summaryrefslogtreecommitdiff
path: root/gcc/config/sh/sh.h
diff options
context:
space:
mode:
authorYamaArashi <shadow962@live.com>2016-02-11 01:12:34 -0800
committerYamaArashi <shadow962@live.com>2016-02-11 01:12:34 -0800
commitb84b6b23fa58beb5674b37279742eb65461ca076 (patch)
treea85da124cbf9f888a31b750ede3a832c2c6b96aa /gcc/config/sh/sh.h
parent23e2a17097740709d4466a802e03992116b12900 (diff)
delete irrelevant configs
Diffstat (limited to 'gcc/config/sh/sh.h')
-rwxr-xr-xgcc/config/sh/sh.h2232
1 files changed, 0 insertions, 2232 deletions
diff --git a/gcc/config/sh/sh.h b/gcc/config/sh/sh.h
deleted file mode 100755
index eff316a..0000000
--- a/gcc/config/sh/sh.h
+++ /dev/null
@@ -1,2232 +0,0 @@
-/* Definitions of target machine for GNU compiler for Hitachi Super-H.
- Copyright (C) 1993-1998 Free Software Foundation, Inc.
- Contributed by Steve Chamberlain (sac@cygnus.com).
- Improved by Jim Wilson (wilson@cygnus.com).
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-#define TARGET_VERSION \
- fputs (" (Hitachi SH)", stderr);
-
-/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
- include it here, because hconfig.h is also included by gencodes.c . */
-extern int code_for_indirect_jump_scratch;
-
-/* Generate SDB debugging information. */
-
-#define SDB_DEBUGGING_INFO
-
-/* Output DBX (stabs) debugging information if doing -gstabs. */
-
-#include "dbxcoff.h"
-
-#define SDB_DELIM ";"
-
-#define CPP_SPEC "%{ml:-D__LITTLE_ENDIAN__} \
-%{m1:-D__sh1__} \
-%{m2:-D__sh2__} \
-%{m3:-D__sh3__} \
-%{m3e:-D__SH3E__} \
-%{m4-single-only:-D__SH4_SINGLE_ONLY__} \
-%{m4-single:-D__SH4_SINGLE__} \
-%{m4:-D__SH4__} \
-%{!m1:%{!m2:%{!m3:%{!m3e:%{!m4:%{!m4-single:%{!m4-single-only:-D__sh1__}}}}}}}"
-
-#define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)"
-
-#define ASM_SPEC "%{ml:-little} %{mrelax:-relax}"
-
-#define LINK_SPEC "%{ml:-m shl} %{mrelax:-relax}"
-
-/* We can not debug without a frame pointer. */
-/* #define CAN_DEBUG_WITHOUT_FP */
-
-#define CONDITIONAL_REGISTER_USAGE \
- if (! TARGET_SH4 || ! TARGET_FMOVD) \
- { \
- int regno; \
- for (regno = FIRST_XD_REG; regno <= LAST_XD_REG; regno++) \
- fixed_regs[regno] = call_used_regs[regno] = 1; \
- if (! TARGET_SH4) \
- { \
- if (! TARGET_SH3E) \
- { \
- int regno; \
- for (regno = FIRST_FP_REG; regno <= LAST_FP_REG; regno++) \
- fixed_regs[regno] = call_used_regs[regno] = 1; \
- fixed_regs[FPUL_REG] = call_used_regs[FPUL_REG] = 1; \
- } \
- } \
- } \
- /* Hitachi saves and restores mac registers on call. */ \
- if (TARGET_HITACHI) \
- { \
- call_used_regs[MACH_REG] = 0; \
- call_used_regs[MACL_REG] = 0; \
- }
-
-/* ??? Need to write documentation for all SH options and add it to the
- invoke.texi file. */
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-extern int target_flags;
-#define ISIZE_BIT (1<<1)
-#define DALIGN_BIT (1<<6)
-#define SH1_BIT (1<<8)
-#define SH2_BIT (1<<9)
-#define SH3_BIT (1<<10)
-#define SH3E_BIT (1<<11)
-#define HARD_SH4_BIT (1<<5)
-#define FPU_SINGLE_BIT (1<<7)
-#define SH4_BIT (1<<12)
-#define FMOVD_BIT (1<<4)
-#define SPACE_BIT (1<<13)
-#define BIGTABLE_BIT (1<<14)
-#define RELAX_BIT (1<<15)
-#define HITACHI_BIT (1<<22)
-#define PADSTRUCT_BIT (1<<28)
-#define LITTLE_ENDIAN_BIT (1<<29)
-#define IEEE_BIT (1<<30)
-
-/* Nonzero if we should dump out instruction size info. */
-#define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
-
-/* Nonzero to align doubles on 64 bit boundaries. */
-#define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
-
-/* Nonzero if we should generate code using type 1 insns. */
-#define TARGET_SH1 (target_flags & SH1_BIT)
-
-/* Nonzero if we should generate code using type 2 insns. */
-#define TARGET_SH2 (target_flags & SH2_BIT)
-
-/* Nonzero if we should generate code using type 3 insns. */
-#define TARGET_SH3 (target_flags & SH3_BIT)
-
-/* Nonzero if we should generate code using type 3E insns. */
-#define TARGET_SH3E (target_flags & SH3E_BIT)
-
-/* Nonzero if the cache line size is 32. */
-#define TARGET_CACHE32 (target_flags & HARD_SH4_BIT)
-
-/* Nonzero if we schedule for a superscalar implementation. */
-#define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
-
-/* Nonzero if the target has separate instruction and data caches. */
-#define TARGET_HARVARD (target_flags & HARD_SH4_BIT)
-
-/* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */
-#define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
-
-/* Nonzero if the default precision of th FPU is single */
-#define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
-
-/* Nonzero if we should generate code using type 4 insns. */
-#define TARGET_SH4 (target_flags & SH4_BIT)
-
-/* Nonzero if we should generate fmovd. */
-#define TARGET_FMOVD (target_flags & FMOVD_BIT)
-
-/* Nonzero if we respect NANs. */
-#define TARGET_IEEE (target_flags & IEEE_BIT)
-
-/* Nonzero if we should generate smaller code rather than faster code. */
-#define TARGET_SMALLCODE (target_flags & SPACE_BIT)
-
-/* Nonzero to use long jump tables. */
-#define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
-
-/* Nonzero to generate pseudo-ops needed by the assembler and linker
- to do function call relaxing. */
-#define TARGET_RELAX (target_flags & RELAX_BIT)
-
-/* Nonzero if using Hitachi's calling convention. */
-#define TARGET_HITACHI (target_flags & HITACHI_BIT)
-
-/* Nonzero if padding structures to a multiple of 4 bytes. This is
- incompatible with Hitachi's compiler, and gives unusual structure layouts
- which confuse programmers.
- ??? This option is not useful, but is retained in case there are people
- who are still relying on it. It may be deleted in the future. */
-#define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT)
-
-/* Nonzero if generating code for a little endian SH. */
-#define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
-
-#define TARGET_SWITCHES \
-{ {"1", SH1_BIT}, \
- {"2", SH2_BIT}, \
- {"3", SH3_BIT|SH2_BIT}, \
- {"3e", SH3E_BIT|SH3_BIT|SH2_BIT|FPU_SINGLE_BIT}, \
- {"4-single-only", SH3E_BIT|SH3_BIT|SH2_BIT|SH3E_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT}, \
- {"4-single", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT},\
- {"4", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|HARD_SH4_BIT}, \
- {"b", -LITTLE_ENDIAN_BIT}, \
- {"bigtable", BIGTABLE_BIT}, \
- {"dalign", DALIGN_BIT}, \
- {"fmovd", FMOVD_BIT}, \
- {"hitachi", HITACHI_BIT}, \
- {"ieee", IEEE_BIT}, \
- {"isize", ISIZE_BIT}, \
- {"l", LITTLE_ENDIAN_BIT}, \
- {"no-ieee", -IEEE_BIT}, \
- {"padstruct", PADSTRUCT_BIT}, \
- {"relax", RELAX_BIT}, \
- {"space", SPACE_BIT}, \
- SUBTARGET_SWITCHES \
- {"", TARGET_DEFAULT} \
-}
-
-/* This are meant to be redefined in the host dependent files */
-#define SUBTARGET_SWITCHES
-
-#define TARGET_DEFAULT (0)
-
-#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
-do { \
- if (LEVEL) \
- flag_omit_frame_pointer = -1; \
- if (LEVEL) \
- sh_flag_remove_dead_before_cse = 1; \
- if (SIZE) \
- target_flags |= SPACE_BIT; \
-} while (0)
-
-#define ASSEMBLER_DIALECT assembler_dialect
-
-extern int assembler_dialect;
-
-#define OVERRIDE_OPTIONS \
-do { \
- sh_cpu = CPU_SH1; \
- assembler_dialect = 0; \
- if (TARGET_SH2) \
- sh_cpu = CPU_SH2; \
- if (TARGET_SH3) \
- sh_cpu = CPU_SH3; \
- if (TARGET_SH3E) \
- sh_cpu = CPU_SH3E; \
- if (TARGET_SH4) \
- { \
- assembler_dialect = 1; \
- sh_cpu = CPU_SH4; \
- } \
- if (! TARGET_SH4 || ! TARGET_FMOVD) \
- { \
- /* Prevent usage of explicit register names for variables \
- for registers not present / not addressable in the \
- target architecture. */ \
- int regno; \
- for (regno = (TARGET_SH3E) ? 17 : 0; \
- regno <= 24; regno++) \
- fp_reg_names[regno][0] = 0; \
- } \
- if (flag_omit_frame_pointer < 0) \
- /* The debugging information is sufficient, \
- but gdb doesn't implement this yet */ \
- if (0) \
- flag_omit_frame_pointer \
- = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \
- || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
- else \
- flag_omit_frame_pointer = 0; \
- \
- /* Never run scheduling before reload, since that can \
- break global alloc, and generates slower code anyway due \
- to the pressure on R0. */ \
- flag_schedule_insns = 0; \
- sh_addr_diff_vec_mode = TARGET_BIGTABLE ? SImode : HImode; \
-} while (0)
-
-/* Target machine storage layout. */
-
-/* Define to use software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
-#define REAL_ARITHMETIC
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
-
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered. */
-#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
-
-/* Define this to set the endianness to use in libgcc2.c, which can
- not depend on target_flags. */
-#if defined(__LITTLE_ENDIAN__)
-#define LIBGCC2_WORDS_BIG_ENDIAN 0
-#else
-#define LIBGCC2_WORDS_BIG_ENDIAN 1
-#endif
-
-/* Number of bits in an addressable storage unit. */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD 32
-#define MAX_BITS_PER_WORD 32
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD 4
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE 32
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY 32
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY BIGGEST_ALIGNMENT
-
-/* The log (base 2) of the cache line size, in bytes. Processors prior to
- SH3 have no actual cache, but they fetch code in chunks of 4 bytes. */
-#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH3 ? 4 : 2)
-
-/* Allocation boundary (in *bits*) for the code of a function.
- 32 bit alignment is faster, because instructions are always fetched as a
- pair from a longword boundary. */
-#define FUNCTION_BOUNDARY (TARGET_SMALLCODE ? 16 : (1 << CACHE_LOG) * 8)
-
-/* Alignment of field after `int : 0' in a structure. */
-#define EMPTY_FIELD_BOUNDARY 32
-
-/* No data type wants to be aligned rounder than this. */
-#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
-
-/* The best alignment to use in cases where we have a choice. */
-#define FASTEST_ALIGNMENT 32
-
-/* Make strings word-aligned so strcpy from constants will be faster. */
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- ((TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < FASTEST_ALIGNMENT) \
- ? FASTEST_ALIGNMENT : (ALIGN))
-
-#ifndef MAX_OFILE_ALIGNMENT
-#define MAX_OFILE_ALIGNMENT 128
-#endif
-
-/* Make arrays of chars word-aligned for the same reasons. */
-#define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
-
-/* Number of bits which any structure or union's size must be a
- multiple of. Each structure or union's size is rounded up to a
- multiple of this. */
-#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
-
-/* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 1
-
-/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
-#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
- barrier_align (LABEL_AFTER_BARRIER)
-
-#define LOOP_ALIGN(A_LABEL) \
- ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \
- ? 0 : sh_loop_align (A_LABEL))
-
-#define LABEL_ALIGN(A_LABEL) \
-( \
- (PREV_INSN (A_LABEL) \
- && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
- && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
- && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == 1) \
- /* explicit alignment insn in constant tables. */ \
- ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
- : 0)
-
-/* Jump tables must be 32 bit aligned, no matter the size of the element. */
-#define ADDR_VEC_ALIGN(ADDR_VEC) 2
-
-/* The base two logarithm of the known minimum alignment of an insn length. */
-#define INSN_LENGTH_ALIGNMENT(A_INSN) \
- (GET_CODE (A_INSN) == INSN \
- ? 1 \
- : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
- ? 1 \
- : CACHE_LOG)
-
-/* Standard register usage. */
-
-/* Register allocation for the Hitachi calling convention:
-
- r0 arg return
- r1..r3 scratch
- r4..r7 args in
- r8..r13 call saved
- r14 frame pointer/call saved
- r15 stack pointer
- ap arg pointer (doesn't really exist, always eliminated)
- pr subroutine return address
- t t bit
- mach multiply/accumulate result, high part
- macl multiply/accumulate result, low part.
- fpul fp/int communication register
- rap return address pointer register
- fr0 fp arg return
- fr1..fr3 scratch floating point registers
- fr4..fr11 fp args in
- fr12..fr15 call saved floating point registers */
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers. */
-
-#define AP_REG 16
-#define PR_REG 17
-#define T_REG 18
-#define GBR_REG 19
-#define MACH_REG 20
-#define MACL_REG 21
-#define SPECIAL_REG(REGNO) ((REGNO) >= 18 && (REGNO) <= 21)
-#define FPUL_REG 22
-#define RAP_REG 23
-#define FIRST_FP_REG 24
-#define LAST_FP_REG 39
-#define FIRST_XD_REG 40
-#define LAST_XD_REG 47
-#define FPSCR_REG 48
-
-#define FIRST_PSEUDO_REGISTER 49
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
-
- Mach register is fixed 'cause it's only 10 bits wide for SH1.
- It is 32 bits wide for SH2. */
-
-#define FIXED_REGISTERS \
- { 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 1, \
- 1, 1, 1, 1, \
- 1, 1, 0, 1, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 1, \
-}
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
-#define CALL_USED_REGISTERS \
- { 1, 1, 1, 1, \
- 1, 1, 1, 1, \
- 0, 0, 0, 0, \
- 0, 0, 0, 1, \
- 1, 0, 1, 1, \
- 1, 1, 1, 1, \
- 1, 1, 1, 1, \
- 1, 1, 1, 1, \
- 1, 1, 1, 1, \
- 0, 0, 0, 0, \
- 1, 1, 1, 1, \
- 1, 1, 0, 0, \
- 1, \
-}
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG \
- ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- We can allow any mode in any general register. The special registers
- only allow SImode. Don't allow any mode in the PR. */
-
-/* We cannot hold DCmode values in the XD registers because alter_reg
- handles subregs of them incorrectly. We could work around this by
- spacing the XD registers like the DR registers, but this would require
- additional memory in every compilation to hold larger register vectors.
- We could hold SFmode / SCmode values in XD registers, but that
- would require a tertiary reload when reloading from / to memory,
- and a secondary reload to reload from / to general regs; that
- seems to be a loosing proposition. */
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (SPECIAL_REG (REGNO) ? (MODE) == SImode \
- : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
- : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG && (MODE) == SFmode \
- ? 1 \
- : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG \
- ? ((MODE) == SFmode \
- || (TARGET_SH3E && (MODE) == SCmode) \
- || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode) \
- && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
- : (REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG \
- ? (MODE) == DFmode \
- : (REGNO) == PR_REG ? 0 \
- : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
- : 1)
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* Define this if the program counter is overloaded on a register. */
-/* #define PC_REGNUM 15*/
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 15
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 14
-
-/* Fake register that holds the address on the stack of the
- current function's return address. */
-#define RETURN_ADDRESS_POINTER_REGNUM 23
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms may be accessed
- via the stack pointer) in functions that seem suitable. */
-
-#define FRAME_POINTER_REQUIRED 0
-
-/* Definitions for register eliminations.
-
- We have three registers that can be eliminated on the SH. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer.
- Third, there is the return address pointer, which can also be replaced
- with either the stack or the frame pointer. */
-
-/* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
-
-/* If you add any registers here that are not actually hard registers,
- and that have any alternative of elimination that doesn't always
- apply, you need to amend calc_live_regs to exclude it, because
- reload spills all eliminable registers where it sees an
- can_eliminate == 0 entry, thus making them 'live' .
- If you add any hard registers that can be eliminated in different
- ways, you have to patch reload to spill them only when all alternatives
- of elimination fail. */
-
-#define ELIMINABLE_REGS \
-{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
-
-/* Given FROM and TO register numbers, say whether this elimination
- is allowed. */
-#define CAN_ELIMINATE(FROM, TO) \
- (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- OFFSET = initial_elimination_offset ((FROM), (TO))
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 16
-
-/* Register in which the static-chain is passed to a function. */
-#define STATIC_CHAIN_REGNUM 13
-
-/* The register in which a struct value address is passed. */
-
-#define STRUCT_VALUE_REGNUM 2
-
-/* If the structure value address is not passed in a register, define
- `STRUCT_VALUE' as an expression returning an RTX for the place
- where the address is passed. If it returns 0, the address is
- passed as an "invisible" first argument. */
-
-/*#define STRUCT_VALUE ((rtx)0)*/
-
-/* Don't default to pcc-struct-return, because we have already specified
- exactly how to return structures in the RETURN_IN_MEMORY macro. */
-
-#define DEFAULT_PCC_STRUCT_RETURN 0
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-/* The SH has two sorts of general registers, R0 and the rest. R0 can
- be used as the destination of some of the arithmetic ops. There are
- also some special purpose registers; the T bit register, the
- Procedure Return Register and the Multiply Accumulate Registers. */
-/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
- reg_class_subunion. We don't want to have an actual union class
- of these, because it would only be used when both classes are calculated
- to give the same cost, but there is only one FPUL register.
- Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
- applying to the actual instruction alternative considered. E.g., the
- y/r alternative of movsi_ie is considered to have no more cost that
- the r/r alternative, which is patently untrue. */
-
-enum reg_class
-{
- NO_REGS,
- R0_REGS,
- PR_REGS,
- T_REGS,
- MAC_REGS,
- FPUL_REGS,
- GENERAL_REGS,
- FP0_REGS,
- FP_REGS,
- DF_REGS,
- FPSCR_REGS,
- GENERAL_FP_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-#define REG_CLASS_NAMES \
-{ \
- "NO_REGS", \
- "R0_REGS", \
- "PR_REGS", \
- "T_REGS", \
- "MAC_REGS", \
- "FPUL_REGS", \
- "GENERAL_REGS", \
- "FP0_REGS", \
- "FP_REGS", \
- "DF_REGS", \
- "FPSCR_REGS", \
- "GENERAL_FP_REGS", \
- "ALL_REGS", \
-}
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ \
- { 0x00000000, 0x00000000 }, /* NO_REGS */ \
- { 0x00000001, 0x00000000 }, /* R0_REGS */ \
- { 0x00020000, 0x00000000 }, /* PR_REGS */ \
- { 0x00040000, 0x00000000 }, /* T_REGS */ \
- { 0x00300000, 0x00000000 }, /* MAC_REGS */ \
- { 0x00400000, 0x00000000 }, /* FPUL_REGS */ \
- { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS */ \
- { 0x01000000, 0x00000000 }, /* FP0_REGS */ \
- { 0xFF000000, 0x000000FF }, /* FP_REGS */ \
- { 0xFF000000, 0x0000FFFF }, /* DF_REGS */ \
- { 0x00000000, 0x00010000 }, /* FPSCR_REGS */ \
- { 0xFF81FFFF, 0x0000FFFF }, /* GENERAL_FP_REGS */ \
- { 0xFFFFFFFF, 0x0001FFFF }, /* ALL_REGS */ \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-extern int regno_reg_class[];
-#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
-
-/* When defined, the compiler allows registers explicitly used in the
- rtl to be used as spill registers but prevents the compiler from
- extending the lifetime of these registers. */
-
-#define SMALL_REGISTER_CLASSES 1
-
-/* The order in which register should be allocated. */
-/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
- and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
- spilled or used otherwise, we better have the FP_REGS allocated first. */
-#define REG_ALLOC_ORDER \
- { 25,26,27,28,29,30,31,24,32,33,34,35,36,37,38,39, \
- 40,41,42,43,44,45,46,47,48, \
- 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14, \
- 22,15,16,17,18,19,20,21,23 }
-
-/* The class value for index registers, and the one for base regs. */
-#define INDEX_REG_CLASS R0_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine
- description. */
-extern enum reg_class reg_class_from_letter[];
-
-#define REG_CLASS_FROM_LETTER(C) \
- ( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS )
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
- I: arithmetic operand -127..128, as used in add, sub, etc
- K: shift operand 1,2,8 or 16
- L: logical operand 0..255, as used in and, or, etc.
- M: constant 1
- N: constant 0 */
-
-#define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
- && ((HOST_WIDE_INT)(VALUE)) <= 127)
-#define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
-#define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
- && ((HOST_WIDE_INT)(VALUE)) <= 255)
-#define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
-#define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
- : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
- : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
- : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
- : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
- : 0)
-
-/* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
-((C) == 'G' ? fp_zero_operand (VALUE) \
- : (C) == 'H' ? fp_one_operand (VALUE) \
- : (C) == 'F')
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-
-#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
-
-#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
- ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS \
- || (CLASS) == DF_REGS) \
- && (GET_CODE (X) == REG && REGNO (X) <= AP_REG)) \
- || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \
- && GET_CODE (X) == REG \
- && REGNO (X) >= FIRST_FP_REG && REGNO (X) <= LAST_FP_REG)) \
- && MODE == SFmode) \
- ? FPUL_REGS \
- : ((CLASS) == FPUL_REGS \
- && (GET_CODE (X) == MEM \
- || (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER)))\
- ? GENERAL_REGS \
- : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
- && GET_CODE (X) == REG && REGNO (X) > 15 \
- && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
- ? GENERAL_REGS : NO_REGS)
-
-#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
- ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS) \
- && immediate_operand ((X), (MODE)) \
- && ! ((fp_zero_operand (X) || fp_one_operand (X)) && (MODE) == SFmode))\
- ? R0_REGS \
- : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \
- ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X)) \
- ? GENERAL_REGS \
- : R0_REGS) \
- : (CLASS == FPSCR_REGS \
- && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
- || GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)) \
- ? GENERAL_REGS \
- : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS.
-
- On SH this is the size of MODE in words. */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-/* If defined, gives a class of registers that cannot be used as the
- operand of a SUBREG that changes the size of the object. */
-
-#define CLASS_CANNOT_CHANGE_SIZE DF_REGS
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define the number of registers that can hold parameters.
- These macros are used only in other macro definitions below. */
-
-#define NPARM_REGS(MODE) \
- (TARGET_SH3E && (MODE) == SFmode \
- ? 8 \
- : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
- ? 8 \
- : 4)
-
-#define FIRST_PARM_REG 4
-#define FIRST_RET_REG 0
-
-#define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
-#define FIRST_FP_RET_REG FIRST_FP_REG
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this macro if the addresses of local variable slots are at
- negative offsets from the frame pointer.
-
- The SH only has positive indexes, so grow the frame up. */
-/* #define FRAME_GROWS_DOWNWARD */
-
-/* Offset from the frame pointer to the first local variable slot to
- be allocated. */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by. */
-/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
- When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
- do correct alignment. */
-#if 0
-#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
-#endif
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* Value is the number of byte of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the SH, the caller does not pop any of its arguments that were passed
- on the stack. */
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
-
-/* Nonzero if we do not know how to pass TYPE solely in registers.
- Values that come in registers with inconvenient padding are stored
- to memory at the function start. */
-
-#define MUST_PASS_IN_STACK(MODE,TYPE) \
- ((TYPE) != 0 \
- && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
- || TREE_ADDRESSABLE (TYPE)))
-/* Some subroutine macros specific to this machine. */
-
-#define BASE_RETURN_VALUE_REG(MODE) \
- ((TARGET_SH3E && ((MODE) == SFmode)) \
- ? FIRST_FP_RET_REG \
- : TARGET_SH3E && (MODE) == SCmode \
- ? FIRST_FP_RET_REG \
- : (TARGET_SH4 \
- && ((MODE) == DFmode || (MODE) == SFmode \
- || (MODE) == DCmode || (MODE) == SCmode )) \
- ? FIRST_FP_RET_REG \
- : FIRST_RET_REG)
-
-#define BASE_ARG_REG(MODE) \
- ((TARGET_SH3E && ((MODE) == SFmode)) \
- ? FIRST_FP_PARM_REG \
- : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
- ? FIRST_FP_PARM_REG \
- : FIRST_PARM_REG)
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0.
- For the SH, this is like LIBCALL_VALUE, except that we must change the
- mode like PROMOTE_MODE does.
- ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
- tested here has to be kept in sync with the one in explow.c:promote_mode. */
-
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, \
- ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
- && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \
- && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
- || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
- || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
- || TREE_CODE (VALTYPE) == CHAR_TYPE \
- || TREE_CODE (VALTYPE) == REAL_TYPE \
- || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
- ? SImode : TYPE_MODE (VALTYPE)), \
- BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-#define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, (MODE), BASE_RETURN_VALUE_REG (MODE))
-
-/* 1 if N is a possible register number for a function value. */
-#define FUNCTION_VALUE_REGNO_P(REGNO) \
- ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG))
-
-/* 1 if N is a possible register number for function argument passing. */
-#define FUNCTION_ARG_REGNO_P(REGNO) \
- (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4)) \
- || (TARGET_SH3E \
- && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG + 8)))
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On SH, this is a single integer, which is a number of words
- of arguments scanned so far (including the invisible argument,
- if any, which holds the structure-value-address).
- Thus NARGREGS or more means all following args should go on the stack. */
-
-enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
-struct sh_args {
- int arg_count[2];
-};
-
-#define CUMULATIVE_ARGS struct sh_args
-
-#define GET_SH_ARG_CLASS(MODE) \
- ((TARGET_SH3E && (MODE) == SFmode) \
- ? SH_ARG_FLOAT \
- : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
- ? SH_ARG_FLOAT : SH_ARG_INT)
-
-#define ROUND_ADVANCE(SIZE) \
- (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-/* Round a register number up to a proper boundary for an arg of mode
- MODE.
-
- The SH doesn't care about double alignment, so we only
- round doubles to even regs when asked to explicitly. */
-
-#define ROUND_REG(CUM, MODE) \
- (((TARGET_ALIGN_DOUBLE \
- || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \
- && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
- && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
- ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
- + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
- : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On SH, the offset always starts at 0: the first parm reg is always
- the same reg for a given argument class. */
-
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
- do { \
- (CUM).arg_count[(int) SH_ARG_INT] = 0; \
- (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \
- } while (0)
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be
- available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
- ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
- = (ROUND_REG ((CUM), (MODE)) \
- + ((MODE) == BLKmode \
- ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
- : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
-
-/* Return boolean indicating arg of mode MODE will be passed in a reg.
- This macro is only used in this file. */
-
-#define PASS_IN_REG_P(CUM, MODE, TYPE) \
- (((TYPE) == 0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
- && (TARGET_SH3E \
- ? ((MODE) == BLKmode \
- ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
- + int_size_in_bytes (TYPE)) \
- <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
- : ((ROUND_REG((CUM), (MODE)) \
- + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
- <= NPARM_REGS (MODE))) \
- : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On SH the first args are normally in registers
- and the rest are pushed. Any arg that starts within the first
- NPARM_REGS words is at least partially passed in a register unless
- its data type forbids. */
-
-extern int current_function_varargs;
-
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
- && ((NAMED) || TARGET_SH3E || ! current_function_varargs)) \
- ? gen_rtx (REG, (MODE), \
- ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) \
- ^ ((MODE) == SFmode && TARGET_SH4 \
- && TARGET_LITTLE_ENDIAN != 0))) \
- : 0)
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero.
-
- We sometimes split args. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
- && ! TARGET_SH4 \
- && (ROUND_REG ((CUM), (MODE)) \
- + ((MODE) != BLKmode \
- ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
- : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \
- - NPARM_REGS (MODE) > 0)) \
- ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \
- : 0)
-
-extern int current_function_anonymous_args;
-
-/* Perform any needed actions needed for a function that is receiving a
- variable number of arguments. */
-
-#define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
- current_function_anonymous_args = 1;
-
-/* Call the function profiler with a given profile label.
- We use two .aligns, so as to make sure that both the .long is aligned
- on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
- from the trapa instruction. */
-
-#define FUNCTION_PROFILER(STREAM,LABELNO) \
-{ \
- fprintf((STREAM), "\t.align\t2\n"); \
- fprintf((STREAM), "\ttrapa\t#33\n"); \
- fprintf((STREAM), "\t.align\t2\n"); \
- asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
-}
-
-/* Define this macro if the code for function profiling should come
- before the function prologue. Normally, the profiling code comes
- after. */
-
-#define PROFILE_BEFORE_PROLOGUE
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
-#define EXIT_IGNORE_STACK 1
-
-/* Generate the assembly code for function exit
- Just dump out any accumulated constant table. */
-
-#define FUNCTION_EPILOGUE(STREAM, SIZE) function_epilogue ((STREAM), (SIZE))
-
-/*
- On the SH, the trampoline looks like
- 2 0002 DD02 mov.l l2,r13
- 1 0000 D301 mov.l l1,r3
- 3 0004 4D2B jmp @r13
- 4 0006 0009 nop
- 5 0008 00000000 l1: .long function
- 6 000c 00000000 l2: .long area */
-
-/* Length in units of the trampoline for entering a nested function. */
-#define TRAMPOLINE_SIZE 16
-
-/* Alignment required for a trampoline in bits . */
-#define TRAMPOLINE_ALIGNMENT \
- ((CACHE_LOG < 3 || TARGET_SMALLCODE && ! TARGET_HARVARD) ? 32 : 64)
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
-{ \
- emit_move_insn (gen_rtx (MEM, SImode, (TRAMP)), \
- GEN_INT (TARGET_LITTLE_ENDIAN ? 0xd301dd02 : 0xdd02d301));\
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 4)), \
- GEN_INT (TARGET_LITTLE_ENDIAN ? 0x00094d2b : 0x4d2b0009));\
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
- (CXT)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
- (FNADDR)); \
- if (TARGET_HARVARD) \
- emit_insn (gen_ic_invalidate_line (TRAMP)); \
-}
-
-/* A C expression whose value is RTL representing the value of the return
- address for the frame COUNT steps up from the current frame.
- FRAMEADDR is already the frame pointer of the COUNT frame, so we
- can ignore COUNT. */
-
-#define RETURN_ADDR_RTX(COUNT, FRAME) \
- (((COUNT) == 0) \
- ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM)) \
- : (rtx) 0)
-
-/* Generate necessary RTL for __builtin_saveregs().
- ARGLIST is the argument list; see expr.c. */
-extern struct rtx_def *sh_builtin_saveregs ();
-#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sh_builtin_saveregs (ARGLIST)
-
-/* Addressing modes, and classification of registers for them. */
-#define HAVE_POST_INCREMENT 1
-/*#define HAVE_PRE_INCREMENT 1*/
-/*#define HAVE_POST_DECREMENT 1*/
-#define HAVE_PRE_DECREMENT 1
-
-#define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
- ? 0 : 1)
-#define USE_LOAD_PRE_DECREMENT(mode) 0
-#define USE_STORE_POST_INCREMENT(mode) 0
-#define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
- ? 0 : 1)
-
-#define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \
- < (TARGET_SMALLCODE ? 2 : \
- ((ALIGN >= 4) ? 16 : 2)))
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG)
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) == 0 || (unsigned) reg_renumber[(REGNO)] == 0)
-
-/* Maximum number of registers that can appear in a valid memory
- address. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-/* Recognize any constant value that is a valid address. */
-
-#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
-
-/* Nonzero if the constant value X is a legitimate general operand. */
-
-#define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) != CONST_DOUBLE \
- || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
- || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X))))
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used. */
-
-#ifndef REG_OK_STRICT
-
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
-#define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-#define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) == 0 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* Nonzero if X/OFFSET is a hard reg that can be used as an index
- or if X is a pseudo reg. */
-#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
- ((REGNO (X) == 0 && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#else
-
-/* Nonzero if X is a hard reg that can be used as a base reg. */
-#define REG_OK_FOR_BASE_P(X) \
- REGNO_OK_FOR_BASE_P (REGNO (X))
-
-/* Nonzero if X is a hard reg that can be used as an index. */
-#define REG_OK_FOR_INDEX_P(X) \
- REGNO_OK_FOR_INDEX_P (REGNO (X))
-
-/* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
-#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
- (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
-
-#endif
-
-/* The 'Q' constraint is a pc relative load operand. */
-#define EXTRA_CONSTRAINT_Q(OP) \
- (GET_CODE (OP) == MEM && \
- ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
- || (GET_CODE (XEXP ((OP), 0)) == CONST \
- && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
- && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
-
-#define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
- : 0)
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
-
-#define MODE_DISP_OK_4(X,MODE) \
-(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
- && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
-
-#define MODE_DISP_OK_8(X,MODE) \
-((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
- && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
-
-#define BASE_REGISTER_RTX_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == SUBREG \
- && GET_CODE (SUBREG_REG (X)) == REG \
- && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
-
-/* Since this must be r0, which is a single register class, we must check
- SUBREGs more carefully, to be sure that we don't accept one that extends
- outside the class. */
-#define INDEX_REGISTER_RTX_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
- || (GET_CODE (X) == SUBREG \
- && GET_CODE (SUBREG_REG (X)) == REG \
- && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_WORD (X))))
-
-/* Jump to LABEL if X is a valid address RTX. This must also take
- REG_OK_STRICT into account when deciding about valid registers, but it uses
- the above macros so we are in luck.
-
- Allow REG
- REG+disp
- REG+r0
- REG++
- --REG */
-
-/* ??? The SH3e does not have the REG+disp addressing mode when loading values
- into the FRx registers. We implement this by setting the maximum offset
- to zero when the value is SFmode. This also restricts loading of SFmode
- values into the integer registers, but that can't be helped. */
-
-/* The SH allows a displacement in a QI or HI amode, but only when the
- other operand is R0. GCC doesn't handle this very well, so we forgo
- all of that.
-
- A legitimate index for a QI or HI is 0, SI can be any number 0..63,
- DI can be any number 0..60. */
-
-#define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
- do { \
- if (GET_CODE (OP) == CONST_INT) \
- { \
- if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
- if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
- } \
- } while(0)
-
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
-{ \
- if (BASE_REGISTER_RTX_P (X)) \
- goto LABEL; \
- else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
- && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
- goto LABEL; \
- else if (GET_CODE (X) == PLUS \
- && ((MODE) != PSImode || reload_completed)) \
- { \
- rtx xop0 = XEXP ((X), 0); \
- rtx xop1 = XEXP ((X), 1); \
- if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
- if (GET_MODE_SIZE (MODE) <= 4 \
- || TARGET_SH4 && TARGET_FMOVD && MODE == DFmode) \
- { \
- if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
- goto LABEL; \
- if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
- goto LABEL; \
- } \
- } \
-}
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the SH, if X is almost suitable for indexing, but the offset is
- out of range, convert it into a normal form so that cse has a chance
- of reducing the number of address registers used. */
-
-#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
-{ \
- if (GET_CODE (X) == PLUS \
- && (GET_MODE_SIZE (MODE) == 4 \
- || GET_MODE_SIZE (MODE) == 8) \
- && GET_CODE (XEXP ((X), 1)) == CONST_INT \
- && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
- && ! (TARGET_SH4 && (MODE) == DFmode) \
- && ! (TARGET_SH3E && (MODE) == SFmode)) \
- { \
- rtx index_rtx = XEXP ((X), 1); \
- HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
- rtx sum; \
- \
- GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
- /* On rare occasions, we might get an unaligned pointer \
- that is indexed in a way to give an aligned address. \
- Therefore, keep the lower two bits in offset_base. */ \
- /* Instead of offset_base 128..131 use 124..127, so that \
- simple add suffices. */ \
- if (offset > 127) \
- { \
- offset_base = ((offset + 4) & ~60) - 4; \
- } \
- else \
- offset_base = offset & ~60; \
- /* Sometimes the normal form does not suit DImode. We \
- could avoid that by using smaller ranges, but that \
- would give less optimized code when SImode is \
- prevalent. */ \
- if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
- { \
- sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
- GEN_INT (offset_base), NULL_RTX, 0, \
- OPTAB_LIB_WIDEN); \
- \
- (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base)); \
- goto WIN; \
- } \
- } \
-}
-
-/* A C compound statement that attempts to replace X, which is an address
- that needs reloading, with a valid memory address for an operand of
- mode MODE. WIN is a C statement label elsewhere in the code.
-
- Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
- of the address. That will allow inheritance of the address reloads. */
-
-#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
-{ \
- if (GET_CODE (X) == PLUS \
- && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
- && ! (TARGET_SH4 && (MODE) == DFmode) \
- && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \
- { \
- rtx index_rtx = XEXP (X, 1); \
- HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
- rtx sum; \
- \
- if (TARGET_SH3E && MODE == SFmode) \
- { \
- X = copy_rtx (X); \
- push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL_PTR, \
- INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
- (TYPE)); \
- goto WIN; \
- } \
- /* Instead of offset_base 128..131 use 124..127, so that \
- simple add suffices. */ \
- if (offset > 127) \
- { \
- offset_base = ((offset + 4) & ~60) - 4; \
- } \
- else \
- offset_base = offset & ~60; \
- /* Sometimes the normal form does not suit DImode. We \
- could avoid that by using smaller ranges, but that \
- would give less optimized code when SImode is \
- prevalent. */ \
- if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
- { \
- sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
- GEN_INT (offset_base)); \
- X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
- push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL_PTR, \
- BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
- (TYPE)); \
- goto WIN; \
- } \
- } \
- /* We must re-recognize what we created before. */ \
- else if (GET_CODE (X) == PLUS \
- && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
- && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
- && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ! (TARGET_SH3E && MODE == SFmode)) \
- { \
- /* Because this address is so complex, we know it must have \
- been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
- it is already unshared, and needs no further unsharing. */ \
- push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL_PTR, \
- BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
- goto WIN; \
- } \
-}
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
-
- ??? Strictly speaking, we should also include all indexed addressing,
- because the index scale factor is the length of the operand.
- However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
- high if we did that. So we rely on reload to fix things up. */
-
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
-{ \
- if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
- goto LABEL; \
-}
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
-
-#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
-((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
- ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
- : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
- ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
- : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
- : SImode)
-
-/* Define as C expression which evaluates to nonzero if the tablejump
- instruction expects the table to contain offsets from the address of the
- table.
- Do not define this if the table should contain absolute addresses. */
-#define CASE_VECTOR_PC_RELATIVE 1
-
-/* Specify the tree operation to be used to convert reals to integers. */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* Since the SH3e has only `float' support, it is desirable to make all
- floating point types equivalent to `float'. */
-#define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
-
-/* 'char' is signed by default. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* The type of size_t unsigned int. */
-#define SIZE_TYPE "unsigned int"
-
-#define WCHAR_TYPE "short unsigned int"
-#define WCHAR_TYPE_SIZE 16
-
-/* Don't cse the address of the function being compiled. */
-/*#define NO_RECURSIVE_FUNCTION_CSE 1*/
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 4
-
-/* Max number of bytes we want move_by_pieces to be able to copy
- efficiently. */
-#define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
-
-/* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
-#define WORD_REGISTER_OPERATIONS
-
-/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
-#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
-
-/* Define if loading short immediate values into registers sign extends. */
-#define SHORT_IMMEDIATES_SIGN_EXTEND
-
-/* Define this if zero-extension is slow (more than one real instruction).
- On the SH, it's only one instruction. */
-/* #define SLOW_ZERO_EXTEND */
-
-/* Nonzero if access to memory by bytes is slow and undesirable. */
-#define SLOW_BYTE_ACCESS 0
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-#define STORE_FLAG_VALUE 1
-
-/* Immediate shift counts are truncated by the output routines (or was it
- the assembler?). Shift counts in a register are truncated by SH. Note
- that the native compiler puts too large (> 32) immediate shift counts
- into a register and shifts by the register, letting the SH decide what
- to do instead of doing that itself. */
-/* ??? The library routines in lib1funcs.asm truncate the shift count.
- However, the SH3 has hardware shifts that do not truncate exactly as gcc
- expects - the sign bit is significant - so it appears that we need to
- leave this zero for correct SH3 code. */
-#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
-
-/* All integers have the same format so truncation is easy. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
-
-/* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
-/*#define NO_FUNCTION_CSE 1*/
-
-/* Chars and shorts should be passed as ints. */
-#define PROMOTE_PROTOTYPES 1
-
-/* The machine modes of pointers and functions. */
-#define Pmode SImode
-#define FUNCTION_MODE Pmode
-
-/* The relative costs of various types of constants. Note that cse.c defines
- REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
-
-#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) == 0) \
- return 0; \
- else if (CONST_OK_FOR_I (INTVAL (RTX))) \
- return 1; \
- else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
- && CONST_OK_FOR_L (INTVAL (RTX))) \
- return 1; \
- else \
- return 8; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 5; \
- case CONST_DOUBLE: \
- return 10;
-
-#define RTX_COSTS(X, CODE, OUTER_CODE) \
- case PLUS: \
- return (COSTS_N_INSNS (1) \
- + rtx_cost (XEXP ((X), 0), PLUS) \
- + (rtx_equal_p (XEXP ((X), 0), XEXP ((X), 1))\
- ? 0 : rtx_cost (XEXP ((X), 1), PLUS)));\
- case AND: \
- return COSTS_N_INSNS (andcosts (X)); \
- case MULT: \
- return COSTS_N_INSNS (multcosts (X)); \
- case ASHIFT: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- /* Add one extra unit for the matching constraint. \
- Otherwise loop strength reduction would think that\
- a shift with different sourc and destination is \
- as cheap as adding a constant to a register. */ \
- return (COSTS_N_INSNS (shiftcosts (X)) \
- + rtx_cost (XEXP ((X), 0), (CODE)) \
- + 1); \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- return COSTS_N_INSNS (20); \
- case FLOAT: \
- case FIX: \
- return 100;
-
-/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
- are actually function calls with some special constraints on arguments
- and register usage.
-
- These macros tell reorg that the references to arguments and
- register clobbers for insns of type sfunc do not appear to happen
- until after the millicode call. This allows reorg to put insns
- which set the argument registers into the delay slot of the millicode
- call -- thus they act more like traditional CALL_INSNs.
-
- get_attr_is_sfunc will try to recognize the given insn, so make sure to
- filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
- in particular. */
-
-#define INSN_SETS_ARE_DELAYED(X) \
- ((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER \
- && get_attr_is_sfunc (X)))
-
-#define INSN_REFERENCES_ARE_DELAYED(X) \
- ((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER \
- && get_attr_is_sfunc (X)))
-
-/* Compute the cost of an address. For the SH, all valid addresses are
- the same cost. */
-/* ??? Perhaps we should make reg+reg addresses have higher cost because
- they add to register pressure on r0. */
-
-#define ADDRESS_COST(RTX) 1
-
-/* Compute extra cost of moving data between one register class
- and another. */
-
-/* Regclass always uses 2 for moves in the same register class;
- If SECONDARY*_RELOAD_CLASS says something about the src/dst pair,
- it uses this information. Hence, the general register <-> floating point
- register information here is not used for SFmode. */
-#define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
- ((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REG)) ? 10 \
- : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \
- && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
- || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS) \
- && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS \
- || (SRCCLASS) == DF_REGS))) \
- ? TARGET_FMOVD ? 8 : 12 \
- : (((DSTCLASS) == FPUL_REGS \
- && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
- || (SRCCLASS == FPUL_REGS \
- && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS))) \
- ? 5 \
- : (((DSTCLASS) == FPUL_REGS \
- && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS)) \
- || ((SRCCLASS) == FPUL_REGS \
- && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS))) \
- ? 7 \
- : 2)
-
-/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
- would be so that people would slow memory systems could generate
- different code that does fewer memory accesses. */
-
-/* Assembler output control. */
-
-/* A C string constant describing how to begin a comment in the target
- assembler language. The compiler assumes that the comment will end at
- the end of the line. */
-#define ASM_COMMENT_START "!"
-
-/* The text to go at the start of the assembler file. */
-#define ASM_FILE_START(STREAM) \
- output_file_start (STREAM)
-
-#define ASM_FILE_END(STREAM)
-
-#define ASM_APP_ON ""
-#define ASM_APP_OFF ""
-#define FILE_ASM_OP "\t.file\n"
-#define IDENT_ASM_OP "\t.ident\n"
-#define SET_ASM_OP ".set"
-
-/* How to change between sections. */
-
-#define TEXT_SECTION_ASM_OP "\t.text"
-#define DATA_SECTION_ASM_OP "\t.data"
-#define CTORS_SECTION_ASM_OP "\t.section\t.ctors\n"
-#define DTORS_SECTION_ASM_OP "\t.section\t.dtors\n"
-#define EXTRA_SECTIONS in_ctors, in_dtors
-#define EXTRA_SECTION_FUNCTIONS \
-void \
-ctors_section() \
-{ \
- if (in_section != in_ctors) \
- { \
- fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
- in_section = in_ctors; \
- } \
-} \
-void \
-dtors_section() \
-{ \
- if (in_section != in_dtors) \
- { \
- fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
- in_section = in_dtors; \
- } \
-}
-
-/* If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as
- uninitialized global data. If not defined, and neither
- `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
- uninitialized global data will be output in the data section if
- `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
- used. */
-#ifndef BSS_SECTION_ASM_OP
-#define BSS_SECTION_ASM_OP ".section\t.bss"
-#endif
-
-/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
- separate, explicit argument. If you define this macro, it is used
- in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
- handling the required alignment of the variable. The alignment is
- specified as the number of bits.
-
- Try to use function `asm_output_aligned_bss' defined in file
- `varasm.c' when defining this macro. */
-#ifndef ASM_OUTPUT_ALIGNED_BSS
-#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
- asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
-#endif
-
-/* Define this so that jump tables go in same section as the current function,
- which could be text or it could be a user defined section. */
-#define JUMP_TABLES_IN_TEXT_SECTION 1
-
-/* A C statement to output something to the assembler file to switch to section
- NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
- NULL_TREE. Some target formats do not support arbitrary sections. Do not
- define this macro in such cases. */
-
-#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
- do { fprintf (FILE, ".section\t%s\n", NAME); } while (0)
-
-#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
- do { ctors_section(); asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0)
-
-#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
- do { dtors_section(); asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0)
-
-#undef DO_GLOBAL_CTORS_BODY
-
-#define DO_GLOBAL_CTORS_BODY \
-{ \
- typedef (*pfunc)(); \
- extern pfunc __ctors[]; \
- extern pfunc __ctors_end[]; \
- pfunc *p; \
- for (p = __ctors_end; p > __ctors; ) \
- { \
- (*--p)(); \
- } \
-}
-
-#undef DO_GLOBAL_DTORS_BODY
-#define DO_GLOBAL_DTORS_BODY \
-{ \
- typedef (*pfunc)(); \
- extern pfunc __dtors[]; \
- extern pfunc __dtors_end[]; \
- pfunc *p; \
- for (p = __dtors; p < __dtors_end; p++) \
- { \
- (*p)(); \
- } \
-}
-
-#define ASM_OUTPUT_REG_PUSH(file, v) \
- fprintf ((file), "\tmov.l\tr%s,-@r15\n", (v));
-
-#define ASM_OUTPUT_REG_POP(file, v) \
- fprintf ((file), "\tmov.l\t@r15+,r%s\n", (v));
-
-/* The assembler's names for the registers. RFP need not always be used as
- the Real framepointer; it can also be used as a normal general register.
- Note that the name `fp' is horribly misleading since `fp' is in fact only
- the argument-and-return-context pointer. */
-
-extern char fp_reg_names[][5];
-
-#define REGISTER_NAMES \
-{ \
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "ap", "pr", "t", "gbr", "mach","macl", fp_reg_names[16], "rap", \
- fp_reg_names[0], fp_reg_names[1] , fp_reg_names[2], fp_reg_names[3], \
- fp_reg_names[4], fp_reg_names[5], fp_reg_names[6], fp_reg_names[7], \
- fp_reg_names[8], fp_reg_names[9], fp_reg_names[10], fp_reg_names[11], \
- fp_reg_names[12], fp_reg_names[13], fp_reg_names[14], fp_reg_names[15], \
- fp_reg_names[17], fp_reg_names[18], fp_reg_names[19], fp_reg_names[20], \
- fp_reg_names[21], fp_reg_names[22], fp_reg_names[23], fp_reg_names[24], \
- "fpscr", \
-}
-
-#define DEBUG_REGISTER_NAMES \
-{ \
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "ap", "pr", "t", "gbr", "mach","macl", "fpul","rap", \
- "fr0","fr1","fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
- "fr8","fr9","fr10","fr11","fr12","fr13","fr14","fr15",\
- "xd0","xd2","xd4", "xd6", "xd8", "xd10","xd12","xd14", \
- "fpscr", \
-}
-
-/* DBX register number for a given compiler register number. */
-/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
- to match gdb. */
-#define DBX_REGISTER_NUMBER(REGNO) \
- (((REGNO) >= 22 && (REGNO) <= 39) ? ((REGNO) + 1) : (REGNO))
-
-/* Output a label definition. */
-#define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
-
-/* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
-#define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf ((FILE), "\t.align %d\n", (LOG))
-
-/* Output a function label definition. */
-#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
- ASM_OUTPUT_LABEL((STREAM), (NAME))
-
-/* Output a globalising directive for a label. */
-#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
- (fprintf ((STREAM), "\t.global\t"), \
- assemble_name ((STREAM), (NAME)), \
- fputc ('\n', (STREAM)))
-
-/* The prefix to add to user-visible assembler symbols. */
-
-#define USER_LABEL_PREFIX "_"
-
-/* The prefix to add to an internally generated label. */
-
-#define LOCAL_LABEL_PREFIX ""
-
-/* Make an internal label into a string. */
-#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
- sprintf ((STRING), "*%s%s%d", LOCAL_LABEL_PREFIX, (PREFIX), (NUM))
-
-/* Output an internal label definition. */
-#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- asm_fprintf ((FILE), "%L%s%d:\n", (PREFIX), (NUM))
-
-/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
-
-/* Construct a private name. */
-#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
- ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
- sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
-
-/* Output a relative address table. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
- switch (GET_MODE (BODY)) \
- { \
- case SImode: \
- asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
- break; \
- case HImode: \
- asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
- break; \
- case QImode: \
- asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
- break; \
- }
-
-/* Output an absolute table element. */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
- if (TARGET_BIGTABLE) \
- asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
- else \
- asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE)); \
-
-/* Output various types of constants. */
-
-/* This is how to output an assembler line defining a `double'. */
-
-#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
-do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf ((FILE), "\t.double %s\n", dstr); \
- } while (0)
-
-/* This is how to output an assembler line defining a `float' constant. */
-#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
-do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf ((FILE), "\t.float %s\n", dstr); \
- } while (0)
-
-#define ASM_OUTPUT_INT(STREAM, EXP) \
- (fprintf ((STREAM), "\t.long\t"), \
- output_addr_const ((STREAM), (EXP)), \
- fputc ('\n', (STREAM)))
-
-#define ASM_OUTPUT_SHORT(STREAM, EXP) \
- (fprintf ((STREAM), "\t.short\t"), \
- output_addr_const ((STREAM), (EXP)), \
- fputc ('\n', (STREAM)))
-
-#define ASM_OUTPUT_CHAR(STREAM, EXP) \
- (fprintf ((STREAM), "\t.byte\t"), \
- output_addr_const ((STREAM), (EXP)), \
- fputc ('\n', (STREAM)))
-
-#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
- fprintf ((STREAM), "\t.byte\t%d\n", (VALUE)) \
-
-/* The next two are used for debug info when compiling with -gdwarf. */
-#define UNALIGNED_SHORT_ASM_OP ".uaword"
-#define UNALIGNED_INT_ASM_OP ".ualong"
-
-/* Loop alignment is now done in machine_dependent_reorg, so that
- branch shortening can know about it. */
-
-/* This is how to output an assembler line
- that says to advance the location counter by SIZE bytes. */
-
-#define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf ((FILE), "\t.space %d\n", (SIZE))
-
-/* This says how to output an assembler line
- to define a global common symbol. */
-
-#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
-( fputs ("\t.comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
-/* This says how to output an assembler line
- to define a local common symbol. */
-
-#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
-( fputs ("\t.lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
-/* The assembler's parentheses characters. */
-#define ASM_OPEN_PAREN "("
-#define ASM_CLOSE_PAREN ")"
-
-/* Target characters. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* A C statement to be executed just prior to the output of
- assembler code for INSN, to modify the extracted operands so
- they will be output differently.
-
- Here the argument OPVEC is the vector containing the operands
- extracted from INSN, and NOPERANDS is the number of elements of
- the vector which contain meaningful data for this insn.
- The contents of this vector are what will be used to convert the insn
- template into assembler code, so you can change the assembler output
- by changing the contents of the vector. */
-
-#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
- final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
-#define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
-
-/* Print a memory address as an operand to reference that memory location. */
-
-#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
- ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
- || (CHAR) == '$')
-
-extern struct rtx_def *sh_compare_op0;
-extern struct rtx_def *sh_compare_op1;
-extern struct rtx_def *prepare_scc_operands();
-
-/* Which processor to schedule for. The elements of the enumeration must
- match exactly the cpu attribute in the sh.md file. */
-
-enum processor_type {
- PROCESSOR_SH1,
- PROCESSOR_SH2,
- PROCESSOR_SH3,
- PROCESSOR_SH3E,
- PROCESSOR_SH4
-};
-
-#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
-extern enum processor_type sh_cpu;
-
-extern enum machine_mode sh_addr_diff_vec_mode;
-
-extern int optimize; /* needed for gen_casesi. */
-
-/* Declare functions defined in sh.c and used in templates. */
-
-extern char *output_branch();
-extern char *output_ieee_ccmpeq();
-extern char *output_branchy_insn();
-extern char *output_shift();
-extern char *output_movedouble();
-extern char *output_movepcrel();
-extern char *output_jump_label_table();
-extern char *output_far_jump();
-
-enum mdep_reorg_phase_e
-{
- SH_BEFORE_MDEP_REORG,
- SH_INSERT_USES_LABELS,
- SH_SHORTEN_BRANCHES0,
- SH_FIXUP_PCLOAD,
- SH_SHORTEN_BRANCHES1,
- SH_AFTER_MDEP_REORG
-};
-
-extern enum mdep_reorg_phase_e mdep_reorg_phase;
-
-void machine_dependent_reorg ();
-struct rtx_def *sfunc_uses_reg ();
-int barrier_align ();
-int sh_loop_align ();
-
-#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
-
-/* Generate calls to memcpy, memcmp and memset. */
-
-#define TARGET_MEM_FUNCTIONS
-
-/* Define this macro if you want to implement any pragmas. If defined, it
- is a C expression whose value is 1 if the pragma was handled by the
- macro, zero otherwise. */
-#define HANDLE_PRAGMA(GETC, UNGETC, NODE) sh_handle_pragma (GETC, UNGETC, NODE)
-extern int sh_handle_pragma ();
-
-/* Set when processing a function with pragma interrupt turned on. */
-
-extern int pragma_interrupt;
-
-/* Set to an RTX containing the address of the stack to switch to
- for interrupt functions. */
-extern struct rtx_def *sp_switch;
-
-/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
- is a valid machine specific attribute for DECL.
- The attributes in ATTRIBUTES have previously been assigned to DECL. */
-extern int sh_valid_machine_decl_attribute ();
-#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
-sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
-
-extern void sh_pragma_insert_attributes ();
-#define PRAGMA_INSERT_ATTRIBUTES(node, pattr, prefix_attr) \
- sh_pragma_insert_attributes (node, pattr, prefix_attr)
-
-extern int sh_flag_remove_dead_before_cse;
-extern int rtx_equal_function_value_matters;
-extern struct rtx_def *fpscr_rtx;
-extern struct rtx_def *get_fpscr_rtx ();
-
-
-/* Instructions with unfilled delay slots take up an extra two bytes for
- the nop in the delay slot. */
-
-#define ADJUST_INSN_LENGTH(X, LENGTH) \
- if (((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER) \
- || GET_CODE (X) == CALL_INSN \
- || (GET_CODE (X) == JUMP_INSN \
- && GET_CODE (PATTERN (X)) != ADDR_DIFF_VEC \
- && GET_CODE (PATTERN (X)) != ADDR_VEC)) \
- && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (X)))) != SEQUENCE \
- && get_attr_needs_delay_slot (X) == NEEDS_DELAY_SLOT_YES) \
- (LENGTH) += 2;
-
-/* Define the codes that are matched by predicates in sh.c. */
-#define PREDICATE_CODES \
- {"arith_operand", {SUBREG, REG, CONST_INT}}, \
- {"arith_reg_operand", {SUBREG, REG}}, \
- {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
- {"binary_float_operator", {PLUS, MULT}}, \
- {"commutative_float_operator", {PLUS, MULT}}, \
- {"fp_arith_reg_operand", {SUBREG, REG}}, \
- {"fp_extended_operand", {SUBREG, REG, FLOAT_EXTEND}}, \
- {"fpscr_operand", {REG}}, \
- {"general_movsrc_operand", {SUBREG, REG, CONST_INT, MEM}}, \
- {"general_movdst_operand", {SUBREG, REG, CONST_INT, MEM}}, \
- {"logical_operand", {SUBREG, REG, CONST_INT}}, \
- {"noncommutative_float_operator", {MINUS, DIV}}, \
- {"register_operand", {SUBREG, REG}},
-
-/* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type.
-
- Leaving the unsignedp unchanged gives better code than always setting it
- to 0. This is despite the fact that we have only signed char and short
- load instructions. */
-#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
- (MODE) = SImode;
-
-/* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
- extensions applied to char/short functions arguments. Defining
- PROMOTE_FUNCTION_RETURN does the same for function returns. */
-
-#define PROMOTE_FUNCTION_ARGS
-#define PROMOTE_FUNCTION_RETURN
-
-/* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
- and poping arguments. However, we do have push/pop instructions, and
- rather limited offsets (4 bits) in load/store instructions, so it isn't
- clear if this would give better code. If implemented, should check for
- compatibility problems. */
-
-/* A C statement (sans semicolon) to update the integer variable COST
- based on the relationship between INSN that is dependent on
- DEP_INSN through the dependence LINK. The default is to make no
- adjustment to COST. This can be used for example to specify to
- the scheduler that an output- or anti-dependence does not incur
- the same cost as a data-dependence. */
-
-#define ADJUST_COST(insn,link,dep_insn,cost) \
-do { \
- rtx reg; \
- \
- if (GET_CODE(insn) == CALL_INSN) \
- { \
- /* The only input for a call that is timing-critical is the \
- function's address. */ \
- rtx call = PATTERN (insn); \
- \
- if (GET_CODE (call) == PARALLEL) \
- call = XVECEXP (call, 0 ,0); \
- if (GET_CODE (call) == SET) \
- call = SET_SRC (call); \
- if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM \
- && ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn)) \
- (cost) = 0; \
- } \
- /* All sfunc calls are parallels with at least four components. \
- Exploit this to avoid unnecessary calls to sfunc_uses_reg. */ \
- else if (GET_CODE (PATTERN (insn)) == PARALLEL \
- && XVECLEN (PATTERN (insn), 0) >= 4 \
- && (reg = sfunc_uses_reg (insn))) \
- { \
- /* Likewise, the most timing critical input for an sfuncs call \
- is the function address. However, sfuncs typically start \
- using their arguments pretty quickly. \
- Assume a four cycle delay before they are needed. */ \
- if (! reg_set_p (reg, dep_insn)) \
- cost -= TARGET_SUPERSCALAR ? 40 : 4; \
- } \
- /* Adjust load_si / pcload_si type insns latency. Use the known \
- nominal latency and form of the insn to speed up the check. */ \
- else if (cost == 3 \
- && GET_CODE (PATTERN (dep_insn)) == SET \
- /* Latency for dmpy type insns is also 3, so check the that \
- it's actually a move insn. */ \
- && general_movsrc_operand (SET_SRC (PATTERN (dep_insn)), SImode))\
- cost = 2; \
- else if (cost == 30 \
- && GET_CODE (PATTERN (dep_insn)) == SET \
- && GET_MODE (SET_SRC (PATTERN (dep_insn))) == SImode) \
- cost = 20; \
-} while (0) \
-
-/* For the sake of libgcc2.c, indicate target supports atexit. */
-#define HAVE_ATEXIT
-
-#define SH_DYNAMIC_SHIFT_COST \
- (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)