin(309*(π/128)) = 0.9609375
0x00F8, // sin(310*(π/128)) = 0.96875
0x00F9, // sin(311*(π/128)) = 0.97265625
0x00FB, // sin(312*(π/128)) = 0.98046875
0x00FC, // sin(313*(π/128)) = 0.984375
0x00FD, // sin(314*(π/128)) = 0.98828125
0x00FE, // sin(315*(π/128)) = 0.9921875
0x00FE, // sin(316*(π/128)) = 0.9921875
0x00FF, // sin(317*(π/128)) = 0.99609375
0x00FF, // sin(318*(π/128)) = 0.99609375
0x00FF, // sin(319*(π/128)) = 0.99609375
};
// values of sin(x) as Q4.12 fixed-point numbers from x = 0° to x = 179°
const s16 gSineDegreeTable[] =
{
0x0000, // sin(0°) = 0
0x0047, // sin(1°) = 0.017333984375
0x008F, // sin(2°) = 0.034912109375
0x00D6, // sin(3°) = 0.05224609375
0x011E, // sin(4°) = 0.06982421875
0x0165, // sin(5°) = 0.087158203125
0x01AC, // sin(6°) = 0.1044921875
0x01F3, // sin(7°) = 0.121826171875
0x023A, // sin(8°) = 0.13916015625
0x0281, // sin(9°) = 0.156494140625
0x02C7, // sin(10°) = 0.173583984375
0x030E, // sin(11°) = 0.19091796875
0x0354, // sin(12°) = 0.2080078125
0x0399, // sin(13°) = 0.224853515625
0x03DF, // sin(14°) = 0.241943359375
0x0424, // sin(15°) = 0.2587890625
0x0469, // sin(16°) = 0.275634765625
0x04AE, // sin(17°) = 0.29248046875
0x04F2, // sin(18°) = 0.30908203125
0x0536, // sin(19°) = 0.32568359375
0x0579, // sin(20°) = 0.342041015625
0x05BC, // sin(21°) = 0.3583984375
0x05FE, // sin(22°) = 0.37451171875
0x0640, // sin(23°) = 0.390625
0x0682, // sin(24°) = 0.40673828125
0x06C3, // sin(25°) = 0.422607421875
0x0704, // sin(26°) = 0.4384765625
0x0744, // sin(27°) = 0.4541015625
0x0783, // sin(28°) = 0.469482421875
0x07C2, // sin(29°) = 0.48486328125
0x0800, // sin(30°) = 0.5
0x083E, // sin(31°) = 0.51513671875
0x087B, // sin(32°) = 0.530029296875
0x08B7, // sin(33°) = 0.544677734375
0x08F2, // sin(34°) = 0.55908203125
0x092D, // sin(35°) = 0.573486328125
0x0968, // sin(36°) = 0.587890625
0x09A1, // sin(37°) = 0.601806640625
0x09DA, // sin(38°) = 0.61572265625
0x0A12, // sin(39°) = 0.62939453125
0x0A49, // sin(40°) = 0.642822265625
0x0A7F, // sin(41°) = 0.656005859375
0x0AB5, // sin(42°) = 0.669189453125
0x0AE9, // sin(43°) = 0.681884765625
0x0B1D, // sin(44°) = 0.694580078125
0x0B50, // sin(45°) = 0.70703125
0x0B82, // sin(46°) = 0.71923828125
0x0BB4, // sin(47°) = 0.7314453125
0x0BE4, // sin(48°) = 0.7431640625
0x0C13, // sin(49°) = 0.754638671875
0x0C42, // sin(50°) = 0.76611328125
0x0C6F, // sin(51°) = 0.777099609375
0x0C9C, // sin(52°) = 0.7880859375
0x0CC7, // sin(53°) = 0.798583984375
0x0CF2, // sin(54°) = 0.80908203125
0x0D1B, // sin(55°) = 0.819091796875
0x0D44, // sin(56°) = 0.8291015625
0x0D6B, // sin(57°) = 0.838623046875
0x0D92, // sin(58°) = 0.84814453125
0x0DB7, // sin(59°) = 0.857177734375
0x0DDB, // sin(60°) = 0.865966796875
0x0DFE, // sin(61°) = 0.87451171875
0x0E21, // sin(62°) = 0.883056640625
0x0E42, // sin(63°) = 0.89111328125
0x0E61, // sin(64°) = 0.898681640625
0x0E80, // sin(65°) = 0.90625
0x0E9E, // sin(66°) = 0.91357421875
0x0EBA, // sin(67°) = 0.92041015625
0x0ED6, // sin(68°) = 0.92724609375
0x0EF0, // sin(69°) = 0.93359375
0x0F09, // sin(70°) = 0.939697265625
0x0F21, // sin(71°) = 0.945556640625
0x0F38, // sin(72°) = 0.951171875
0x0F4D, // sin(73°) = 0.956298828125
0x0F61, // sin(74°) = 0.961181640625
0x0F74, // sin(75°) = 0.9658203125
0x0F86, // sin(76°) = 0.97021484375
0x0F97, // sin(77°) = 0.974365234375
0x0FA6, // sin(78°) = 0.97802734375
0x0FB5, // sin(79°) = 0.981689453125
0x0FC2, // sin(80°) = 0.98486328125
0x0FCE, // sin(81°) = 0.98779296875
0x0FD8, // sin(82°) = 0.990234375
0x0FE1, // sin(83°) = 0.992431640625
0x0FE9, // sin(84°) = 0.994384765625
0x0FF0, // sin(85°) = 0.99609375
0x0FF6, // sin(86°) = 0.99755859375
0x0FFA, // sin(87°) = 0.99853515625
0x0FFD, // sin(88°) = 0.999267578125
0x0FFF, // sin(89°) = 0.999755859375
0x1000, // sin(90°) = 1
0x0FFF, // sin(91°) = 0.999755859375
0x0FFD, // sin(92°) = 0.999267578125
0x0FFA, // sin(93°) = 0.99853515625
0x0FF6, // sin(94°) = 0.99755859375
0x0FF0, // sin(95°) = 0.99609375
0x0FE9, // sin(96°) = 0.994384765625
0x0FE1, // sin(97°) = 0.992431640625
0x0FD8, // sin(98°) = 0.990234375
0x0FCE, // sin(99°) = 0.98779296875
0x0FC2, // sin(100°) = 0.98486328125
0x0FB5, // sin(101°) = 0.981689453125
0x0FA6, // sin(102°) = 0.97802734375
0x0F97, // sin(103°) = 0.974365234375
0x0F86, // sin(104°) = 0.97021484375
0x0F74, // sin(105°) = 0.9658203125
0x0F61, // sin(106°) = 0.961181640625
0x0F4D, // sin(107°) = 0.956298828125
0x0F38, // sin(108°) = 0.951171875
0x0F21, // sin(109°) = 0.945556640625
0x0F09, // sin(110°) = 0.939697265625
0x0EF0, // sin(111°) = 0.93359375
0x0ED6, // sin(112°) = 0.92724609375
0x0EBA, // sin(113°) = 0.92041015625
0x0E9E, // sin(114°) = 0.91357421875
0x0E80, // sin(115°) = 0.90625
0x0E61, // sin(116°) = 0.898681640625
0x0E42, // sin(117°) = 0.89111328125
0x0E21, // sin(118°) = 0.883056640625
0x0DFE, // sin(119°) = 0.87451171875
0x0DDB, // sin(120°) = 0.865966796875
0x0DB7, // sin(121°) = 0.857177734375
0x0D92, // sin(122°) = 0.84814453125
0x0D6B, // sin(123°) = 0.838623046875
0x0D44, // sin(124°) = 0.8291015625
0x0D1B, // sin(125°) = 0.819091796875
0x0CF2, // sin(126°) = 0.80908203125
0x0CC7, // sin(127°) = 0.798583984375
0x0C9C, // sin(128°) = 0.7880859375
0x0C6F, // sin(129°) = 0.777099609375
0x0C42, // sin(130°) = 0.76611328125
0x0C13, // sin(131°) = 0.754638671875
0x0BE4, // sin(132°) = 0.7431640625
0x0BB4, // sin(133°) = 0.7314453125
0x0B82, // sin(134°) = 0.71923828125
0x0B50, // sin(135°) = 0.70703125
0x0B1D, // sin(136°) = 0.694580078125
0x0AE9, // sin(137°) = 0.681884765625
0x0AB5, // sin(138°) = 0.669189453125
0x0A7F, // sin(139°) = 0.656005859375
0x0A49, // sin(140°) = 0.642822265625
0x0A12, // sin(141°) = 0.62939453125
0x09DA, // sin(142°) = 0.61572265625
0x09A1, // sin(143°) = 0.601806640625
0x0968, // sin(144°) = 0.587890625
0x092D, // sin(145°) = 0.573486328125
0x08F2, // sin(146°) = 0.55908203125
0x08B7, // sin(147°) = 0.544677734375
0x087B, // sin(148°) = 0.530029296875
0x083E, // sin(149°) = 0.51513671875
0x0800, // sin(150°) = 0.5
0x07C2, // sin(151°) = 0.48486328125
0x0783, // sin(152°) = 0.469482421875
0x0744, // sin(153°) = 0.4541015625
0x0704, // sin(154°) = 0.4384765625
0x06C3, // sin(155°) = 0.422607421875
0x0682, // sin(156°) = 0.40673828125
0x0640, // sin(157°) = 0.390625
0x05FE, // sin(158°) = 0.37451171875
0x05BC, // sin(159°) = 0.3583984375
0x0579, // sin(160°) = 0.342041015625
0x0536, // sin(161°) = 0.32568359375
0x04F2, // sin(162°) = 0.30908203125
0x04AE, // sin(163°) = 0.29248046875
0x0469, // sin(164°) = 0.275634765625
0x0424, // sin(165°) = 0.2587890625
0x03DF, // sin(166°) = 0.241943359375
0x0399, // sin(167°) = 0.224853515625
0x0354, // sin(168°) = 0.2080078125
0x030E, // sin(169°) = 0.19091796875
0x02C7, // sin(170°) = 0.173583984375
0x0281, // sin(171°) = 0.156494140625
0x023A, // sin(172°) = 0.13916015625
0x01F3, // sin(173°) = 0.121826171875
0x01AC, // sin(174°) = 0.1044921875
0x0165, // sin(175°) = 0.087158203125
0x011E, // sin(176°) = 0.06982421875
0x00D6, // sin(177°) = 0.05224609375
0x008F, // sin(178°) = 0.034912109375
0x0047, // sin(179°) = 0.017333984375
};
// amplitude * sin(index*(π/128))
s16 Sin(s16 index, s16 amplitude)
{
return (amplitude * gSineTable[index]) >> 8;
}
// amplitude * cos(index*(π/128))
s16 Cos(s16 index, s16 amplitude)
{
return (amplitude * gSineTable[index + 64]) >> 8;
}
// angle in degrees
s16 Sin2(u16 angle)
{
s32 angleMod = angle % 180;
s32 negate = ((angle / 180) & 1);
s16 value = gSineDegreeTable[angleMod];
if (negate)
return -value;
else
return value;
}
// angle in degrees
s16 Cos2(u16 angle)
{
return Sin2(angle + 90);
}
|